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Abstract

Selman and Kautz [22] proposed an approach to compute a Horn CNF approximation
of CNF formulas. We extend this approach and propose a new algorithm for the Horn
least upper bound that involves renaming variables. Although we provide negative results
for the quality of approximation, experimental results for random CNF demonstrate that
the proposed algorithm improves both computational efficiency and approximation quality.
We observe an interesting behavior in the Horn approximation sizes and errors which we
call the “Horn bump”: Maxima occur in an intermediate range of densities below the
satisfiability threshold.
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1. Introduction

The reasoning problem in propositional logic can be considered to be the following question:
Is a clause C entailed by a CNF expression ϕ? Typically ϕ is a fixed knowledge base and the
number of queries C to be answered may be large. This reasoning problem is known to be
hard; thus it is worthwhile to transform the original knowledge base ϕ into a new knowledge
base ϕ′, such that answering the question “Is a clause C entailed by ϕ′?” is tractable, but
ϕ′ is only approximately equivalent to ϕ. Selman and Kautz proposed such an approach in
an important article [22] (see also [5,7,24]) and called the approach knowledge compilation.

The idea of Selman and Kautz’s algorithm is to approximate the original knowledge
base ϕ from above and below by Horn formulas, and then use these formulas to answer
the queries efficiently. Specifically, they proposed an algorithm (outlined in Section 4) for
computing a Horn least upper bound (Horn-LUB) of ϕ that is equivalent to the conjunction
of all its Horn prime implicates.1.

There is an interesting combinatorial characterization of the set of truth assignments
satisfying the Horn-LUB of ϕ. Define the intersection of two truth assignments to be their
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1. We omit the definition of Horn greatest lower bounds, as those will not be discussed in this paper.
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componentwise conjunction.2. The set of truth assignments satisfying the Horn-LUB of ϕ
is the closure under intersection of the set of satisfying truth assignments of ϕ.

Entailment queries to Horn formulas can be answered in polynomial time, but the knowl-
edge compilation approach can still have several drawbacks: The size of the Horn approxi-
mation itself may be large, making the approach inefficient; not all queries may be answered
correctly by the Horn upper bound (those implied by the Horn lower bound, but not implied
by the upper bound). Selman and Kautz [22] and del Val [9] proved such negative results
on the worst-case performance of the approach.

Another important question is the performance of the algorithms on random examples.
Initial results in this direction were obtained by Kautz and Selman [14]. Boufkhad [4]
extended the approach for Horn lower bounds by using renameable Horn formulas. The
primary test cases were random 3-CNF formulas with density around 4.2, which is known
to be hard for satisfiability algorithms.3. In other related work, van Maaren and van Nor-
den [25] considered the connection between the efficiency of satisfiability algorithms and
the size of a largest renameable sub-CNF for random 3-CNF.

In this paper we consider several new versions of the Horn-LUB algorithm and present
both theoretical and experimental results on their performance. In contrast to the original
approach, the proposed versions of the algorithm use a preprocessing step that involves
renaming some variables in the initial 3-CNF (i.e., switching some variables and their com-
plements). The idea behind the renaming is to create as many Horn clauses as possible in
the original 3-CNF. By doing so, we hope to obtain a (possibly smaller) Horn-LUB faster
and with better approximation quality. In general, the problem of finding the largest re-
nameable Horn sub-CNF of a given CNF is NP-hard. Therefore, we use an approximation
algorithm proposed by Boros [3] to find a large renameable subformula of the initial 3-CNF.
Another variation of the Horn-LUB algorithm we consider is the use of resolvents of lim-
ited size only during the calculation. This is also expected to speed up the algorithm and
decrease the size of the Horn upper bound, but possibly reduce the approximation quality.
We explore the trade-offs and find an optimal size for the intermediate resolvents.

The combinatorial characterization of the Horn-LUB previously discussed carries over
to the case of renaming: if an arbitrary vector is chosen as the ‘bottom’ of the hypercube
instead of the standard all 0’s vector then there is a new orientation of the hypercube. A
renaming corresponds to such a reorientation. To obtain the Horn-LUB after the renaming
of the original formula, intersections have to be taken with respect to this new chosen vector
(orientation).

