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Abstract

This article describes PaMiraXT, a powerful parallel SAT algorithm. PaMiraXT fol-
lows a master/client model based on message passing, making it suitable for any kind of
workstation cluster. For the clients, MiraXT is used, which itself is thread-based paral-
lel solver designed to take advantage of current and future shared memory multiprocessor
systems. We highlight design and implementation details that allow the threads/clients to
run and cooperate efficiently. Experimental results show that MiraXT compares well to
other state-of-the-art SAT algorithms. In single-threaded mode, it outperforms MiniSat2,
PicoSAT 535, and RSat 2.01, while in multi-threaded mode, MiraXT provides cutting edge
performance, as it solves significantly more instances within the given time limit. A case
study, using three copies of MiraXT with a total of 8 threads as clients, underlines the
potential of PaMiraXT, resulting in a speedup of 5.62 on the industrial benchmarks of the
2007 SAT competition.
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1. Introduction

Todays sequential SAT solvers are considerably more advanced than the original Davis-
Putnam algorithm [7, 8] introduced more than 45 years ago. Many performance enhance-
ments have been of more algorithmic nature, such as non-chronological backtracking [21],
conflict-driven learning [31], novel decision heuristics [13, 23], restarts [16], and powerful
preprocessing techniques [2, 9]. On the other hand, the implementations of these methods
have been improved by considering the underlying hardware environment that was run-
ning the SAT solver. For example, zChaff introduced the concept of watched literals, that
effectively uses the cache memory of modern CPUs [32].

With all these features, modern SAT algorithms are now able to tackle Boolean satisfia-
bility problems with hundreds of thousands of variables (or sometimes even more). However,
the last few years have shown two trends: first, the performance gains achieved by the SAT
community in the field of sequential SAT solving are getting marginal, as it becomes harder
and harder to optimize current algorithms even more. As a result, many of the challenging
problem instances are still unsolvable by any sequential SAT solver within a reasonable time
frame. Second, many chip manufacturers have turned from single-core to multi-core designs
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as a way to increase the performance of their processors as gains in processor frequency have
stalled. Companies such as AMD, IBM, Intel, and SUN now produce CPUs that contain
four or more cores per processor. Putting these two observations together, a new generation
of parallel SAT solvers is needed to utilize the enormous potential of multi-core processors
and multi-CPU workstations and by this to reach the next performance level of modern
SAT solving.

In this article we present the parallel SAT solver PaMiraXT that has been optimized to
run efficiently on many different hardware platforms. The solver consists of two layers of
parallelism. The first level is based on MiraXT, a thread-based implementation optimized
for shared memory multiprocessor systems (multi-core and/or multi-CPU). Each thread of
MiraXT consists of a complete zChaff-like SAT procedure with all the features mentioned
earlier being integrated into the solver. The key feature of MiraXT is that only one global
clause database, the so-called Shared Clause Database, is maintained, where all clauses of the
original CNF formula and all conflict clauses deduced by the threads get stored. The main
advantage of this design is the fact that each thread is able to check all available clauses.
Each thread can consider its current status when deciding which conflict clauses might be
helpful to guide the current search process. Finally, MiraXT contains no controlling master
process, but a Master Control Object to allow the threads to communicate with each other.
All communication is done in a passive way by storing signals and messages that get polled
by the threads occasionally to see if there are any new messages. Our performance evaluation
on a workstation equipped with two Dual-Core AMD Opteron 280 processors shows, that
MiraXT provides almost linear speedup on hard instances in the multi-threaded mode,
while being competitive to other state-of-the-art sequential SAT algorithms in the single-
threaded mode. The last point clearly indicates that the algorithmic overhead to handle
multiple threads running in parallel can be quite low compared to a sequential SAT solver,
which has all its data structures optimized for just one SAT solving routine.

To be able to run our solver not only on shared memory multiprocessor systems, but also
on classical workstation clusters, we extended it with a second layer of parallelism, resulting
in the entire parallel SAT algorithm PaMiraXT. The overall design follows a master/client
model, where copies of MiraXT are run on different workstations of a particular cluster (act-
ing as clients). For communication purpose we added a separate master process, responsible
for exchanging status signals, unevaluated subproblems, and conflict clauses between the
clients. Like MiraXT, the internal communication among the threads of one client is car-
ried out using the Master Control Object, while all external communication between the
master process and the clients has been realized with MPICH [14], an implementation of
the Message Passing Interface standard. From a top level point of view, PaMiraXT has
some similarities to other approaches such as PSATO [30] or //Satz [15], which are based
on a master/client model as well. The main difference is the fact, that in our approach each
client itself is a parallel SAT algorithm, solving its current subproblem with a number of
threads in parallel. Furthermore, the number of threads a client is using for SAT solving,
can vary from client to client, making PaMiraXT perfectly adaptable to the workstation
cluster under consideration. Again, the experimental results demonstrate that the runtime
needed to solve a particular benchmark decreases significantly when using more clients.

The remainder of the article is structured as follows: in Section 2 we give an overview of
the principles of SAT solving and address related work in the field of parallel SAT algorithms.
Section 3 highlights the design and implementation of MiraXT, while PaMiraXT is covered
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in Section 4. Next, experimental results are discussed, followed by a conclusion and final
remarks in Section 6.

