
Journal on Satisfiability, Boolean Modeling and Computation 6 (2008) 33-51

HaifaSat: a SAT solver based on
an Abstraction/Refinement model

Roman Gershman gershman@cs.technion.ac.il

Computer Science,

Technion, Haifa,

Israel

Ofer Strichman ofers@ie.technion.ac.il

Information Systems Engineering, IE,

Technion, Haifa,

Israel

Abstract

The popular abstraction/refinement model frequently used in verification, can also ex-
plain the success of a SAT decision heuristic like Berkmin. According to this model, conflict
clauses are abstractions of the clauses from which they were derived. We suggest a clause-
based decision heuristic called Clause-Move-To-Front (CMTF), which attempts to follow
an abstraction/refinement strategy (based on the resolve-graph) rather than satisfying the
clauses in the chronological order in which they were created, as done in Berkmin. We also
show a resolution-based score function for choosing the variable from the selected clause and
a similar function for choosing the sign. We implemented the suggested heuristics in our
SAT solver HaifaSat. Experiments on hundreds of industrial benchmarks demonstrate
the superiority of this method comparing to the Berkmin heuristic. HaifaSat won the
3rd place in the industrial-benchmarks category in the SAT competition of 2005, and did
not compete or was developed since. We present experimental results with the benchmarks
of the 2007 competition that show that it is about 32% slower than RSAT, the winner
of 2007. Considering the time difference, it shows that it is rather robust. The abstrac-
tion/refinement theoretical model is still relevant, and there is still room for further research
on how to exploit it better given a recent result that permits storing and manipulating the
resolve graph in the main memory.

Keywords: SAT-solver, abstraction

Submitted January 2008; revised June 2008; published October 2008

1. Introduction

HaifaSat is a SAT solver that was developed during 2004-2005, and won the third place
in the industrial benchmarks category of the SAT competition 2005.1. Although it was not
developed since, it is still being used and downloaded rather regularly (241 downloads since
March 2005, from which 45 in 2007). The current paper extends an earlier proceedings
version [8] that describes some of HaifaSat’s features, mainly by presenting its results on
the 2007 competition benchmarks. Although it is, as expected, not competitive with the

1. The first and second place winners, SateliteGTI and MiniSAT, are variations on the same code-base.

c©2008 Delft University of Technology and the authors.

R. Gershman and O. Strichman

winner of 2007 (Rsat) [16], we find the theoretical model that it describes still useful in
thinking about decision heuristics, and it still leaves room for future research, especially
in light of some recent advances that permits maintaining and manipulating the resolve
graph in the main memory [18]. A clause-based decision heuristic very similar to the one
suggested in this paper was suggested independently by Dershowitz, Hanna and Nadel [6]
with very similar conclusions, although without the abstraction/refinement model that we
describe here. Their SAT solver, Eureka, which won the second place in the SAT 2006
competition, is based on this heuristic as well.

By now the view by which a SAT solver should not only be seen as a search engine
based on enumeration, but rather also as a proof engine based on resolution, is prevalent.
Traditionally the first view was dominant, hence the emphasis in designing SAT solvers
and explaining their success was on pruning search spaces. Decision heuristics and learning
schemes can all be interpreted as aiming at this goal. Yet the harder and larger the CNF
instances are, pruning alone cannot account for the success of modern SAT solvers. It
is their ability as proof engines that makes them succeed. This distinction has practical
implications, too. For example, for many years decision heuristics gave higher priority to
variables in shorter clauses, and to learning shorter conflict clauses. The reasoning was that
such clauses can potentially prune larger search-spaces. Although this claim is true, all
competitive decision heuristics ignore the length of the clauses, after reaching empirically
the conclusion that there are more important considerations. Ryan experimented in his
thesis [17] with first-UIP [20] and all-UIP [13] learning schemes, and although the latter
generate on average shorter clauses, the former is empirically better. He hypothesized that
the learning scheme should be geared towards resolution rather than for pruning. In this
article we extend this approach by looking at clause-learning and the decision heuristic as
one complete mechanism and refer to a SAT solver as a prover rather than as a search
engine. It turns out, empirically, that when conflict clauses are effective, which is the case
in all real-world instances, this is the right way to go.

Conflict clauses are derived through a process of resolution (see, for example, [20] and [2]
for a more formal treatment of this subject). If a clause c is derived by resolution from a
set of clauses c1 . . . cn then

c1 ∧ · · · ∧ cn → c

while the other direction does not hold. This means that c can be seen as an over-
approximating abstraction of the resolving clauses c1 . . . cn. Attempting to satisfy c first,
therefore, can be seen as an attempt to satisfy the abstract model first. Like any abstrac-
tion/refinement technique (also called localization techniques) [12, 5, 4, 9, 11, 1], a successful
assignment to c is one that satisfies the concrete model (the c1 . . . cn clauses) as well. And an
unsuccessful assignment leads to a refinement step, or, in our case, to derivation of new con-
flict clauses which further constrain the abstract model. According to this model, Berkmin
is only one of many possible strategies to refine the abstract model. In Sect. 3 we suggest
one such alternative clause-based decision heuristic called Clause-Move-To-Front (CMTF),
which attempts to follow the order of the clauses in the resolve-graph [21] rather than their
chronological order in which they were created. In Sect. 4 we also show a resolution-based
score function for choosing the variable from the selected clause and a similar function
for choosing the sign. In Sect. 5 we report experimental results on hundreds of industrial
benchmarks that prove the advantage of our approach.

34

HaifaSat: a SAT solver based on an Abstraction/Refinement model

Related work.

