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Abstract

Computational Grids provide a widely distributed computing environment suitable for
randomized SAT solving. This paper develops techniques for incorporating clause learning,
known to yield significant speed-ups in the sequential case, in such a distributed frame-
work. The approach exploits existing state-of-the-art clause learning SAT solvers by embed-
ding them with virtually no modifications. The paper presents an algorithmic framework
for learning-enhanced randomized SAT solving in Grid environments. With a substantial
amount of controlled experiments it is demonstrated that this approach enables a form of
clause learning which is not directly available in the underlying sequential SAT solver. Fi-
nally, an implementation of the algorithm is run in a production level Grid where it solves
several problems not solved in the SAT 2007 solver competition.
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1. Introduction

In this paper we consider solving hard propositional satisfiability (SAT) problems in a grid-
like, widely distributed computing environment. One example of this kind of an environment
is NorduGrid (http://www.nordugrid.org/) that we use in some of the experiments of this
paper. Compared to, for example, a cluster of locally connected computing elements (CEs),
such a widely distributed, multi-party owned environment may pose several restrictions.
First, communication with the computing elements (submitting jobs and retrieving their
results) can take a significant amount of time due to the widely distributed nature of such
an environment. In addition, job management (for example, finding available elements by
communicating with the front-end machines) causes further delays when submitting jobs.
Second, communication between the CEs is not necessarily allowed at all due to security
reasons; typically, all the traffic to the CEs passes through a front-end machine and one can
only submit jobs, query their status, and retrieve results. Third, in order to ensure fairness
between multiple users, CEs can either impose strict resource limits for jobs (for example,
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the maximum running time is set to four hours) or prefer jobs with predefined resource
limits in a way that makes running of jobs requiring unlimited resources very slow. Fourth,
computing elements (and thus jobs) are more likely to crash because they are administrated
by different parties; e.g. maintenance breaks of CEs are scheduled independently, and CEs
can disappear from the environment if their owner decides to prioritize local use at some
time.

In this paper we propose an approach called Clause Learning Simple Distributed SAT

(CL-SDSAT) for solving hard SAT problems in such a widely distributed environment. The
basic idea is quite straightforward: a master process submits jobs consisting of a randomized
state-of-the-art clause learning SAT solver and a SAT instance to a distributed computing
environment until one of the jobs solves the problem. In order to solve hard problems in
the presence of resource limits imposed on jobs, the approach exploits the work done in
unsuccessful jobs (i.e. those that exceeded the resource limits without finding a solution)
by transferring some of the clauses learned by the solver back to the master process. When
new jobs are submitted later, some of the learned clauses are passed to the jobs to constrain
the search of the solver. This approach enables a form of clause learning which is not
directly available in the underlying sequential SAT solver: on one hand, learned clauses from
multiple independent unsuccessful jobs are combined and, on the other hand, the clauses
learned from such combinations are cumulated. The proposed approach can tolerate all
the above mentioned restrictions related to the distributed environment as (i) a reasonable
amount of data is transferred back to the master process only at the end of the execution
of a job, (ii) the jobs do not communicate with each other, (iii) each job has predefined
resource limits for the time and memory it is allowed to consume, and (iv) CE failures do
not affect the correctness or relative completeness of the approach. In addition, only very
modest modifications are required in a SAT solver in order to use it in the approach; thus
it should be relatively easy for the approach to exploit the future improvements in clause
learning SAT solvers.

We devise an algorithmic framework for implementing CL-SDSAT and present tech-
niques for combining and cumulating learned clauses. Experimental results show that
adding to a SAT instance cumulated learned clauses obtained in this way can affect consid-
erably the run time distribution of a SAT solver on the instance and can reduce significantly
the expected run time. This indicates that the techniques can be effective in solving hard
SAT problems. In order to evaluate the potential of the CL-SDSAT approach we have
implemented it in a real grid environment and tested it with SAT problems which were not
solved in the SAT 2007 solver competition. The implementation is able to solve several
of such problems in a realistic setting where the run times of individual jobs are severely
restricted.

Related Work. A large part of work on distributed SAT solving is based on tight inter-
process communication (for example, [2, 25, 19, 9, 24, 23]). Therefore, the results of these
works are not directly applicable in grid environments where inter-process communica-
tion is often restricted and expensive. Methods for distributed SAT solving not based on
inter-process communication have also been proposed [17, 15, 10]. The CL-SDSAT method
developed in this work is similar to [17] as it does not involve search space partitioning like
in [15, 10] but it extends [17] by incorporating distributed clause learning. When the search
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space is partitioned, the methods are usually based on Guiding Paths [2, 25, 19]. Clause
learning and Guiding Paths are studied in [9, 24] where the communication is performed
between threads, in [23] which is based on an MPI-implementation, and in [1, 4] where
communication is performed in a more grid-like environment. The CL-SDSAT approach
presented in this paper has the advantage of being able to use any clause learning SAT
solver with no major changes. This is different from most approaches based on Guiding
Paths and enables CL-SDSAT to exploit future advances in clause learning SAT solver
technology probably in a very straightforward way. Similar advantages can be obtained
with search space partitioning using approaches described in [15, 4]. Distributed learning
strategies are studied in [24, 18, 23]. In [24], learning is based solely on the length of the
clauses, whereas [23] considers several different techniques relating the learned clauses to
the Guiding Paths of each solver. The learned clause distribution approaches of [23, 24]
exchange the learned clauses between the active jobs via a global master store dynami-
cally, requiring modifications to SAT solvers and frequent communication. The distributed
learning strategy in CL-SDSAT, on the other hand, cumulates and filters learned clauses
over time. It distributes learned clauses only when jobs start and collects them when jobs
terminate due to resource limits, requiring much less communication and allowing jobs to
have predefined resources limits.

Outline. The rest of the paper is structured as follows. First, Sect. 2 reviews key con-
cepts used in the paper including basic properties of modern clause learning SAT solvers
and explains how randomizing such a solver leads to a straightforward distributed SAT
algorithm that we call Simple Distributed SAT (SDSAT). Section 3 presents the proposed
extension of this, the Clause Learning Simple Distributed SAT (CL-SDSAT) framework.
The issues related to the design of parallel learning strategies are addressed in Sect. 4, and
the developed ideas are implemented and evaluated in a production-level Grid environment
in Sect. 5. Finally, the conclusions are presented in Sect. 6.