2. SAT Solving & Related Work

In many different research areas, ranging from Electronic Design Automation [22] to Arti-
ficial Intelligence [17], problems can be described as a Boolean satisfiability problem and
formatted in Conjunctive Normal Form (CNF). A CNF formula F consists of a conjunction
of clauses, with each clause consisting of the inclusive disjunction of literals. A literal is the
occurrence of a variable in its positive or negative phase. Finally, the Boolean satisfiability
problem corresponds to the question, whether there exists an assignment for all variables
occurring in F such that F evaluates to true.

2.1 Sequential SAT Solving

Based on the definitions given above, a sequential SAT solver starts with all variables
of a CNF formula in an undefined state. Then, using a heuristic, a decision is made,
assigning an undefined variable to true or false. Such a variable is called a decision variable.
After every decision, a Boolean Constraint Propagation (BCP) procedure is run to find all
implications resulting from that decision. Most solvers maintain a chronological list of
decision variables and implications found by the BCP procedure. This list is usually sorted
by increasing decision levels that are associated with every decision/implication, starting
with the first decision and its implications on decision level 1. Decision level 0 however,
contains implications that do not depend on a decision, e.g. implications forced by unit
clauses. As the BCP procedure runs, it can also find conflicts, evoking a conflict analysis
routine to find the reasons for the current conflict. This procedure would then try to
resolve the conflict by backtracking to a previous decision level, undoing all the “wrong”
variable assignments. It also records a conflict clause to prevent the conflict from being
repeated. If the conflict analysis procedure detects a conflict on decision level 0, the problem
is unsatisfiable because there is a conflict within the CNF formula without assigning at least
one variable. Otherwise, selecting decision variables and running the BCP routine alternate
until all variables have been assigned. In that case the problem is satisfiable and a satisfying
variable assignment has been found. For a more in-depth overview of modern sequential
SAT algorithms the reader is referred to [10].

2.2 Parallel SAT Solving

Typically, a parallel SAT solver consists of a collection of sequential SAT procedures, solving
a problem in parallel. However, to obtain a fully functional parallel algorithm the sequential
SAT routines have to be modified.

First, the overall CNF formula has to be divided into disjoint portions to be treated
in parallel by the involved SAT solving processes. The most widely used way adopts a
Dynamic Search Space Partitioning technique proposed by Zhang et al. in 1997 [30], which
is based on the concept of Guiding Paths (GP). A GP is defined as a path in the search
tree from the root (no variables assigned) to the current node (some variables assigned),
with additional information attached to the edges:
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1. The variable xl and the truth value of xl selected on decision level l.

2. A special flag storing the type of the variable xl:

– Open corresponds to a decision variable.

– Closed corresponds to an implication.

Intuitively, a GP describes the current state of the search process by storing all assigned
variables, their truth values, and the type of each variable. Due to the definition it is quite
clear, that all open variables are potential candidates for dividing a CNF formula, because
both truth values of every decision variable must be evaluated to prove unsatisfiability.
So, if a SAT solving process is called to split its current subproblem by another (idle)
process, it is in principle free to pick any open variable from its own GP to generate a new
and unevaluated subproblem to be solved by an idle process. Not only in MiraXT and
PaMiraXT, but in most parallel SAT solvers, the decision variable located closest to the
beginning of the GP will be selected, corresponding to the shortest GP with respect to the
number of “predefined” variables. The main motivation behind this strategy is that a short
GP correlates to a large fraction of the overall search space, while a long GP corresponds
to a smaller part that might be also easier and in particular faster to solve. Basically,
the goal is to minimize the overall communication time by reducing the total number of
such operations. Additionally, the selection of the decision variable located closest to the
root also simplifies the encoding of the new and unchecked portion of the search space: all
variables preceding the open variable can be taken as they are; only the truth value of the
decision variable used as the splitting point has to be flipped. After sending the new GP to
an idle process, the active SAT solving process finally marks the selected open variable to
be closed. This ensures, that it will always ignore the specified GP as it will be analyzed
by another process.

An example of how to use the guiding path method to divide a CNF formula is given in
Figure 1. Besides the generation of new subproblems, the core routines of a parallel SAT
algorithm have to be modified in the way, that they are able to start at any point within
the search space specified by an initial guiding path.

Secondly, conflict clauses can be exchanged between parallel running SAT routines, al-
lowing all processes to benefit from what each other has learnt. Each conflict clause deduced
from a conflicting variable assignment is a piece of information that the corresponding pro-
cess has learnt about the problem. Conflict clauses restrict the search of the solver by
restricting the solution space. In a parallel context, the exchange of conflict clauses that
directly force conflicts on other SAT solving processes are especially helpful in increasing
the performance. In these cases the receiving process could immediately stop its analysis
of the current part of the search space, since it has been already proven to be unsatisfiable
by another process working on a different portion of the CNF formula. A side effect of this
kind of Knowledge Sharing is the elimination of a complex termination mechanism, which
would allow the processes to terminate other SAT solving units when they discover that
these “areas” are superfluous for finding a satisfying assignment.