The theoretical results for the renaming variation of the algorithm show worst-case
behavior similar to that of the original Selman–Kautz algorithm. We show that there are
3-CNF formulas with only a polynomial number of satisfying truth assignments such that
for every renaming, the obtained Horn-LUB has superpolynomially many satisfying truth
assignments. Another result shows that there is a polynomial size CNF expression such
that for every renaming, only a superpolynomially small fraction of the prime implicates

2. E.g., (1, 1, 1, 0, 0) ∩ (1, 1, 0, 0, 1) is (1, 1, 0, 0, 0). The intersection of two truth assignments is also the
greatest lower bound of these assignments in the componentwise partial ordering of the hypercube.

3. Kautz and Selman also considered a class of planning problems, and Boufkhad also considered 4-CNF
formulas.
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are Horn clauses, and thus most of the prime implicate queries are answered incorrectly by
the renamed Horn-LUB.

The second half of the paper is devoted to experimental results and to comparisons to
previous work. We consider three new algorithms for calculating various forms of approx-
imations to the Horn-LUB and find that they give improvements in both efficiency and
approximation quality over Selman and Kautz’s original idea. The best approach turns out
to be the one that combines both modifications: renaming and bounded size resolvents. To
compare these algorithms we use the performance over all truth assignments as an evalu-
ation measure. Due to running-time constraints, we have chosen to use formulas with 20
variables so we can exhaustively enumerate all vectors. In order to consider formulas with a
large number of variables, it would be necessary to efficiently generate a sample of random
satisfying truth assignments of a Horn formula. We show that this is not possible unless
RP = NP. In the other direction, we show that Google’s relsat4. can be used to generate
random satisfying assignments for Horn formulas with at least up to 60 variables.

Unlike previous work, which concentrated simulation effort around density 4.2, we have
considered 3-CNF formulas of different densities, including densities below the famous
threshold. For lower densities we notice an interesting, and apparently new, phenomenon—
the Horn bump: the performance of each algorithm is the worst in an intermediate range
of densities, far below the critical density 4.2.

2. Preliminaries

A clause is a disjunction of literals; a clause is Horn (resp., definite, negative) if it contains
at most one (resp., exactly one, no) unnegated literal. A CNF is a conjunction of clauses;
it is a 3-CNF if each clause contains exactly 3 literals. A clause C is an implicate of a CNF
expression ϕ if every truth assignment or vector in {0, 1}n satisfying ϕ also satisfies C; it is
a prime implicate if none of its sub-clauses is an implicate. An n-variable random 3-CNF
formula of density α is obtained by selecting α · n clauses of size 3, selecting each clause
from the uniform distribution over all such clauses. A Horn formula or Horn-CNF is a
conjunction of Horn clauses.

The set of satisfying truth assignments of a formula ϕ is denoted by T (ϕ). The
weight of a 0-1 vector is the number of its 1 components. The intersection of vectors
(x1, . . . , xn), (y1, . . . , yn) ∈ {0, 1}n is (x1 ∧ y1, . . . , xn ∧ yn). A Boolean function can be de-
scribed by a Horn formula if and only if its set of satisfying truth assignments is closed under
intersection [12, 19]. The (ordinary) Horn closure H(S) of any set S of truth assignments
is the smallest intersection-closed set of truth assignments containing S.

A Horn least upper bound of ϕ (Horn-LUB(ϕ)) is any conjunction of Horn clauses
logically equivalent to the conjunction of all Horn prime implicates of ϕ. The set of satisfying
truth assignments of Horn-LUB(ϕ) is H(T (ϕ)), the Horn closure of T (ϕ). Selman and
Kautz [22] give an algorithm for computing a Horn-LUB(ϕ).

Renaming a variable x in a CNF is the operation of simultaneously switching every
occurrence of x to x̄ and of x̄ to x. A renaming (function) with respect to vector d ∈ {0, 1}n,
denoted by Rd, maps a CNF formula ϕ to Rd(ϕ), obtained by switching every pair of
literals xi and x̄i such that di = 1. The following easily verified proposition shows that

4. relsat (version 2.02) is Google’s exact solution counter for propositional satisfiability instances.
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the operation on truth assignments corresponding to renaming w.r.t. vector d is taking the
exclusive or with d, and one can use a renamed version of a CNF ϕ to solve the reasoning
problem formulated in the introduction.