2. Preliminaries

We first introduce some definitions and concepts needed in the rest of the work — formu-
las, SAT solvers, clause learning, randomization, and the Simple Distributed SAT Solving
(SDSAT) approach.

Formulas, Satisfiability, and Simplification. A formula F in conjunctive normal form
(CNF) is a conjunction of clauses, each clause C being a disjunction of literals, while a
literal is either a Boolean variable v or its negation ¬v. Whenever convenient, we can
treat a CNF formula as a set of clauses and a clause as a set of literals; for instance,
the formula F = (x) ∧ (¬x ∨ ¬y) ∧ (y ∨ ¬x ∨ z) ∧ (x ∨ v) ∧ (y ∨ v ∨ ¬w) can be written
as {{x}, {¬x,¬y}, {y,¬x, z}, {x, v}, {y, v,¬w}}. As usual, given a negative literal ¬v, we
identify ¬¬v with v. A clause with only one literal is called a unit clause.

A truth assignment α is a set of literals; α is inconsistent if v,¬v ∈ α for some variable v

and consistent otherwise. If l ∈ α, then we say that l is true in α. Similarly, if ¬l ∈ α, then l

is false in α. If either v ∈ α or ¬v ∈ α (or both), then v is assigned in α. A consistent truth
assignment α satisfies a clause C, denoted by α � C, if it makes at least one literal in the
clause true, i.e. if C ∩ α 6= ∅. Furthermore, α satisfies a formula F , denoted by α � F , if it

225



A. E. J. Hyvärinen et al.

satisfies each clause C ∈ F . A formula is satisfiable if there is a truth assignment satisfying
it, and unsatisfiable otherwise. A formula F ′ is a logical consequence of a formula F if for
each truth assignment α, α � F implies α � F ′. In such a case, F is satisfiable if and only
if F ∧ F ′ is. Two formulas are logically equivalent if they are logical consequences of each
other, i.e. have the same satisfying truth assignments.

In this paper we will use two standard concepts in order to remove some redundancy in
large clause sets. First, given a formula (i.e., a set of clauses) F , the set UnitProp(F) of
unit clauses implied by unit propagation is the smallest set U of unit clauses such that

• if there is a unit clause (l) in F , then (l) ∈ U , and

• if a clause (l1 ∨ . . . ∨ ln) is in F and for some 1 ≤ j ≤ n, for all 1 ≤ i ≤ n, i 6= j :
(¬li) ∈ U , then (lj) ∈ U .

A key property of these literals is that a formula F is logically equivalent to the formula
augmented with the implied unit clauses, i.e. F ∪U . Furthermore, if UnitProp(F) contains
two inconsistent unit clauses (v) and (¬v), then F is unsatisfiable. Second, given a set
U of unit clauses, a formula (i.e. a set of clauses) F can be simplified with respect to U

by (i) removing all clauses that contain a literal appearing in U , and (ii) removing from
all the remaining clauses all the literals whose negation appears in U . Formally, letting
Û = {l | (l) ∈ U} we define

Simplify(F , U) =
{

C \
{

¬l | l ∈ Û
}

| C ∈ F and C ∩ Û = ∅
}

. (1)

The key property of this simplification is that the formulas F ∪ U and Simplify(F , U) ∪ U

are logically equivalent. In particular, we will use the property that if F is a formula, C is
a set of clauses that are logical consequences of F , and U = UnitProp(F ∪ C), then F and
Simplify(F , U) ∪ Simplify(C, U) ∪ U are logically equivalent.

Example 1. Given a formula F = (x) ∧ (¬x ∨ ¬y) ∧ (y ∨ ¬x ∨ z) ∧ (x ∨ v) ∧ (y ∨ v ∨ ¬w),
the set of unit clauses implied by unit propagation is UnitProp(F) = {(x), (¬y), (z)}, and

simplifying F with this set results in Simplify(F ,UnitProp(F)) = (v ∨ ¬w).

SAT Solvers and Conflict-Driven Clause Learning. A SAT solver is a tool for find-
ing a satisfying truth assignment for the formula given as input. The so-called complete
SAT solvers are also able to determine when the formula has no satisfying truth assignment.
Most modern complete SAT-solvers, such as ZChaff [22] and MiniSat [8] to name just two,
are based on the Davis-Putnam-Logemann-Loveland (DPLL) depth-first search algorithm
[6, 5]. In the DPLL algorithm, the space of all truth assignments is systematically searched
until a satisfying truth assignment is found or it can be deduced that none exists. Basi-
cally, the search is performed by extending the current candidate assignment by (i) making
decisions, i.e. setting a heuristically selected, currently unassigned variable to a value, and
(ii) unit propagation, i.e. assigning all the literals that are implied by unit propagation
under the formula and current assignment. When reaching a conflict, i.e, when the current
truth assignment becomes inconsistent, the search backtracks to some earlier decision point,
undoing all the assignments made since. For a tutorial on DPLL-based solvers, the reader
is referred to e.g. [21].
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Figure 1. The run time distributions of two instances for single (the q(t) plots) and eight (the

q8(t) plots) randomized SAT solvers.

Modern, complete SAT solvers usually incorporate conflict driven clause learning search
space pruning techniques [20, 26] to boost the search. Whenever the solver reaches a conflict
during the search, it analyzes the conflict and learns a new clause C that is a logical
consequence of the original SAT instance F . The solver then conjuncts the learned clause
C with F , guaranteeing that the search will not enter a similar conflict again. As C is
a logical consequence of F , a truth assignment for F satisfies F if and only if it satisfies
F ∧ C. Learned clauses usually decrease the number of decisions corresponding to the
branches of the search. However, since a new clause is learned at each conflict, adding all
of them into the instance F permanently would quickly exhaust the available memory and
also slow down the unit propagation search space pruning routine forming the inner loop of
the DPLL-algorithm. To avoid the exhaustion, the solvers periodically forget some of the
learned clauses. However, in order to remain complete, the solvers also periodically increase
the amount of learned clauses kept in the memory.