2.3 Related Work

Research on parallelizing SAT algorithms can be traced back to at least 1994, where Böhm
and Speckenmeyer introduced an approach for a transputer system with up to 256 processors
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x7 = 1 (closed)

x8 = 1 (closed)

x2 = 0 (closed)

Process 1

x5 = 1 (open)

unsat

sat/unsat?

unsat

unsat

(a) Initial situation with one process
running.

x7 = 1 (closed)

x8 = 1 (closed)

x2 = 0 (closed)

x5 = 0 (closed)

Process 1

Process 2

x5 = 1 (closed)

unsat

unsat

unsat

(b) After dividing the subproblem and starting a
second process.

Figure 1. Example of dividing the search space. On the left-hand side, the initial situa-

tion with one process running is given. The current state of process 1 can be described by

the guiding path GP1 = [(x7, closed), (¬x2, closed), (x5, open), (x8, closed)]. On the right-

hand side the situation after process 1 has split its subproblem and started a new process is

sketched. Using GP1 as the basis, the starting point of process 2 can be specified by the

(initial) guiding path GP2 = [(x7, closed), (¬x2, closed), (¬x5, closed)]. Finally, to guaran-

tee that both processes work on disjoint parts of the overall problem, the guiding path of pro-

cess 1 gets modified by marking the formerly open decision variable x5 as closed : GP ′
1 =

[(x7, closed), (¬x2, closed), (x5, closed), (x8, closed)].

[5]. In subsequent years, a number of more advanced implementations have been published.
To compare the various designs, we are going to focus on how the different solvers implement
the exchange of conflict clauses. This is because clause sharing can significantly improve
performance, but is usually also responsible for the vast majority of the communication.
So, there is obviously a trade-off between the advantage of sharing conflict clauses to prune
the search space and the communication overhead to broadcast this information, making
knowledge sharing one of most critical points when designing a parallel SAT solver.

The first and most common way to support conflict clause sharing is by using message
passing, typically according to the Message Passing Interface standard [27]. This concept
has been used in various approaches [6, 15, 25, 30], all of them showing that significant
speedup can be achieved. But due to the overhead associated with sending messages via
some kind of network, typically only short clauses consisting of a very few literals are
sent. Additionally, the clauses are often are sent in bundles, on one hand minimizing the
communication overhead, but on the other hand introducing more latency into the clause
sharing system. For example, in GridSAT [6] only clauses with at most three literals are
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exchanged between the different SAT solving processes, which is also the setup in PaMiraXT
(on the client’s side, see Section 4).

Another method maintains a shared Conflict Clause Database to share clauses, which
has to be accompanied by a thread-based design. In this system, each thread occasionally
sends well-suited clauses to this database (again, according to some criteria, e.g. the clause
length), while also checking to see if new conflict clauses have been added by other SAT
solving threads. PaSAT [26]1. and ySAT [11] both use this concept, illustrations of the two
approaches are given in Figures 2 and 3.

Conflict Clause Sharing

Guiding Path

Database
Clause

Database
Clause

Database
Clause

Database
Clause

Conflict Clause Database

Thread 2

Thread 1 Thread 3

Thread 0

Figure 2. Block diagram of PaSAT

As can be seen by the figures, one of the main differences between PaSAT and ySAT
is that in PaSAT every thread maintains its own (local) clause database, containing all
clauses of the original CNF formula as well as all conflict clauses deduced by itself or copied
from the Conflict Clause Database. In contrast to this, ySAT shares physical copies of
each clause of the original CNF formula, while storing all conflict clauses locally within the
private memory of the threads. Anyway, the concept of a shared Conflict Clause Database is
typically not as scalable as message passing, but allows longer clauses to be shared without
overwhelming the entire search process with communication related tasks. This system also
reduces the latency within the clause sharing mechanism.

The third method is the shared memory clause database design that MiraXT (and by
this the clients of PaMiraXT) use. Compared to ySAT, our approach goes one step further
by maintaining only one physical copy of each clause, regardless of it is a conflict clause or a
clause of the original CNF formula (see also Figure 4). All conflict clauses are added to this
Shared Clause Database, and each SAT solving thread dynamically selects which clauses it
wants to use. This is the reverse to the concept mentioned before, in which each thread
chooses which clauses it wants to offer or send to the other threads by integrating them

1. Note, that different versions of PaSAT have been published in the past. Besides the one discussed here,
there is also a version based on an Algorithm Portfolio design as well as a version using mobile agents
when executed on a workstation cluster [3, 4].
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Guiding Path
Conflict Clause Sharing,

BCP

Available Subproblems Conflict Clause Database

Thread 0 Thread 1 Thread 2 Thread 3

Clause Database
Local Conflict

Clause Database
Local Conflict

Clause Database
Local Conflict

Clause Database
Local Conflict

Original CNF Formula

Figure 3. Block diagram of ySAT

into the Conflict Clause Database. As an example, in PaSAT only clauses with at most
five literals will be shared. In contrast to this, our design allows each thread to check all
available conflict clauses and to consider its current status when selecting helpful clauses.
A thread can now decide to add very long clauses that will force implications or conflicts,
while ignoring short clauses that are already fulfilled by the thread’s variable assignments.
This design takes full advantage of the low latency and high bandwidth a shared memory
database provides.