Proposition 1. a) A truth assignment a satisfies CNF ϕ iff the truth assignment a ⊕ d
satisfies Rd(ϕ).

b) For any CNF ϕ, clause C, and vector d, we have ϕ |= C if and only if Rd(ϕ) |=
Rd(C).

Proof: a) The proof is based on the following fact: for any clause C of ϕ and some literal
xi from C, if ai makes xi positive (negative), then after renaming, ai ⊕ di makes variable
Rdi

(xi) positive (negative).
b) Can be proved using a definition of an implicate and Part a) of this Proposition.

A CNF ϕ is Horn renameable if Rd(ϕ) is a Horn formula for some vector d. It can be
decided in polynomial time if a CNF is Horn renameable [1,18], but finding a largest Horn
renameable sub-CNF of a given CNF is NP -hard [6]. Boros [3] gave an approximation
algorithm for finding a large Horn renameable sub-CNF in an arbitrary CNF in linear time.
Given a direction d ∈ {0, 1}n, the d-Horn closure of a set S of truth assignments is

Hd(S) = H({a⊕ d : a ∈ S}).

With an abuse of notation, we refer to Hd(T (ϕ)) = H(T (Rd(ϕ))) as the d-Horn closure of
ϕ.

3. Bounds on Horn closure sizes with renaming

In this section we present negative results for Horn closures and Horn-LUB with renaming,
analogous to those for the ordinary Horn closure and Horn-LUB.

Theorem 2. There are 3-CNF formulas ϕ with a polynomial number of satisfying truth
assignments such that for every direction d, the size of the d-Horn closure of ϕ is super-
polynomial.

Proof: The construction uses the following lemma.

Lemma 3. There is a set S ⊆ {0, 1}m with |S| = 2m such that for every direction d ∈
{0, 1}m it holds that

|Hd(S)| ≥ 2dm/2e.

Proof: Let S be the set of vectors of weight 1 and (m − 1) and let d ∈ {0, 1}m be any
direction. Then d has at least dm/2e 0’s or dm/2e 1’s. Assume w.l.o.g. that the first dm/2e
components of d are 0 (resp., 1). Consider those vectors from S which have a single 0
(resp. 1) in one of the first dm/2e components. All possible intersections of these vectors
(resp., the complements of these vectors) are contained in the d-Horn closure of S. Thus all
possible vectors on the first dm/2e components occur in the d-Horn closure and the bound
of the lemma follows.
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Now to prove Theorem 2, consider the 4-CNF ϕ formed by taking the conjunction of all
possible clauses of size 4 containing two unnegated and two negated literals over m variables.
The vectors satisfying this formula are those in the set S in the proof of Lemma 3 plus the
all 0’s and the all 1’s vectors. Hence by Lemma 3, ϕ’s Horn closure with respect to any
direction has size at least 2dm/2e.

In order to obtain a 3-CNF ψ, introduce a new variable z for each clause (a ∨ b ∨ c ∨ d)
in ϕ, and replace the clause by five new clauses: (a∨ b∨ z̄), (c∨ d∨ z), (ā∨ b̄∨ z), (ā∨ b∨ z)
and (a ∨ b̄ ∨ z). It follows by a standard argument (omitted for brevity) that ψ has the
same number of satisfying truth assignments as ϕ, and every truth assignment of ϕ has a
unique extension to a satisfying truth assignment of ψ. Hence the Horn closure of ψ in any
direction has size at least 2dm/2e. Thus ψ has n = Θ(m4) variables, Θ(m) satisfying truth
assignments and its Horn closure in every direction has size at least 2dm/2e, so the theorem
follows.

It may be of interest to note that the bound of Lemma 3 is fairly tight.

Theorem 4. For every polynomial p and every ε > 0, for all sufficiently large m, for every
set S of at most p(m) binary vectors of length m, there exists a direction d such that the
size of the d-Horn closure of S is at most 2

m
2

(1+ε).