Randomization and SDSAT. In addition to clause learning, most modern SAT solvers
also apply search restarts and some form of randomization to avoid getting stuck at hard
subproblems [12]. For instance, MiniSat version 1.14 restarts the search periodically (all
learned clauses are not discarded at restarts, though) and makes two percent of its branching
decisions (pseudo)randomly. Despite restarts and randomness, the run times of a SAT solver
can vary significantly on a single instance. As an example, observe the hundred samples
based approximation of the cumulative run time distribution q(t) of an instance given in
the left hand side plot of Fig. 1, where q(t) is the probability that the instance is solved
within t seconds: depending on the seed given to the pseudo-random number generator of
MiniSat v1.14, the run time varies from less than a second to thousands of seconds.

This non-constant run time phenomenon can be exploited in a parallel environment. If
N randomized SAT solvers are run in parallel, the cumulative run time distribution q(t) of
an instance is improved to qN (t) = 1− (1−q(t))N : as an example, if q(1000) = 0.5 meaning
that half of the runs end within 1000 seconds, then q8(1000) > 0.99 and, thus, one obtains
the solution almost certainly within 1000 seconds if eight parallel computing elements are
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available. This approach can be surprisingly efficient. For example, the instance in the
left hand side plot of Fig. 1 is solved within approximately 140 seconds with probability
0.5 when only one solver is used; however, when eight solvers are used, the instance is
solved within approximately five seconds with probability 0.5 and within 140 seconds with
probability almost one. In fact, the expected run times (approximated based on the hundred
sample runs) are 623 seconds for one solver and 31 seconds (that is, around 20 times less)
for eight parallel solvers. For a more detailed analysis of running randomized SAT solvers
in a parallel, distributed environment involving communication and other delays, see [17].

Although this simple strategy of running randomized SAT solvers in parallel, which we
call the Simple Distributed SAT solving (SDSAT) approach, can reduce the expected time
to solve an instance, it cannot reduce it below the minimum run time (i.e. the smallest t

for which q(t) > 0). For an example, observe the sequential run time distribution q(t) of an
another instance given in the right hand side plot of Fig. 1; the variation of the run time
is significantly smaller and the instance seems to have no short run times. Consequently,
running eight SAT solvers in parallel (the plot q8(t)) does not reduce the expected run time
significantly; in numbers, the (approximated) expected run time for this instance is 2,065
seconds with one solver and 1,334 seconds (i.e., only less than two times faster) for eight
parallel solvers. Even more importantly, the minimum run time stays the same irrespective

of how many parallel solvers are employed. This is a serious drawback when solving hard

SAT problems in a grid-like environment where the computing elements usually impose
an upper limit for the computing time available for a single execution. For example, if the
computing elements only allow four hours of CPU time for each execution, the basic SDSAT
approach simply cannot solve any problem with a longer minimum run time because none of
the SAT solvers running in parallel can solve the problem within that time. Notice that the
“straightforward” approach of storing the memory image of a solver execution just before
the time limit is reached and then continuing the execution in another computing element
is not a viable solution due to the amount of data that should be transferred between the
computing elements.

3. Clause Learning Simple Distributed SAT Solving

The basic idea of the proposed Clause Learning Simple Distributed SAT (CL-SDSAT) ap-
proach is relatively straightforward. A master process submits jobs consisting of a ran-
domized SAT solver S and the SAT instance F to be solved into a grid-like distributed
environment DE, which consists of r computing elements (CEs) performing computations
dictated by the jobs. Each job occupies a CE for a time depending on the background load
of the DE, the properties of the job, and the resource limits of the job which determine the
amount of CPU time and memory the job can use on a CE.

If a job solves the problem (that is, the satisfiability of F is decided) within the resource
limits, the CL-SDSAT algorithm terminates with the solution. If the solution is not found in
the job, some of the clauses the solver has learned during its search are transferred back to
the master process. The master process maintains a database of such clauses, and whenever
a new job is submitted, a subset of the clauses in the current database is conjuncted with F
in the submitted SAT instance. Given a clause database at a particular time, the jobs which
are constructed by conjoining F with some of the clauses in the clause database are called
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Input: F , a SAT instance; S, a randomized SAT solver; DE, the environment containing CEs
let ClauseDB = ∅
let MaxDBSize be the initial size of the clause database
let SubmSZ be the initial size of the learned clauses submitted with the job
let U = UnitProp(F)

1 while (True):
2 if there are idle CEs in DE:
3 update SubmSZ

4 submit the job 〈S,F ∪ U ∪ Choose(ClauseDB ,SubmSZ)〉 to an idle CE
5 if 〈result, C〉 is received from DE:
6 if result is in {SAT, UNSAT}:
7 return result
8 else

9 update MaxDBSize

10 let U = UnitProp(F ∪ U ∪ ClauseDB ∪ C)
11 let ClauseDB = Merge(U,ClauseDB , C,MaxDBSize)

Figure 2. A general framework for CL-SDSAT

subsequent to that clause database. Conversely, a job precedes a given clause database if
the learned clauses of the job have been included to that clause database. The CL-SDSAT
algorithm aims at pruning the search space of subsequent jobs by using the learned clauses
of preceding jobs. As the SAT solver in the jobs is randomized, the clauses returned by
jobs subsequent to the same clause database usually differ. In the following we explain
the proposed approach in more detail; the next sections then study different aspects of the
approach using controlled experiments.

The framework for the approach is presented in pseudo-code in Fig. 2. The learned
clauses are collected to an initially empty database of clauses, denoted by ClauseDB . The
database is allowed to vary in size1. and its current maximum size is imposed by the variable
MaxDBSize. From this database, a subset is provided to each job together with the original
SAT instance F and the randomized SAT solver S. The unit clauses U are stored separately,
and are used for clause database simplification as explained below.