Finally, with the introduction of pMiniSat and ManySAT two new parallel solvers have
entered the special track on parallel SAT algorithms of this year’s SAT Race. To our best
knowledge only brief descriptions of the two approaches are currently available [12, 29],
so it is not possible to provide a detailed analysis of either of them. Roughly speaking,
pMiniSat is a parallel version of MiniSat (using message passing as the communication
principle), while ManySAT is based on an algorithm portfolio design, running multiple
different solvers in parallel, trying to capitalize on the fact that different solvers are better
on different problems.

3. MiraXT

MiraXT is a zChaff-like SAT solver based on Mira [18, 19], but significantly improved and
extended, so it can be run with multiple threads. The implementation was carried out
using C++ and POSIX threads. As can be seen from the overall design given in Figure 4,
MiraXT contains four main components: a preprocessing unit, the Shared Clause Database,
the Master Control Object, and the SAT threads which are responsible for solving a CNF
formula in parallel. In the following we discuss these components in more detail, leaving
out the preprocessing unit, since it is more or less a re-implementation of what has been
done in SatELite [9].
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Complete Model
(in case of SAT)

SAT Solver

SAT Solver

Master
SAT Solver

SAT Solver

Control

Object

Thread 0

Thread 1

Thread 2

Thread 3

Shared Clause Database

Preprocessed CNF Formula

SAT Solving Unit

Partial Model (in case of SAT)

Initial CNF Formula

Preprocessing Unit

Preprocessing

Model Extension

Figure 4. Block diagram of MiraXT

3.1 Shared Clause Database

As mentioned above, MiraXT has only one global clause database that stores all clauses of
the original CNF formula, plus all conflict clauses deduced by the threads during runtime.
Figure 5 gives an overview of the design of the Shared Clause Database. It mainly consists
of pointers to clauses, while the clauses themselves consist of the literals of the clause (in
the figure denoted by Clause), the clause length (|C|) and the so-called Clause Deletion
Flags (represented by small boxes at the end of each clause, in this example assuming that
four threads are running in parallel). These Boolean flags indicate, whether a SAT thread
is currently using a particular clause of the Shared Clause Database to solve its subproblem
or not.

In order to insure coherency within the database, a mutex lock must be acquired before
a thread inserts a pointer to a conflict clause (deduced by its conflict analysis routine) into
the Shared Clause Database. As soon as the pointer is inserted and the database clause
counter is incremented (two simple operations) the lock is released. All clauses, once added
to the clause database, are read-only, so that sharing can be done without locks. These
steps are important as we want to reduce the amount of locks needed by the solver, thus
minimizing the waiting times of the threads that might occur due to lock contentions.

Furthermore, each thread has a pointer associated with it that is used when it requests
new clauses from the Shared Clause Database. This pointer keeps track of which clauses
the thread has already looked at, and those that are new. In Figure 5 this special pointer
is plotted for thread 0, but it could represent other threads as well.

Clause deletion is also an important feature of modern SAT engines. In MiraXT, each
thread deletes clauses using an algorithm similar to BerkMin [13] in which older and more
inactive clauses are easier to delete. To facilitate clause deletion efficiently in our multi-
threaded design, the threads use the Clause Deletion Flags associated with each clause.
Whenever a thread deletes its reference to a clause, it sets its clause deletion flag for that
particular clause. Because this Boolean flag is specific for that thread, no lock is required
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C| |
C| |
C| |

C| |
C| |

C| |

C| |

"New" Clauses

"Old" Clauses

Shared Clause Database

SAT Solver
Thread 0

Clause
Clause
Clause

Clause
Clause

Clause

Clause

Figure 5. Shared Clause Database

when deleting clauses. Once a thread has deleted all the clauses it wants to delete, it will
ask the shared clause database to see if a global clause deletion procedure should be run, as
the threads only remove their references to clauses, and not the actual clauses themselves.
If the database needs cleaning, the thread locks it and proceeds to physically delete clauses
that are no longer used by any thread, relinquishing the lock when it is finished. This lock
is used to insure that no two threads run the global clause deletion procedure at the same
time. However, during this time all other threads can continue running normally. Assuming
the situation given in Figure 5, the clause having all its Clause Deletion Flags plotted in
dark grey can be removed, since the flags state that none of the four threads is using this
particular clause any more.

Using the fine grained lock system described above, practically all lock contention issues
were removed, and in testing we saw no signs of even light lock contention. This seemed to
be one of the problems of ySAT [11], as the authors report that with four threads, an average
of 10% of the time was spent waiting for locks. This number should be only fractions of a
percent, as is indeed the case for MiraXT on most problems. This means that in MiraXT,
the majority of the time (over 99% on average) is spent actually solving the problem.

3.2 Master Control Object

MiraXT contains no separate master process unlike parallel solvers based on a classical
master/client model. Instead a Master Control Object (MCO) allows the SAT solving
threads to communicate with each other. All communication is done in a passive way, such
that the MCO will not interfere with the threads. It will only store messages and suspend
threads which ask for it to do so. The SAT solving threads poll the MCO occasionally to
see if there any messages or idle threads, waiting for a new subproblem to evaluate.