Proof: We show that a randomly chosen direction d ∈ {0, 1}m has nonzero probability of
having the desired property. For every vector a ∈ S, the probability that a ⊕ d has more
than m

2 (1 + ε
2) 1’s is at most e−ε2m/8 using a Chernoff bound (see, e.g. [15, Additive Form,

page 190]). If m is sufficiently large then p(m)e−ε2m/8 < 1. In this case there is a direction
d such that a ⊕ d has at most m

2 (1 + ε
2) 1’s for every a ∈ S. Every vector in the d-Horn

closure of S is below one of the vectors a ⊕ d. Hence the size of the d-closure is at most
p(m)2

m
2

(1+ ε
2
), which is less than 2

m
2

(1+ε) for all sufficiently large m.

The following result shows the existence of CNF formulas for which the Horn-LUB in
every direction d gives an incorrect answer to a large fraction of the prime implicate queries.
The construction is based on a construction of Levin [17] of a DNF formula with a bounded
number of terms, having the maximal number of prime implicants. In [23], we showed that
all bounded term DNF with the maximal number of prime implicants can be obtained as a
natural generalization of this example.

Theorem 5. There are polynomial size CNF formulas ϕ such that for every direction d, the
ratio of the number of non-Horn and Horn prime implicates of Rd(ϕ) is superpolynomial.

Proof: To construct ϕ, we begin with a complete binary tree of the height k and put
n = 2k. The variables of ϕ are x1, . . . , xn−1 and y1, . . . , yn. Each internal node of the tree
is labeled with a distinct x variable and the ith leaf is labeled with ȳi. The formula ϕ has
n clauses, one for each leaf. The clause corresponding to a leaf is the disjunction of all the
variables on the root-to-leaf path to the leaf, with each x variable being negated if and only
if the path went left when leaving that node. Thus the depth-1 tree pictured in Figure 1
corresponds to (x̄1 ∨ ȳ1) ∧ (x1 ∨ ȳ2).

The formula ϕ has a distinct prime implicate for each of the 2n−1 nonempty subsets of
the leaves [17, 23]. The prime implicate corresponding to a particular subset S of leaves is

5



M. Langlois et al.

x1 

0

y1 y2 

1

 

Figure 1. Tree of depth 1

the disjunction of x variables corresponding to any inner node such that exactly one of the
two subtrees of the node contains a leaf in S, and the negated y variables corresponding to
the leaves in S. An x variable in the prime implicate is negated iff its left subtree is the
one containing leaves in S. Thus, for example, the formula corresponding to the tree in
Figure 1 has three prime implicates, one for each nonempty subset of the two leaves. For
{ȳ1} we have (x̄1 ∨ ȳ1); for {ȳ2} we have (x1 ∨ ȳ2); for {ȳ1, ȳ2} we have (ȳ1 ∨ ȳ2).

We give an upper bound for the number of Horn prime implicates under any renaming
d. Notice that by symmetry, renaming internal nodes does not change the number of Horn
or non-Horn prime implicates. At the leaves, making all the y’s negated maximizes the
number of the prime implicates that are Horn. Thus it is in fact sufficient to estimate the
number of Horn prime implicates of the original formula.

Let Hk (resp., Nk, Dk) be the number of Horn (resp., negative, definite) prime implicates
of the formula built from a binary tree of height k. Then Hk = Nk +Dk. The numbers Hk

satisfy the following recurrence: H1 = 3 and

Hk = Hk−1 +Nk−1 +Hk−1 ·Nk−1 +Nk−1 ·Dk−1 . (1)

Here the first item is the number of Horn implicates of the left subtree. The second term
is the number of negative Horn implicates of the right subtree: by adding the unnegated
variable from the root, those correspond to definite Horn implicates. The third (resp, the
fourth) term corresponds to prime implicates obtained from an arbitrary Horn (resp., a
negative) prime implicate of the left subtree and a negative (resp., a definite) one form the
right subtree. Note that two definite prime implicates from the two subtrees will form a
non-Horn prime implicate. In order to use (1) to get an upper bound on Hk, we must bound
Nk. Similarly to (1), one can derive the following recurrence: N1 = 2 and

Nk = (Nk−1)2 +Nk−1.

It can be shown that Nk < 2
11
16

n and Hk ≤ 3k−4 · 214 · 2
11
16

n.