The main loop of the framework consists of two concurrent tasks: submitting subsequent
jobs to idle CEs in the distributed environment and receiving the results of the finished jobs.
The submitting of subsequent jobs is described on lines 2–4. If there are idle CEs in the
environment (line 2), then a job 〈S,F ∪ U ∪ Choose(ClauseDB ,SubmSZ)〉 is submitted to
one (line 4). The function Choose selects heuristically a subset of the clauses in the current
database ClauseDB so that the size of the subset is at most SubmSZ. Designing an effective
heuristic for selecting learned clauses from the clause database is one of the key issues
when instantiating the framework in Fig. 2. This problem is studied extensively in Sect. 4.
The size of the selected subset is restricted for two reasons: transferring data in a widely
distributed environment takes non-negligible time and, as mentioned in Sect. 2, having an

1. By the size of a set of clauses we mean here and in the following the sum of the number of the literals
in the clauses in the set.
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excessive amount of learned clauses can slow down the inner loop of the SAT solver. For the
sake of extending the range of problems solvable with the approach, the size limit SubmSZ

may have to be increased during the search (line 3); this issue is discussed in the paragraph
“On Completeness” below.

The results received from the DE are handled on lines 5–11 with two cases.

• If the result is either SAT or UNSAT, the algorithm terminates with that result
(line 7). The correctness of the result in this case, that is, the soundness of the frame-
work, follows directly from the properties of learned clauses: a SAT instance F ∪U ∪
Choose(ClauseDB ,SubmSZ) submitted to a CE is satisfiable if and only if the original
instance F is satisfiable because all the clauses in U ∪ Choose(ClauseDB ,SubmSZ)
are (simplified) learned clauses and, thus, logical consequences of F .

• If a job is unsuccessful, the clause database ClauseDB is updated with the set C of
learned clauses returned from the job (lines 10 and 11). For the sake of being able to
solve more difficult problems (see the “On Completeness” paragraph below), it may
become necessary to increase the maximum size of the clause database during the
search (line 9).

Maintaining the set U of unit clauses, detecting new ones with unit propagation, and
using them to simplify the clause database is important for efficient implementation of the
CL-SDSAT algorithm. Initially, the set U of unit clauses is obtained from the original
instance F . The set is monotonically increased on line 10 by applying unit propagation on
the new and old learned clauses and the SAT instance. Then, on line 11, the set is used
to simplify the clause database when new learned clauses are merged to it. This is done in
the function Merge which takes the set of unit clauses U , the clause database ClauseDB ,
the new learned clauses C, and the maximum clause database size MaxDBSize as input.
It computes the simplified set of clauses, S = Simplify(ClauseDB ∪ C, U), and returns a
heuristically selected subset of S so that the size of the subset is at most MaxDBSize. As a
consequence of restricting the maximum clause database size, some of the learned clauses
can be discarded when computing the new clause database with the Merge function. This
affects the range of problems solvable by the algorithm as discussed below and in Sect. 5.

When instantiating the framework into a concrete implementation, of special interest
are the heuristics used in the two functions Choose and Merge. The next section analyzes
key aspects of these functions.

On Completeness. As the resource limits for the jobs are fixed, the framework is ob-
viously not complete (that is, there are SAT instances for which the framework does not
terminate). For example, a SAT instance can be so large that it does not even fit in
the available memory. In practice, this kind of incompleteness seems not to be of major
concern. More practically relevant is however that the size limits for the clause database
(MaxDBSize) and submitted learned clause sets (SubmSZ) also restrict the range of prob-
lems solvable with the framework. To extend this range, the parameters MaxDBSize and
SubmSZ can be extended periodically during the search until a solution is found. Naturally,
the Choose and Merge operators must use this increased space by returning clause sets of
analogously increasing size. Observe the similarity to clause learning SAT solvers: they
also usually increase the limit for the number of stored learned clauses gradually during the
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search. Developing algorithms for deciding when and how much the size limits should be
increased is left for future work.

Relation to SDSAT. Observe that when the clause database is empty, the CL-SDSAT
algorithm performs exactly as the SDSAT algorithm. In practice, this happens at the
beginning when all the, say N , jobs submitted so far are still running and have thus not
yet returned any learned clauses. Therefore, when run in the same distributed environment
with same resource limits, the CL-SDSAT algorithm can solve the instance at least as fast
as SDSAT using N resources. In this sense CL-SDSAT subsumes SDSAT. The advantage
of CL-SDSAT when compared to SDSAT is that, due to exploiting learned clauses, it can
also solve problems that cannot be solved with SDSAT.

4. Analyzing the Key Aspects of CL-SDSAT

This section studies empirically key aspects of parallel learning strategies in the CL-SDSAT
framework in Fig. 2. The study is divided into three parts. Part A experiments on four
heuristics for selecting learned clauses to a subsequent job. This is done in a controlled
setting involving one round of learning where a number of independent jobs are run with a
randomized SAT solver on the same SAT instance and the resulting learned clauses are used
to construct a derived instance. The four heuristics are compared by studying the run time
distribution of a SAT solver on an instance and the corresponding derived instances where
the learned clauses selected by the heuristic have been included. Part B studies how the
run time distribution of the derived instance behaves as the number of computing elements
is increased and, hence, the number of independent jobs in the round grows. Part C studies
the cumulative effect of learned clauses by increasing the number of rounds.

Experimental Setting. All the experiments of this section were conducted in a con-
trolled environment without background load, using Intel Xeon 5130 2GHz CPUs with
16GB of memory. The SAT solver used in the experiments is a modified version of Min-
iSat v.1.14 which accepts as input a seed for its internal random number generator to
introduce randomness to the learned clauses and run time. It is also able to terminate the
search when a given run time limit has been reached and to output the learned clauses held
at that time. The value of SubmSZ, limiting the size of the learned clause set included to
each problem, was kept relatively small (100,000 literals) throughout the experiments.