In principle, MiraXT’s threads and the Master Control Object interact as follows: after
preprocessing the CNF formula thread 0 starts solving the entire problem. All other threads
start by requesting a subproblem from the MCO and are now waiting to be signaled. Idle
threads are not wasting CPU cycles, polling for a new subproblem, they are put to sleep
and awakened using the POSIX cond wait / cond signal commands instead. Periodically,
running threads ask the MCO for any new global events (e.g. problem solved, waiting
threads, time limit exceeded), which can be done without using locks. If something has
happened, a more complicated procedure with a mutex lock will be executed. In our
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example, when thread 0 checks the MCO, it will recognize that other threads are waiting for
a subproblem. It will then ask the MCO for the mutex lock associated with the MCO. Once
thread 0 has acquired this lock, it will split its current subproblem as described in Section
2.2, and add the new subproblem (encoded as a guiding path) to the MCO. Afterwards,
thread 0 will awake a sleeping thread, release the MCO lock, and finally continue solving
its part of the problem.

If there are more than just one thread waiting, they will be served randomly by run-
ning threads. No heuristic is used to decide which running thread should split its current
subproblem. Here, the goal is to minimize the communication overhead and by this to
speedup the SAT solving process. If a thread proves its subproblem to be unsatisfiable, it
will request a new subproblem. If all SAT solving threads involved in the search process are
waiting for a new subproblem, the CNF formula is unsatisfiable. Otherwise, if any thread
finds a solution, the entire problem is satisfiable.

3.3 SAT Threads

The SAT solving threads used in MiraXT are based on the classical Davis-Putnam method,
but enhanced with the features of a modern SAT engine such as conflict-driven learning
with non-chronological backtracking, watched literals for lazy clause evaluation, restarts,
clause deletion, and an efficient decision heuristic, combining the VSIDS strategy known
from zChaff with RSat’s concept of Assignment Caching [24]. In the following we highlight
the modifications we have done with respect to Boolean Constraint Propagation and the
analysis of conflicts, both strongly depending on the architecture of the Shared Clause
Database discussed in Section 3.1.

In most solvers, to keep track of the watched literals, the original clause is modified
in some way, e.g. by using the first two literals in the clause. This is not possible in
MiraXT, because clauses are used by many threads and because of that are read-only after
being inserted. So, each thread creates a second data structure called the Watched Literals
Reference List (WLRL) to handle its watched literals.

As can be seen from Figure 6, the WLRL not only stores the two watched literals
(WL) for each clause, but also a pointer to the entire clause and – depending on the clause
length – up to two additional literals, the so-called Cache Literals (CL).2. The CLs are
the ones that get checked first, if one of the two watched literals of a clause has to be
updated. If none of the two CLs can serve as the new watched literal, then the entire
clause has to be evaluated literal by literal (in case the corresponding clause consists of five
or more literals, otherwise the clause is completely stored within the WLRL). Intuitively,
the Watched Literals Reference List allows each thread to have a condensed copy of every
clause. In [20] it has been shown empirically, that updating the watched literals of “long”
clauses not completely stored in the WLRL can be done by evaluating the CLs only in
about 84% of all cases. This means the original clauses are not needed 84% of the time,
making MiraXT more cache friendly.

The conflict analysis procedure in MiraXT is based on the 1UIP scheme known from
zChaff [31]. However, a separate clause addition procedure was added. In MiraXT, the
conflict analysis procedure of a thread will first add a clause to the shared clause database.
Then the clause addition procedure will be run, asking the clause database for all new

2. Like in most modern SAT solvers, unit clauses and binary clauses are handled separately in MiraXT.
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C| |Clause

C| |Clause
C| |Clause

Shared Clause Database

C| |

C| |Clause
C| |

C| |

WLRL

SAT Solver Thread 0

Clause
Clause

WL1WL0
WL1 CL2WL0 CL1
WL1 CL1 CL2WL0

CL1

Clause

Figure 6. Watched Literals Reference List

clauses; this includes clauses generated by other threads and its newly generated conflict
clause. It will then process these clauses, deciding which clauses should be considered in its
own search process. Currently, all clauses directly leading to a conflict, clauses forcing an
implication, and really short clauses (10 literals or less), are added to the thread’s WLRL.
The clause addition procedure will set the watched literals, search for implications, and
perform conflict-driven backtracking as needed. Both the conflict analysis procedure and
the clause addition procedure can signal that the current subproblem is unsatisfiable.

4. PaMiraXT

In this section we describe the main properties of PaMiraXT, a development that has
been carried out to handle multiple instances of MiraXT in parallel. A block diagram of
PaMiraXT is sketched in Figure 7. As can be seen, the overall design follows a master/client
model, in which one process is dedicated to be the master, while a number of copies of
MiraXT act as clients. In more detail the role of the master is. . .

– to start/stop the clients,

– to evaluate the workload of all running clients if one copy of MiraXT becomes idle
during runtime and needs a new subproblem,

– to select the most loaded client and to request an unevaluated part of the search space
from it,

– to forward this problem to the idle client, and

– to receive and broadcast conflict clauses from/to the clients.

Likewise the role of the clients is. . .