4. Computational results

The initial algorithm for Horn-LUB proposed by Selman and Kautz takes a set of clauses
(i.e., a CNF) as input and derives new clauses by resolving two clauses where at least one
of them must be non-Horn. If the new resolvent subsumes a clause already in the set, then
that subsumed clause is removed and the resolvent is included in the set. When no new
resolvent that is not subsumed by a clause already in the set can be found, the process
terminates. The Horn least upper bound is the collection of all Horn clauses in the final
set.
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We took Selman and Kautz’s original algorithm and considered three new modifications
of it to compute different Horn approximations:

Renamed-Horn-LUB uses a preprocessing step to find a renaming of the variables of a
given CNF using a heuristic algorithm of [3]. This extra step takes only linear time.
Then the algorithm follows the Horn-LUB algorithm.

4-Horn-UB computes the Horn upper bound in the same way as the original algorithm,
except that it keeps only resolvents of size at most 4 and discards the rest.

Renamed-4-Horn-UB is a combination of the first two modifications: preprocessing step
with renaming and then keeping only resolvents of size at most 4.

We have found that the last modification, Renamed-4-Horn-UB, outperforms all of the
proposed algorithms. In Table 1 we give its running time and output size compared to the
original Horn-LUB approach.

Table 1. Mean running time in CPU seconds (on a Dell laptop with a 2.40 GHz CPU and 256 MB
RAM) and number of clauses in the output for Horn-LUB and Renamed-4-Horn-UB on random
3-CNF formulas on 20 variables as a function of density α, averaged over 50 runs.

Original LUB Renamed-4
α Time Size Time Size
1 1.0 96.1 0.0 28.2
2 50.5 1044.7 0.2 236.2
3 126.8 889.8 1.5 704.8
4 224.6 409.3 0.9 452.7

As we stated in the introduction, we limit ourselves to formulas on n = 20 variables
while comparing our algorithms to the original approach. We do this for two main reasons:
First, the time required to compute the Horn-LUB using Selman and Kautz’s original
algorithm increased by approximately a factor of 5–10 for every two variables added to the
set. Even for n = 25, the time for computing the Horn-LUB was large enough to make it
somewhat inconvenient to perform a few hundred such computations, and it would have
been computationally impossible to work with formulas with, say, 75 variables.

(Selman and Kautz themselves reported experimental results on only the unit clauses
within the Horn-LUB. That can be computed more efficiently by using a SAT solver, rather
than the complete Horn-LUB itself.)

Second, in order to compare the algorithms we enumerated all 2n Boolean vectors, and
this becomes infeasible for values significantly larger than n = 20. (More discussion of this
issue is given at the end of this section.)

It turned out that the running time of Renamed-4-Horn-UB is much smaller than that of
Horn-LUB. The size of the Horn upper bounds produced by Renamed-4-Horn-UB is smaller
for density α ≤ 3, and modestly larger for density 4. We observed that the output sizes
for all algorithms have unimodal behavior as a function of the initial 3-CNF density. More
detailed data show that the maximum (“Horn bump”) occurs around density 2.5.
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Figure 2. Relative errors rA(ϕ) of the algorithms for random 3-CNF with 20 variables as function
of density. Measured by exhaustive examination of all length 20 vectors. Averaged over 100 runs.
From top to bottom: Horn-LUB, 4-Horn-UB, Renamed-Horn-LUB, and Renamed-4-Horn-UB. The
scales for the relative error run from 0–35 for the first two algorithms, but from 0–12 for
the Renamed variants.

4.1 Accuracy of the approximations

For all four algorithms, the Horn upper bound is a conjunction of some clauses that are
implicates of the original 3-CNF ϕ (i.e., their output is implied by ϕ); in other words, each
algorithm’s output has a one-sided error. The relative error of such an algorithm A on an
input formula ϕ is measured by

rA(ϕ) =
|T (A(ϕ))| − |T (ϕ)|

|T (ϕ)|
,

where A(ϕ) denotes the formula output by A on ϕ.
Figure 2 shows computational results for the relative errors of the four Horn upper

bound algorithms for 3-CNF’s with different densities on 20 variables. Statistical values on
all the figures are median, max and min values; the values at the ends of the white bars are
25% and 75%. Note that error curves have a unimodal behavior again, with the maximum
value around density 2.4. The same experiments for a smaller number of variables show
similar values of the maxima.