Selection of Benchmarks. The benchmark instances were selected from the benchmarks
of the SAT 2007 Solver Competition so that it is possible to reliably evaluate the efficiency
of the CL-SDSAT framework. In order to obtain reliable estimates on the performance of
the framework, test runs need to be repeated and, hence, the chosen instances cannot be
excessively difficult. To study the behavior of the CL-SDSAT framework, the instances
should allow a SAT solver to produce a sufficient amount of learned clauses. In particular,
instances which have short run times are likely to be solved fast by CL-SDSAT without any
learning. This is because CL-SDSAT effectively subsumes SDSAT at the beginning of its
execution when the clause database is empty and this leads to small expected run time for
such instances [17].

These considerations led to the following three phase process of selecting the benchmark
instances. In the first phase, an initial set of problems was selected such that it consisted of
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the publicly available instances which were solved by MiniSat in the 2007 competition, but
required at least 2000 seconds for solving. This set consists of 53 problems. Second, each
of these problems were solved 100 times using MiniSat v1.14 using different seeds, and only
those for which the minimum run time was more than 1000 seconds were qualified. After
this screening only one satisfiable instance remained, since all other satisfying instances had
short run times. This set consists of 28 instances, and already constructing this set required
more than half a CPU year. From the resulting set a representative subset consisting of
17 instances was formed so that a single random representative was selected from each
instance family2.. Table 1 reports the names together with the short labels used later in
the experiments. The satisfiable instance is labeled cube.

Setting up Rounds of Learning. In the experiments the aim is to study the effect of
heuristics for selecting learned clauses from the clause database after rounds of learning.
In order to be able to use all selected benchmark instances, the run time distributions of
the instances have to be taken into account when setting up rounds of learning and, in
particular, the run time allowed for jobs in the round. Too long run times easily cause
the instance to be solved during the round of learning. As the run time distributions of
the instances differ considerably, in this controlled experiment a round of learning for an
instance was implemented as follows. An approximation of the minimum run time of each
instance is determined by solving it hundred times. The clause database is then constructed
by running jobs for one fourth of this minimum run time and collecting the learned clauses.
The clause database is constructed in this way in order to ensure that the instance is not
solved while constructing the clause database.

A. Heuristics for the Function Choose. The criterion for selecting clauses in line 4 of
Fig. 2 is central to the CL-SDSAT framework. In several related works, such as [20, 24], this
criterion is the length of the clauses. Following this convention the actual implementation
uses a criterion which prefers the short learned clauses. This criterion is called the Chooselen

heuristic. The approach is well justified in the CL-SDSAT framework: length based heuristic
is efficiently implementable, and in this form guarantees the progress of the search because
new clauses are included to the database as long as the database size limitation is not
exceeded.

It is possible to vision other types of heuristics as well, which could be based on, for
example, the number of occurrences of certain clauses in all learned clauses obtained from
the unsuccessful jobs. Such heuristics are less straightforward to implement. For example,
the heuristic Choosefreq, preferring the most commonly learned clauses in the preceding
jobs, would require centralizing all learned clauses to a single place. This approach does
not scale well, as it requires an excessive amount of memory when the number of clauses
increases. To obtain an approximation of its efficiency, we experiment with the heuristic
Choosefreq on one round of learning; in this case the learned clauses still fit in a few gigabytes
of storage space and can thus be fully analyzed.

The heuristic Chooselen is also contrasted to two other heuristics: Choose123 which only
considers clauses of length at most three and Chooserand which selects random clauses from
the clause database. The former only selects a subset of the clauses selected by Chooselen,

2. The instance families were identified based on the names of the instances, and each instance in a family
had a similar run time distribution.
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Table 1. Benchmarks instances from SAT 2007 competition and their short labels

Name Label

AProVE07-09 AProVE

contest03-SGI 30 50 30 20 3-dir.sat05-440.reshuffled-07 contest

cube-11-h14-sat cube

dated-10-11-u dated

emptyroom-4-h21-unsat emptyroom

eq.atree.braun.11.unsat atree

hwb-n28-02-S818962541.sat05-492.reshuffled-07 hwb

linvrinv5.sat05-564.reshuffled-07 linvrinv

manol-pipe-f9b manol

mod2c-3cage-unsat-10-2.sat05-2567.reshuffled-07 mod2c

pmg-12-UNSAT.sat05-3940.reshuffled-07 pmg

pyhala-braun-unsat-40-4-02.sat05-459.reshuffled-07 pyhala

QG7-gensys-ukn003.sat05-3346.reshuffled-07 GQ7

s101-100 s101-100

sortnet-6-ipc5-h11-unsat sortnet

total-10-13-u total

unsat-set-b-fclqcolor-10-07-09.sat05-1282.reshuffled-07 fclqcolor

and helps to study the effect of longer clauses when contrasted to Chooselen. Since Choose123

does not consider clauses longer than three, it cannot guarantee progress in instances where
short learned clauses are rare. Therefore it is not generic enough for the purposes we are
considering. The heuristic Chooserand is useful as a reference, as all learned clauses are
already carefully selected by the solver and it is not a priori clear if heuristics are required
to obtain better results.

We repeat the definitions of the four heuristics below.

• Chooselen prefers short learned clauses. Short clauses are potentially effective in prun-
ing the search space.

• Choose123 returns only clauses of at most three literals. Such clauses are even more
effective in pruning the search space but might be rare in practice in some cases.

• Choosefreq prefers the most common learned clauses. Such clauses are intuitively
good since they are encountered in many jobs. From equally frequent clauses, the
shorter ones are preferred. As discussed above implementing this heuristic in the full
CL-SDSAT framework seems prohibitively expensive.

• Chooserand returns a set of clauses which are randomly picked from the set of learned
clauses so that each learned clause is returned with equal probability.

The clause database is simplified before the heuristics are used for selecting the set of
clauses, as discussed in Sect. 3. This has several subtle consequences: the length of a clause
in the clause database may decrease as a result of simplification and if two longer clauses
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reduce to the same short clause, the frequency of the short clause increases. Also none of
the heuristics need to return unit clauses, as unit clauses are included into the submitted
instance separately.