– to receive and solve a subproblem,

– to return an unevaluated fraction of the entire formula when asked by the master,

– to receive and forward well-suited conflict clauses from/to the master process, and

– to send the results to the master.
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Database
Clause

Database
Clause

Database
Clause

Database
Clause

MiraXT
Client 1

Start/Stop Signal

Split Signal

SAT/UNSAT

Guiding Path

Conflict Clauses

MiraXT MiraXT
Client 2

MiraXT

Client 0

Client 3

Master

Conflict Clause
Buffer

Figure 7. Block diagram of PaMiraXT

As the underlying communication protocol the MPICH implementation [14] of the Mes-
sage Passing Interface standard was chosen, providing a standardized core of C/C++ li-
brary routines to easily develop distributed algorithms. All communication tasks are sent
as messages using the (blocking) send operation MPI Send. Since the master is active only
when receiving and processing requests from the clients (and stays idle in all other cases),
it will be temporarily suspended by the MPI Probe command. By doing so, we are able
to execute the master on the same workstations as the clients without reducing the per-
formance significantly. Of course, one has to set the parameters for exchanging conflict
clauses between the clients in such a way, that the effort of the master process to broadcast
this information does not slow down the client running on the same workstation (see also
Section 4.2).

4.1 Dynamic Search Space Partitioning

Based on the concept of Guiding Paths as introduced in Section 2.2, the exchange of sub-
problems between the clients of PaMiraXT is done as follows: If one client becomes idle
during runtime it sends a request to the master process. The master then has to determine
which of the running copies of MiraXT should be chosen to provide a new unchecked portion
of the search space. Usually, there is more than one process active, so it is up to the master
to decide which one should be selected. Again, as mentioned before, motivated by the fact,
that a short GP (with respect to the number of literals) correlates to a large fraction of
the search tree, while a long GP indicates a smaller part (that might be also easier and
faster to solve), the master always calls the client with the shortest guiding path to divide
its subproblem.

Similar to MiraXT, during the initialization phase, only one client is started by the
master process by giving it an empty guiding path (equivalent to the overall problem), while
all other clients remain idle. As a consequence the “work stealing” mechanism presented
before is called immediately by all remaining idle clients.
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4.2 Knowledge Sharing

The exchange of conflict clauses among the clients involved in the search process has been
put into practice according to three phases: selecting suitable clauses by the clients, filtering
the received information on the master’s side, and finally integrating the shared conflict
clauses into every client’s database, so that they are available for all threads.

In the current version of PaMiraXT all conflict clauses within the Shared Clause Database
of a client that don’t exceed a length of three literals will be selected for sharing. To reduce
the communication overhead, each client uses its own Conflict Clause Buffer to transfer
several conflict clauses as one single MPI message to the master process. All conflict clauses
with at most three literals will be stored in this buffer, and communication takes place only
when it is completely filled. In the experiments we used a buffer size of 50, which turned
out to be a good compromise between the communication effort and the number and the
“quality” of the conflict clauses being transferred.

In the second phase, the master does not simply broadcast the received information to
all clients, but performs a filtering step first to check which of the initial guiding paths
of the clients already satisfy the received clauses.3. Finally, a clause is transferred only
to those clients where it is not subsumed by the corresponding initial GP. Similar to the
first phase, the master also uses a separate outgoing buffer for each client (specified by the
same parameters as above) to forward a set of clauses per communication task. The idea
of discarding already satisfied clauses is that these pieces of information neither force an
implication, nor are they responsible for a conflicting assignment in the actual part of the
search tree. So, they are currently not helpful to guide the algorithm more efficiently, but
reduce the overall performance due to the communication time and the increased number
of clauses the BCP routines of the clients probably have to deal with.

Finally, the receiving clients take all conflict clauses sent as one MPI message and
integrate them into their own Shared Clause Database, so that they are directly available
for the SAT solving threads of that particular client.

4.3 Clients

To use MiraXT as a client of PaMiraXT in the way described in the previous sections, we
extended the design by introducing an additional thread, the so-called MPI thread. An
example of such a modified version of MiraXT, containing four SAT solving threads as well
as one MPI thread is represented in Figure 8.

The MPI thread is not participating in the search process, but is only responsible for
the overall communication with the master process. Like the SAT threads, it has access to
the Master Control Object, mainly used for dividing the search space and sending/receiving
subproblems to/from the master. If a client is called to divide its current subproblem by
the master process, the corresponding MPI thread behaves like the SAT threads in such a
situation: it requests a new subproblem within its Master Control Object and waits until one
of the running SAT threads has added a guiding path, specifying a new subproblem. The
MPI thread will then pick this guiding path and transfers it to the master process, so that
the master is able to serve an idle client. On the side of the idle client, the corresponding

3. Due to the fact, that the master is also responsible for exchanging subproblems, it always knows the
initial GPs of all clients.
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Figure 8. Block diagram of a PaMiraXT client

MPI thread will receive the subproblem and adds it to the MCO, where it gets solved by
the SAT threads in parallel.4.