As we discussed above, the two main modifications of the Horn-LUB algorithm are
renaming and restricting resolvent size to four. Taken alone, the former improves the
relative error more than the latter; notice that the relative errors were sufficiently different
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that Figure 2 uses two different scales. We conclude that all in all, Renamed-4-Horn-UB is
the best algorithm among those proposed for 20 variables.5.

In terms of running time, Renamed-4-Horn-UB is considerably faster than both Horn-
LUB and Renamed-Horn-LUB, and somewhat faster than 4-Horn-UB. In terms of output
size, its output is considerably smaller than Horn-LUB or Renamed-Horn-LUB, but larger
than that of 4-Horn-UB. The relative error for Renamed-4-Horn-UB is just slightly worse
than that of Renamed-Horn-LUB, which has the smallest relative error of all. Modifying
Renamed-4-Horn-UB either by decreasing the allowed resolvent size from 4 to 3, or by using
all implicates of size at most 3 results in a large increase in the relative error for densities
below the satisfiability threshold.

It is to be expected, and it is supported by some experimental evidence, that as the num-
ber of variables increases, the limit on the resolvent size required for producing reasonable
relative error will also increase.

The second measure that can be used to evaluate the algorithms is to compare the
number of queries that are answered incorrectly by their output. For the renaming case, by
Proposition 1 we can just query the renamed clause. We will use the prime implicates of
the initial formula ϕ as our test set of clauses.

By the definition of a Horn least upper bound, the original Horn-LUB algorithm gives
the correct answer for any Horn clause query, and the wrong answer for any non-Horn prime
implicate query. Therefore, renaming is expected to improve the query-answering accuracy
of the LUB. On the other hand, for the case of restricted size resolvents in computing the
upper bound, the query-answering accuracy will worsen because some Horn prime implicates
may receive the wrong answer.

The performance of the four algorithms is shown in Figure 3; these are error ratios, and
all are fairly high for densities significantly below the critical density of α ≈ 4.2. We again
observe unimodal behavior, with the maximum around a density of 1.6, with some variation
by algorithm. The best performance is indeed for Renamed-Horn-LUB, but Renamed-4-
Horn-UB is only a bit worse than Renamed-Horn-LUB.

4.2 Random sampling of satisfying assignments

In order to perform our experiments, we needed to exhaustively check every truth assign-
ment, which is not feasible for formulas with a larger number of variables. One way to
estimate the relative error without generating all possible vectors is to use random sam-
pling by repeatedly generating a random satisfying truth assignment of the Horn upper
bounds. This raises the question whether it is possible to generate a random satisfying
truth assignment of a Horn formula (almost) uniformly in polynomial time. The answer is
“no”:

Theorem 6. Unless RP = NP, there is no fully polynomial almost uniform generator for
Horn formulas.

Proof: This follows directly from combining previous results [10,13,21]. Jerrum et al. [13]
showed that a fully polynomial almost uniform generator exists if and only if there exists

5. Preliminary experiments show Renamed-4-Horn-UB also performing relatively well for up to at least 40
variables, but for 40 variables, simply measuring performance is computationally expensive.
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Figure 3. Fraction of all prime implicate queries to a random 3-CNF formula on 20 variables that
would receive the wrong answer from the particular type of Horn upper bound, as a function of
density. Averaged over 50 runs. From top to bottom: Horn-LUB, 4-Horn-UB, Renamed-Horn-LUB,
Renamed-4-Horn-UB.

a fully polynomial randomized approximate counting scheme. Combining reductions given
in [10,21] we get that unless RP = NP, randomized polynomial-time approximate counting
of assignments satisfying a Horn CNF is not possible, and hence fully polynomial almost
uniform generation is not possible.

We have started to do some initial experiments for randomly generating a satisfying
truth assignment of a Horn formula using relsat. We used relsat to construct a uniformly
random satisfying truth assignment by repeating the following procedure: Pick a variable
x, set x to 1 with probability p and to 0 with probability 1 − p, where p is the fraction of
satisfying truth assignments of the original formula where x is true.