The aim of the first experiment is to study the effect of including learned clauses to
benchmark instances when performing one round of learning. A fixed number of inde-
pendent jobs produce a large candidate set of learned clauses for each benchmark. The
resulting sets of learned clauses are then simplified using the SAT instance and the pos-
sible unit clauses found either in the SAT instance or in the learned clauses, resulting in
the clause database. A derived instance is constructed by employing the respective Choose
heuristic to select a subset of the clause database (line 4 of the algorithm in Fig. 2), with
SubmSZ set to 100,000 literals and number of computing elements r = 8. We note that the
size limitation of ClauseDB is ignored by effectively setting MaxDBSize to infinity in these
experiments.

Table 2 gives an overview of the results by comparing the expected run times over fifty
runs of the derived instances when using the heuristics. For comparison, the table reports
expected run times for the original instances without additional learned clauses (Base).
The table also reports the expected number of decisions made by the SAT solver, which
measures the expected size of the search space for the instance, below the run time. The
lowest of these numbers on each row is printed in bold face.

Based on these results, the expected number of decisions is lowest when using the length-
based heuristic (Chooselen), and the expected run time is lowest when only clauses of length
two and three are considered (Choose123). In Chooselen, the run time of the instance can
be high, being often higher than when no clauses are included. The experiment allows us
to conclude that while length is an efficient criterion for selecting clauses, the inclusion
of longer clauses results in more overhead than what is gained by reduction of the size of
the search space. On the other hand, using frequent clauses (Choosefreq) results also in
good speed-up in expected run times. These clauses are at least as long as the clauses
preferred by Chooselen, suggesting that carefully selected long clauses can be used to speed
up the solving. The results from Chooserand show also reduction in both expected number
of decisions and run time. The clauses returned by MiniSat seem to be good in reducing the
number of decisions even when no particular heuristic is used in selecting the clauses. The
comparison to other heuristics reveals though that an appropriate heuristic can significantly
lower the expected run time of a derived instance.

The results on this benchmark set are surprisingly consistent: in 13 cases, Chooselen

results in lowest expected number of decisions, while in ten cases, Choose123 results in
lowest expected run time. Using eight sources of learned clauses, in every case at least one
heuristic succeeds in reducing the expected time required to solve the instance compared
to Base.

Also evident from the results is that Choosefreq performs well when compared to Chooselen.
The relatively good performance might be an indication that an approach based on clause
frequencies has potential. However, further studies are required to determine if this actually
is the case. If so, more work is needed to obtain an efficiently implementable realistic ap-
proximation of the Choosefreq heuristic. In particular, the frequency of the clauses interacts
interestingly with simplifications of the clause database. In some cases the same clause in
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Table 2. Expected run times for a selection of benchmarks from the SAT 2007 competition

Name Base Chooselen Choosefreq Choose123 Chooserand

AProVE 4,016
8,461,866

1,994

4,388,463

2,616
4,716,035

2,264
5,532,927

3,393
7,451,391

atree 3,096
22,311,255

2,967
7,831,761

2,152
13,263,105

1,439

9,034,391
2,481

14,404,941

contest 1,432
1,240,001

70

165,721

485
541,943

211
357,978

343
467,458

cube 4,832
1,273,485

4,483

967,851

4,939
1,096,322

4,888
1,238,110

5,294
1,313,385

dated 9,889
1,639,566

2,037
1,058,664

1,977

998,103

2,187
1,146,487

5,240
2,246,003

emptyroom 5,205
1,885,355

1,498

688,156

1,631
813,027

1,704
853,642

1,954
1,052,777

fclqcolor 2,027
41,172,989

1,153

13,696,945

1,388
29,946,390

1,196
25,945,033

1,864
26,103,961

hwb 4,654
125,472,477

14,128
68,950,042

5,001
123,220,119

4,454

97,041,128
10,211

82,550,196

linvrinv 2,828
40,917,769

7,837
25,824,068

2,620
37,369,017

2,518

36,283,860
4,030

32,008,217

manol 10,620
4,954,967

13,336
5,308,314

9,196
4,328,594

7,120

3,401,500

10,814
5,101,791

mod2c 3,020
271,766,780

3,827
62,714,188

2,659
221,568,484

2,496

195,269,018
4,392

87,430,751

pmg 4,268
84,245,813

9,372
40,690,352

4,189
69,882,275

2,955

48,750,743
7,876

56,061,825

pyhala 2,641
2,775,304

887
1,001,999

1,086
1,855,329

782

1,436,653
1,348

2,245,269

QG7 1,594
6,799,632

760
2,081,121

1,196
5,256,338

513

2,737,811
1,506

5,436,088

s101-100 2,528
170,749,796

5,047
47,196,913

2,502
167,440,762

2,428

166,645,578
4,907

46,054,481

sortnet 4,886
2,743,833

1,521
900,265

2,893
1,842,295

1,507

980,166
4,694

2,607,584

total 3,279
1,178,947

1,296
690,406

1,109

682,302

1,695
998,194

1,722
997,008

Sum 73,383
789,589,835

72,213
284,378,607

47,639
684,820,440

40,357

597,653,219
72,069

373,533,126
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Table 3. Minimum, expected and maximum run times for Chooselen and different values of

preceding jobs r

Label 0 16 32 48 64 80 96

contest Min 1,080 6.58 0.70 0.53 0.41 0.17 0.16
Exp 1,430 8.39 0.88 0.53 0.41 0.17 0.16
Max 1,990 10.9 1.36 0.53 0.41 0.17 0.16

fclqcolor Min 1,010 384 138 84.1 54.9 24.9 22.6
Exp 2,030 595 281 161 102 55.9 51.1
Max 3,650 1,450 529 297 187 120 162

hwb Min 3,600 7,040 5,980 5,470 3,520 2,670 2,320
Exp 4,650 8,770 7,880 6,710 4,680 3,390 3,000
Max 6,190 11,300 9,990 9,050 6,590 4,780 4,100

manol Min 1,510 1,390 924 516 589 584 576
Exp 10,600 4,570 2,320 1,580 1,540 1,650 1,820
Max 65,400 14,700 5,250 4,540 3,480 5,700 4,880

its simplified form occurred more than fifty times, while the number of preceding jobs is
only eight.