As can be seen from Figure 8, the MPI thread also has an interface to the Shared Clause
Database, which is used to exchange conflict clauses between the clients of PaMiraXT. For
this purpose, the MPI thread periodically checks which of the conflict clauses of the database
might be helpful to other clients. It then copies such clauses into its internal Conflict Clause
Buffer and submits the entire buffer to the master process if its completely filled. On the
other side, if the MPI thread receives a bundle of clauses from the master, it adds all the
clauses to its shared clause database, so that the SAT threads can immediately benefit from
the information learnt by other clients, that are running on other workstations.

Finally, each client of PaMiraXT preprocesses the CNF formula on its own. Since
they perform deterministic operations only, all clients end up with the same preprocessed
formula. Compared to an approach doing the preprocessing step on the master’s side and
broadcasting the preprocessed formula to all clients afterwards, our strategy is less time-
consuming.

5. Experimental Results

To measure the performance of our approach we conducted a large number of experiments,
comparing MiraXT/PaMiraXT with other state-of-the-art SAT engines, i.e. MiniSat2, Pi-
coSAT 535, and RSat 2.01. All comparisons were executed on an AMD workstation with
two Dual-Core AMD Opteron 280 processors, allowing MiraXT – the same as PaMiraXT
with just one client – to be run with up to four threads (see Figure 9).

4. Note, that an idle client means, that all SAT threads of that client are waiting for a new subproblem. As
soon as the MPI thread submits a new subproblem to the MCO, this subproblem will be immediately
divided again and again, until all SAT threads are running.
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Figure 9. AMD system with two Dual-Core AMD Opteron 280 processors [1]

To evaluate the potential of PaMiraXT we combined this workstation with another
two AMD systems, which are almost identical to the one sketched in Figure 9. The only
difference is that these two workstations are equipped with two single-core AMD Opteron
250 processors each. All workstations are running at 2.4 GHz clock frequency under a Linux
SMP enabled kernel (version 2.6.24), and have 4 GB of main memory. With these three
workstations in parallel, we have a (small) cluster with a total of 6 CPUs and 8 processor
cores, capable for executing PaMiraXT with 3 clients and 8 SAT threads (1 × 4 threads
and 2 × 2 threads).

A total of 347 instances were selected, containing all instances from the SAT Race 2006
as well as the industrial benchmarks from the SAT Competition 2007 [28]:

– SAT Race 2006 – a mix of 100 satisfiable and unsatisfiable CNF formulas. Like in
the original competition, we set the time limit to 900 seconds per benchmark.

– SAT 2007 Industrial – a mix of 247 satisfiable and unsatisfiable benchmarks, all
of them coming from industrial applications. According to the setup used during
the second stage of the competition, we defined a time limit of 10000 seconds per
benchmark.

Due to the inherent non-determinism of parallel SAT solvers we ran MiraXT/PaMiraXT
three times on all instances of the SAT Race 2006 benchmark suite.5. The number of solved
instances as well as the runtimes given in subsequent tables always represent the average of
these three individual runs. Due to the high CPU limit chosen for the SAT 2007 Industrial
problems, we executed our solvers only once on this particular set of CNF formulas.

In the following we discuss the results listed in Tables 1 to 5. As can be seen in Tables 1
and 2, even in the single-threaded mode, MiraXT compares well to the other sequential SAT
algorithms, solving more instances within the given CPU limit, while being also significantly
faster. On the SAT Race 2006 benchmark class, MiraXT solves an additional instance

5. The overall search process strongly depends on conflict clause sharing and search space partitioning.
The efficiency of these methods is highly influenced by the workload of the CPUs and the status of the
communication channels, which might change from one run to another.
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Table 1. Runtime & solved instances (SAT Race 2006, CPU limit: 900s)

SAT algorithm Overall runtime [s] Solved instances

RSat 40209.10 68

MiniSat2 41631.15 70

PicoSAT 37033.29 77

MiraXT, 1 Thread 32264.09 78

MiraXT, 2 Threads 27651.93 81

MiraXT, 4 Threads 21674.50 85

PaMiraXT, 3 Clients, 8 Threads 21274.41 86

Table 2. Runtime & solved instances (SAT 2007 Industrial, CPU limit: 10000s)

SAT algorithm Overall runtime [s] Solved instances

RSat 1293297.72 136

MiniSat2 1199874.43 143

PicoSAT 1110696.47 152

MiraXT, 1 Thread 999154.42 162

MiraXT, 2 Threads 835851.65 177

MiraXT, 4 Threads 783190.38 180

PaMiraXT, 3 Clients, 8 Threads 711278.80 186

within 900 seconds compared to PicoSAT, while being about 15% faster. The same holds
for the SAT 2007 Industrial benchmarks. Again, even the single-threaded version of MiraXT
is faster than MiniSat2, RSat, and PicoSAT and solves significantly more instances.

When switching from one to four threads running in parallel, the performance of MiraXT
increases on both benchmark classes, resulting in a runtime reduction of 71% compared to
PicoSAT (SAT Race 2006 ; 42% on the SAT 2007 Industrial benchmarks) and a total of
85 instances solved within the time limit (SAT Race 2006 ; 180 on the SAT 2007 Industrial
benchmarks).