This method runs very quickly on Horn formulas with only 20 variables. We tested how
much time it takes to generate a random satisfying truth assignment for Horn formulas with
a somewhat larger number of variables. To get large Horn formulas to sample, we used the
Renamed-4-Horn-UB algorithm on 3-CNFs.

In Table 2, we report the running time in seconds for sampling different Horn formulas
output by Renamed-4-Horn-UB, as a function of the number of variables and the density
of the original 3-CNF. It can be observed that even for a rather small number of variables
the time to create a single random satisfying assignment is large for intermediate densities.
For density 4, the running time is better. This is unsurprising, because the size of the Horn
approximation is smaller for density 4 as can be seen from Table 1. (Table 1 has values
only for 20 variables but the general behavior is the same for larger numbers of variables.)
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Table 2. Running time in seconds to find one random satisfying truth assignment using the
relsat-based algorithm for the Horn sentence found by using the Renamed-4-Horn-UB algorithm,
after Renamed-4-Horn-UB algorithm has been run on an 3-CNF initial formula of the indicated
number of variables and density. Results are averaged over 10 runs.

Density
1 2 3 4

20 variables 0.07 0.12 0.12 0.04
40 variables 2.4 16.3 16.6 1.3
60 variables 429.7 10270.2 9121.1 22.1
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Figure 4. Number of Horn clauses up to size 4 (total 29395) over 20 variables that were implied
by a random 3-CNF as a function of its density. Averaged over 20 runs.

4.3 Another measure of approximation

We have already introduced two tests that measure the quality of approximation: relative
error and the fraction of all prime implicates queries answered incorrectly. From these
tests one can see that Renamed-4-Horn-UB is the best algorithm for both efficiency and
approximation quality.

Here we propose one more measure to evaluate the performance of Renamed-4-Horn-
UB. The Horn-LUB is logically equivalent to the conjunction of all Horn prime implicates
of the original formula, which allows the Horn-LUB to answer all Horn queries correctly.

It seems interesting to see how many Horn queries are answered incorrectly by Renamed-
4-Horn-UB. We restrict attention to clauses of size up to 4 for simplicity. Figure 4 shows the
number of Horn clauses of size up to 4 that are implied by a random 3-CNF as a function
of its density for 20 variables. For a given 3-CNF formula we count the fraction of Horn
implicates that are not implied by Renamed-4-Horn-UB on Figure 5. We again observe an
unimodal behavior with a bump around density 2, where the worst-case disagreement of
roughly 0.075% occurs. For this measure, Renamed-4-Horn-UB is close to Horn-LUB for
every density.
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Figure 5. Percentage of all Horn clauses up to size 4 where original randomly chosen 3-CNF
ϕ (over 20 variables) and Renamed-4-Horn-UB(ϕ) approximation disagree as a function of ϕ’s
density. Averaged over 20 runs.

4.4 SAT-solver versus Renamed-4-Horn-UB

Selman and Kautz’s original idea of creating the LUB algorithm in the 1990s was to take
advantage of approximation by formulas in Horn form. For their original and our modified
Horn-LUB algorithms, all Horn queries can be answered almost immediately via forward
chaining. The drawback is that in order to obtain this representation a time penalty for
preprocessing must be paid.

Our last test is a comparison of the running times of Renamed-4-Horn-UB and a fast
modern SAT solver, zChaff. This test was performed on a AMD Athlon MP 2000+ processor
(1.6 GHz) running Linux. We consider several formulas over 75 and 200 variables with
different densities. Table 3 below shows some statistics on the running times for 75 variables
for both methods: the left column is for zChaff, and the right column is for Renamed-4-Horn
algorithm. For zChaff we show how much time was needed to answer a Horn query, and for
Renamed-4-Horn we report the running time to find a corresponding Renamed-4-Horn-UB.
We generated 104 random Horn clauses up to size 4, and random 3-CNF formulas over 75
variables with different densities.