B: The Effect of Increasing the Number of CEs. In many realistic scenarios, the
number of computing elements can be much higher than eight that was used in the ex-
periments reported above and in Table 2. This corresponds to increasing the value of the
parameter r, and should intuitively result in a decrease of the expected run time for the
derived instance (that is, the instance including the learned clauses). We provide some
experimental evidence supporting this intuition for the heuristic Chooselen by showing how
the expected run time of a job subsequent to a clause database after a single round of
learning behaves when r is increased.

Starting from an empty database, we perform one round of learning by submitting r

subsequent jobs. We ensure that the jobs all are unsuccessful by limiting the run time
of each job again to 25% of the previously measured minimum run time. The resulting
clauses are merged to clause database, which we denote by ClauseDBr. While performing
these experiments, we use the sizes MaxDBSize = 10, 000, 000 and SubmSZ = 100, 000. As
discussed above, the experiments use the Chooselen heuristic. The benchmark instances are
selected using the results of Table 2 as a criterion.

We show the run time distributions for instances contest (Fig. 3) and manol (Fig. 4),
where the former seems to scale well using all heuristics, and the latter does not clearly
benefit from any heuristic and is especially bad for Chooselen. For comparison, the figures
also give the distributions for the number of decisions. Table 3 provides statistics for these
and two other instances.

In all of the experiments, the number of decisions and the run time decrease when the
amount of preceding jobs increases sufficiently. The instance contest becomes easy to solve
relatively soon. As the typical run time reaches values less than one second, it becomes
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Figure 3. Run time and decision distribution for contest using Chooselen and different values

of preceding jobs r

difficult to see if the added clauses help in solving the problem further. In contrast, some
of the instances show a slowdown in the decrease of the run time. The slowdown is well
illustrated by Fig. 4 for manol. The expected run time for the instance first decreases
gradually from almost three hours to slightly over 25 minutes reaching the minimum when
the number of preceding jobs is 64. Increasing the amount of preceding jobs does not help
to decrease the expected run time, which indeed seems to slightly increase as the expected
run time with 96 preceding jobs is almost five minutes higher compared to 64 preceding
jobs.

237



A. E. J. Hyvärinen et al.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1000  10000  100000

q(
tim

e)

time (s)

0

16
32

48
64

80

96

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1e+06  1e+07  1e+08

q(
de

ci
si

on
s)

decisions

0

16
32

48
64

80

96

Figure 4. Run time and decision distribution for manol using Chooselen and different values of

preceding jobs r

The other two instances in Table 3 show a nearly consistent decrease in all statistics.
Interestingly, the expected run time of hwb in Table 3 reaches that of the original instance
(see Table 2) only when there are more than 64 preceding jobs.

We note briefly that the expected total time required to solve, for example, the derived
instance manol when r = 48 is 1,580 seconds. Even when the time required to obtain the
derived instance is taken into consideration (0.25 × 1, 510 + 1, 580), the problem can be
solved five times faster than the original instance.
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However, these results show that there are instances such that after a single round of
learning in CL-SDSAT, even the minimum run time of the derived instance does not seem
to become arbitrarily small no matter how much r is increased.

C: Cumulative Effect of Learned Clauses. As the previous experiment indicates, in
many cases after a single round of learning the subsequent jobs do still exceed the time
limitation imposed by the distributed environment. In the CL-SDSAT framework, the
learned clauses are cumulated to overcome the problem. This means that not all jobs are
subsequent to the same clause database, but the set of preceding jobs is allowed to grow
arbitrarily as jobs are submitted. We study the effect of this by continuing the previous
experiment as follows. As previously, we assume that each clause database includes the
unit literals. Let ClauseDB0

r denote the empty clause database, and let ClauseDB i+1
r be the

clause database after one round of learning from r SAT instances obtained from ClauseDB i
r.

The experiment studies the run time distribution of the job subsequent to ClauseDB i
r with

fixed r = 16 as the number of rounds i increases. We impose a resource limit on the
subsequent jobs so that their run time is at most 25% of the experimental minimum run
time of the original instance. The process terminates when the instance is solved within
this time. Other parameters are as in the previous experiment.

We report the results for the same problems as in the previous case, with the exception
that contest is replaced by total since contest is easily solved in a job subsequent to
ClauseDB1

16. The results are shown in Fig. 5 and Table 4. We may compare the results
illustrated for manol in Fig. 5 against those in Fig. 4 bearing in mind that each round
corresponds to 16 jobs. When clauses are cumulated, the run times decrease at a consistent
pace, as opposed to the slowdown illustrated in Fig. 4. Similar results are reported for the
other instances in Table 4. For example, CL-SDSAT is able to overcome the increase in
the run time of the derived instances of hwb relatively soon when the number of rounds
increases.

The results support the hypothesis that hard instances with practical relevance can
be made solvable within typical resource limits for individual jobs in realistic distributed
environments considered in this work.

5. Grid Implementation

The ideas developed in this work have been implemented in a prototype of the proposed
CL-SDSAT framework. The prototype uses NorduGrid (http://www.nordugrid.org/),
a production level Grid, as the distributed environment, and MiniSat version 1.14 (with
modifiable pseudo-random number generator seed) as the randomized SAT solver. The job
management in the Grid is handled by GridJM [14], and each job has a time limit of one
hour and a memory limit of one gigabyte. The implementation uses the heuristic Chooselen

preferring the shortest clauses for parallel learning; other heuristics discussed in Sect. 4
were not implemented in the prototype. In the experiments, the maximum size of the
clause database is fixed to 1,000,000 literals. Similarly, unsuccessful jobs do not return all
their learned clauses but only the shortest ones that together have at most 100,000 literals.