Furthermore, compared to the configuration of MiraXT with four threads running in
parallel, Tables 1 and 2 clearly show, that PaMiraXT with three clients and eight threads
is able to solve even more instances in less run time. Especially the results for the SAT
2007 Industrial instances are impressive, where PaMiraXT was able to solve another six
hard CNF formulas! On the other hand, the results for the benchmark class SAT Race
2006 also show, that the performance gain obtained by PaMiraXT is only marginal. As
the main reason we identified that the majority of the instances of this benchmark suite
can be solved very fast (in less than 100 seconds), making it hard to achieve a significant
benefit when running more and more threads in parallel. Basically, the overhead of initial-
izing and synchronizing the clients/threads does not pay off, if a benchmark can be “easily”
solved. This also has an effect on the speedup as can be seen in Tables 3 and 4. While
MiraXT/PaMiraXT scale well on the SAT 2007 Industrial benchmarks, the speedup con-
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Table 3. Speedup of MiraXT/PaMiraXT (SAT Race 2006, CPU limit: 900s). To obtain correct

speedup values only instances solved by all configurations of MiraXT and PaMiraXT were taken

into account.

SAT algorithm Overall runtime [s] Speedup

MiraXT, 1 Thread 11353.62 1.00

MiraXT, 2 Threads 6902.29 1.64

MiraXT, 4 Threads 4418.97 2.57

PaMiraXT, 3 Clients, 8 Threads 4332.08 2.62

Table 4. Speedup of MiraXT/PaMiraXT (SAT 2007 Industrial, CPU limit: 10000s). To obtain

correct speedup values only instances solved by all configurations of MiraXT and PaMiraXT were

taken into account.

SAT algorithm Overall runtime [s] Speedup

MiraXT, 1 Thread 132618.80 1.00

MiraXT, 2 Threads 53734.05 2.47

MiraXT, 4 Threads 37769.97 3.51

PaMiraXT, 3 Clients, 8 Threads 23584.20 5.62

Table 5. Scaling of MiraXT in terms of deduced conflict clauses per second (SAT Race 2006, CPU

limit: 900s)

No. of threads No. of conflict clauses deduced per second

1 Thread 4149.88

2 Threads 7136.50

4 Threads 13118.85

verges to about 2.6 for the SAT Race 2006 benchmark suite, regardless of whether four or
eight threads are used in parallel.

As mentioned in Section 3.1, first experiments with MiraXT indicated, that the lock
system used to ensure data consistency of the shared clause database forces only very few
lock contentions during runtime. Table 5 underlines this fact by measuring the conflict
clauses deduced and integrated into the database per second. Even with four threads the
number of clauses added to the Shared Clause Database per second increases remarkable
with the number of threads.

In the near future, we currently foresee two main problems with scaling MiraXT (either
in the “stand-alone” version or as a client of PaMiraXT) to larger multi-core designs, e.g. 16
or 32 cores. The first one is the limited bandwidth of the front side bus which connects
the CPU to main memory. Large industrial benchmarks running with multiple threads can
require 1–50 GB of active memory. With 32 threads, the bandwidth requirements that are
expected from this bus are significantly higher than just for one thread as no problem fits
entirely in cache. Memory bandwidth is a problem for many high performance computing
applications. This means that most hardware companies are putting significant effort into
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alleviating these problems. Some solutions such as widening the front side bus from 1–2
channels to 3–4 channels have already been done. Larger on chip caches are also being
introduced. Both AMD and Intel now have L3 caches included on all their server CPUs.
Lastly, cache performance techniques such as our WLRL and others (for example the ones
integrated in [12]) will become increasingly more important.

The second problem is a bit more algorithmic. In MiraXT, each thread can examine
all the clauses in the clause database. However, if we now have 32 threads, the number of
conflict clauses produced is enormous, and each SAT solving thread will suffer from a form
of information overload. Instead of executing MiraXT with 32 threads, we can solve this
problem by running PaMiraXT with four clients, each running eight SAT threads (or two
clients with 16 threads each). In this way, we can have multiple groups of tightly coupled
threads that work together sharing everything, while also limiting the sharing between
groups so that the number of conflict clauses each thread examines is more manageable.
In the future, using ideas such as thread affinity, we can then specify which threads should
run on which processor. This will allow us to generate rules that dictate which threads in
MiraXT should work together. For example, we could allow threads that are connected to
the same L2 or L3 cache to share more clauses then threads working on processors that are
one or two Hyper Transport hops away from each other (see Figure 9).

Now, while we do expect new issues to crop up when adapting our ideas for larger future
systems with more cores, we see no road blocks that should prevent our algorithms from
scaling in the near future (16–32 cores). After 32 threads, the parallel performance gains
are less clear, but so is the architecture of the CPUs and the platforms the solvers will be
running on.

6. Conclusion

As was shown in this article, PaMiraXT is a powerful parallel SAT solver, providing sig-
nificant speedup when executed with multiple threads/clients. The realization follows a
master/client model, using copies of MiraXT as clients controlled by a separate master
process. Concerning the number of threads, PaMiraXT can be perfectly adapted to the
hardware environment under consideration by varying the number of SAT solving threads
from client to client.

Parallel approaches will likely be the way of the future in the field of SAT solving as
many chip manufacturers are turning from single-core to multi-core processors. Utilizing
the extra power of these CPUs, regardless of a single workstation or a cluster of workstations
is used, will be a fundamental issue in the future.
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