Thus according to these data, for 75 variables the average time required by zChaff to
answer a query is not larger than the time required by Renamed-4-Horn-UB to answer
a query. In addition, Renamed-4-Horn-UB has a non-negligible preprocessing time. Thus,
Renamed-4-Horn-UB does not seem competitive in this range. (The comparison is, however,
a little misleading, because we are comparing the highly optimized zChaff program to a
simple non-optimized forward chaining program.)

The situation changes if we increase the number of variables to 200. Then, for density
4, zChaff answers queries in average time ≈ 0.3 CPU second and worst-case time ≈ 40
seconds. Renamed-4-Horn-UB still answers queries in ≤ 8 · 10−3 seconds in the worst case.
Thus Renamed-4-Horn-UB has a significantly better running time for answering a single
query. Preprocessing time for Renamed-4-Horn-UB is quite large, ≈ 2 days on average and
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Table 3. Different running times in CPU seconds for zChaff to answer a query and for calculation
of the Renamed-4-Horn-UB on random 3-CNF formulas on 75 variables as a function of density α.
Renamed-4-Horn-UB query answer time is 2 · 10−3 sec on average.

zChaff Renamed-4-Horn
α Worst Average Worst Average
1 0.02 3 · 10−4 2.39 0.05
2 0.02 5 · 10−4 0.32 0.213
3 0.021 7 · 10−4 24.83 3.62
4 0.03 1 · 10−3 33 · 103 24 · 103

≈ 3 days in the worst case. Thus preprocessing would help if we need to answer 100,000 or
more queries. Note that in a real application the algorithm would run on far more efficient
computing platforms. This would maintain the comparison between the two approaches but
it would significantly scale down running times. (In fact, things might be more favorable
for the approximation approach, because the preprocessing might run on a more powerful
computer than the query answering for either approach.) Thus we conclude that in certain
ranges of the parameters Renamed-4-Horn-UB can be competitive with, or even faster than
applying a SAT solver.6.

5. Concluding remarks

We have proposed several algorithms for generating Horn upper bounds. The paper con-
tains both theoretical negative results on the approximation quality of Horn upper bounds
using renaming and experimental results on the behavior of the algorithms. As the initial
knowledge base we used random 3-CNF with 20 variables and different densities. Based on
our experimental results, we have concluded that the best algorithm in terms of running
time, relative error and output size is Renamed-4-Horn-UB. We observed an unusual behav-
ior (“Horn bump”) for the different performance measures in some intermediate range of
densities. It would be interesting to obtain theoretical results on the phenomena observed.

There are several other future directions that can be pursued. First, we are interested in
showing that there are CNF expressions with superpolynomially large Horn-LUB for every
direction (this is possible for the ordinary Horn closure and an example is given in [22]).

As it was mentioned in the introduction, the Horn least upper bound can be considered
as the closure under intersection of the set of satisfying truth assignments for a Horn formula.
This leads to a general theoretical question: What is the expected size of the intersection
closure of a random subset of {0, 1}n, given a probability distribution on the subsets? We
are unaware of any results on this problem. Another closure problem, the dimension of the
subspace spanned by a random set of vectors, has been studied in great detail. Perhaps

6. SAT-solver-based methods always return the correct answer. Horn knowledge compilation, if both upper
and lower bounds are used together, returns either the correct answer or “I don’t know.” Thus an option,
already suggested in the original work of Selman and Kautz [22], is to combine the two approaches by
using knowledge compilation, and if an “I don’t know” is returned then using a SAT solver. As we have
not implemented Horn lower bounds, we have no data on the efficiency of this approach.
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a first model to study the intersection problem would be to generate m random vectors,
where each bit of a vector is set to 1 with probability p. The number of satisfying truth
assignments of the Horn-LUB of a random 3-CNF with a given density is another special
case of the general problem.

There has been a great deal of study of how a random 3-CNF evolves as its density
increases. This work is the spirit of Erdős and Rényi’s classic work [11] on the evolution
of random graphs, and of work on the evolution of random Boolean functions (see, e.g.,
Bollobás et al. [2]). For instance, Mora et al. [8] and Mézard et al. [20] show some interesting
behavior at densities below the critical density (clustering of the solutions in the case of
Mora et al., and a particular behavior of a class of local search algorithms in the case of
Mézard et al.). We wonder whether the Horn bump has any connection to any of these
random 3-CNF phenomena.
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