For the benchmark problems we selected a set of hard SAT instances for which there was
little or no a priori information about the run time distribution. Such problems are available
from the SAT 2007 solver competition (http://www.satcompetition.org/), where some of
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Table 4. Minimum, expected (Exp) and maximum run times for different number of rounds i in

jobs subsequent to ClauseDB i
16, 0 ≤ i ≤ 4 and Chooselen

Label 0 1 2 3 4

fclqcolor Min 1,010 384 5.15
Exp 2,030 595 9.10
Max 3,650 1,450 30.4

hwb Min 3,600 7,040 4,520 1,060 2.77
Exp 4,650 8,770 6,000 1,350 3.16
Max 6,190 11,300 7,880 1,900 3.87

manol Min 1,510 1,390 618 76.9
Exp 10,600 4,570 1,350 157
Max 65,400 14,700 3,350 313

total Min 1,190 892 370 6.19
Exp 3,280 1,480 568 7.01
Max 8,530 2,020 830 8.41
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Figure 5. Run time distributions for jobs subsequent toClauseDB0
16,ClauseDB1
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and ClauseDB3
16 for manol and Chooselen
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the instances were not solved by any of the competing solvers within the time bounds (10,000
seconds for the industrial and 5,000 seconds for the crafted category). Table 5 presents the
results of running the CL-SDSAT prototype on a subset of these unsolved problems as well
as on some other problems which were not solved by MiniSat in the competition. Each
instance was run for three days allowing the use of 64 CEs simultaneously. Column MiniSat
also reports the run times of the sequential MiniSat v1.14 with no time limit but the memory
usage restricted to two gigabytes. The runs were performed using an Intel Xeon 5130 2GHz
CPU. It should be noted that the exact run times reported in the column Grid in the table
are dependent on factors such as the background load of the Grid environment and therefore
are difficult to reproduce.

Two phenomena can be observed from the results. Firstly, some problems, such as
vmpc 33, are solved in less than one hour with the CL-SDSAT prototype and are, thus,
clearly also solvable with the basic SDSAT method [17] with no need for the learning-
enhanced techniques of CL-SDSAT. Secondly, and more importantly, the prototype solves,
with one hour time limit for each job, several problems which were not solved by any solver
in SAT 2007 competition in 10,000 seconds. This suggests that the proposed CL-SDSAT
framework also works for very hard problems and causes the run time distribution to “shift
leftwards” (recalling Fig. 5 and the results from Table 4) as more learned clauses are
cumulated. The other, in our opinion much more unlikely, explanation for this is that the
problems have a very small but non-zero probability to be solved in less than one hour and,
thus, would have been solved with the basic SDSAT method by using hundreds of parallel
solvers.

Some of the instances were not solved in the Grid within three days. The two instances
the implementation was not able to solve suffered from the slow rate of change in the
clause database. This in part was a result of the eventual high number of binary clauses
in the clause database together with the property of the heuristic Chooselen that it cannot
differentiate clauses of the same length. When the clause database does not change, the
subsequent jobs are similar to each other and the progress of the search is slow. This
is of course a consequence of not increasing the size of the clause database as the search
progresses. Implementing this feature is an interesting direction of future work. We also
note that it is often possible to simplify binary clauses with sophisticated techniques [3].
However, experiments are required to determine whether such approaches are useful in
this setting. In addition, it would be interesting to study how other formula simplification
techniques such as [7, 13] could be applied to simplify the clause database.

6. Conclusions

We have proposed a new approach to solving hard satisfiability problems in a grid-like widely
distributed parallel environment. The approach can tolerate the severe restrictions imposed
on the jobs executed in such an environment, e.g., it requires no inter-node communication
and is inherently fault-tolerant. The approach is based on combining (i) a natural method
for solving SAT in parallel by independent randomized SAT solvers, and (ii) the powerful
conflict driven clause learning technique employed in many modern, sequential, DPLL-style
SAT-solvers. This combination results in a novel parallel and cumulative clause learning
approach. We have experimentally compared different heuristics for selecting the learned
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Table 5. Wall clock times for some difficult instances from SAT 2007 competition solved in Grid

and with standard MiniSat v1.14. Memory outs are denoted by ‘*’, time outs by ‘—’

Solved by some solvers in SAT 2007 but not by MiniSat

Name Type Grid (s) MiniSat (s)

ezfact64 5.sat05-452.reshuffled-07 SAT 4,826 65,739
vmpc 33 SAT 669 184,928
safe-50-h50-sat SAT 12,070 *
connm-ue-csp-sat-n800-d-0.02-s1542454144-

.sat05-533.reshuffled-07

SAT 5,974 119,724

Not solved by any solver in SAT 2007

Name Type Grid (s) MiniSat (s)

AProVE07-01 UNSAT 13,780 39,627
AProVE07-25 UNSAT 94,974 306,634
QG7a-gensys-ukn002.sat05-

-3842.reshuffled-07

UNSAT 8,260 127,801

vmpc 34 SAT 3,925 90,827
safe-50-h49-unsat — *
partial-10-13-s.cnf SAT 7,960 *
sortnet-8-ipc5-h19-sat — *
dated-10-17-u UNSAT 11,747 105,821
eq.atree.braun.12.unsat UNSAT 9,072 59,229

clauses that are dynamically stored during the process, and demonstrated that the approach
enables a form of clause learning that is not directly available in the underlying sequential
clause learning SAT solver. Preliminary experimental results carried out in a production
level Grid indicate that the approach can indeed solve very hard SAT problems, including
several that were not solved in the SAT 2007 competition by any solver. This suggests that
the developed algorithm is also useful in practical environments.

Future Work. There are a number of interesting extensions of the current work. Pre-
processing methods can applied in several stages of the framework: to simplify the original
instance using, for example, methods discussed in [7], for compressing the learned clause
database as suggested in Sect. 5, and in each individual job. In the experiments we have
used MiniSat as the randomized clause learning solver. An interesting topic is to study
whether similar results can be obtained if another clause learning solver is used. A natu-
ral next step would then be to consider algorithm portfolios [11] where a set of solvers is
employed and solvers are varied in different jobs. There seems to be room for improving
also the heuristics for selecting learned clauses. The results on the Choosefreq heuristic in
Sect. 4 suggest that frequency based approaches could have potential. Another direction
are activity based heuristics, for example, using learned clause activity weights as in Min-
iSat [8]. Although the goal of the work is to devise techniques for solving extremely hard
SAT instances using computational grids, studying speed-up obtained by CL-SDSAT is an
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interesting topic that facilitates the comparison of CL-SDSAT to sequential solvers and to
other distributed solving methods.
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