Decision heuristics are probably the most important and most studied aspect of SAT solv-
ing. Let us mention some prominent such heuristics from the last decade. GRASP [13]
included several decision heuristics but used as default DLIS (Dynamic Largest Individual
Sum), which at each decision point counts the number of unsatisfied clauses in which each
literal appears, and decides on the literal with the highest count. This heuristic is com-
putationally expensive as it requires traversing the entire clause database at each decision
point. Chaff [15] introduced the VSIDS (Variable State Independent Decaying Sum) deci-
sion heuristics, which differ from DLIS in two aspects. First, VSIDS counts the number of
clauses in which each literal occurs, but unlike DLIS it ignores the question whether these
clauses are currently satisfied. Hence, the criterion less accurately predicts the immediate
impact of the decision, but on the other hand is cheaper to compute: rather than traversing
all clauses, it only requires updating counters once new clauses are added. Second, VSIDS
periodically divides the literal counters by a constant number. This gives higher priority
to literals that occurred in recently learned conflict clauses, since their contribution to the
counter is divided less times. VSIDS was the first conflict-driven decision heuristic, in the
sense that it was the first to attempt to focus the search near recent conflicts. The best
solver to date, Minisat [7], uses a similar idea. Berkmin [10], which we describe in detail in
Sect. 2.2, is even more extreme than VSIDS in focusing the search on conflicts: it adds the
conflict clauses to a stack, and at decision points it chooses a variable from the most recent
unsatisfied conflict clause. VMTF (Variable Move To Front) [17] is another very successful
conflict-driven decision heuristic, which was implemented in the SAT solver Siege: when
learning a new conflict clause, it pushes to a stack some constant number of literals from
that clause. The top literal in this stack that does not yet have a value is the decision literal.

We mentioned earlier several references relating to abstraction refinement in model
checking, some of which are based on SAT (e.g., [1]), although the abstraction-refinement
loop is external to the SAT engine. An exception, perhaps, is [11], where abstraction-
refinement was used to accelerate SAT solving: starting from a small subset of the clauses
in the original formula, in each iteration more clauses from the original formula were added
so as to block the current satisfying assignment. The context in that work was Bounded
Model Checking [3] formulas, and correspondingly the abstraction refinement loop followed
the traditional way of refining the model: the initial set of clauses correspond to the prop-
erty, and in each iteration another ‘layer’ of state variables are added (i.e., the clauses
that define the behavior of these state variables). The current work is more generic and is
based on changing the decision heuristic itself. The abstraction is not due to the removal
of clauses, rather due to resolution, as we will explain later on.

2. Background

The explanation of our methods and the analysis of various heuristics later on will require
some basic definitions.

35

R. Gershman and O. Strichman

The Abstraction-refinement model: from structures to formulas

The classic use of the terms abstraction and refinement in the context of model-checking is
the following. Let M be a Kripke structure, P (M) the set of propositions labeling its states
and L(M) the language defined by M (i.e., the set of traces in M). A model M̂ such that
P (M̂) ⊆ P (M) is an over-approximating abstraction of M if for every property ϕ it holds
that

M̂ |= ϕ→M |= ϕ. (1)

Equivalently, for every trace s,

s ∈ L(M)→ s ∈ L(M̂). (2)

The inclusion relation is defined with respect to the alphabet of the language, e.g., s ∈ L(M)
is defined with respect to the projection of s to P (M).

M1 is a refinement of M̂ with respect to M , if for every trace s,

s ∈ L(M)→ s ∈ L(M1), (3)

and
s ∈ L(M1)→ s ∈ L(M̂). (4)

Abstraction-Refinement is a process in which we find increasingly accurate models (closer
to the concrete model M) until proving the property or, in the worst case, reaching the
original model M .

We now wish to bridge between the terminology of models and traces on one hand, and
the terminology of formulas and satisfying assignments on the other hand. Thus, consider
now formulas rather than models.

For two formulas f and f̂ such that var(f̂) ⊆ var(f), we can restate an implication of
the form

f → f̂ , (5)

by saying that for every assignment α,

α |= f → α |= f̂ . (6)

As usual satisfaction is defined with respect to a projection of α to the variables of the
formula.

Due to the resemblance to (2), we now say that f̂ is a conservative abstraction (over-
approximation) of f .

Further, for a formula f1 such that var(f̂) ⊆ var(f1) ⊆ var(f), we can restate

f → f1 (7)

and
f1 → f̂ (8)

by saying that for every assignment α,

α |= f → α |= f1, (9)

36

HaifaSat: a SAT solver based on an Abstraction/Refinement model

and

α |= f1 → α |= f̂ . (10)

Once again, due to the resemblance of (3) and (4) to (9) and (10), respectively, we now say
that f1 refines f̂ with respect to f .

Continuing with this terminology, abstraction-refinement for formulas is an iterative
process, in which one begins with some abstract formula f̂ of a concrete formula f and
gradually refines it through a series of formulas f̂1, . . . , f̂n until proving or disproving the
desired property of f . Here again, in the worst case f̂n = f . Thus, there is a parallelism
between abstraction refinement of structures, and the process described here for formulas.

2.1 Conflict clauses and resolution

The binary resolution inference rule is:

a1 ∨ . . . ∨ an ∨ β b1 ∨ . . . ∨ bm ∨ (¬β)

a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm

(Bin-Res)

where a1, . . . an, b1, . . . bm, β are literals. β is known as the resolution variable (also known
as the pivot variable) of this derivation. Clauses (a1, . . . , an, β) and (b1, . . . , bn, β) are called
resolving clauses and the clause (a1, . . . , an, b1, . . . bn) is a resolvent. It follows by the sound-
ness of the rule, that the resolvent is always implied by its resolving clauses and can therefore
be thought of as an abstraction of the clauses that participated in the derivation.

We now show why the process of generating conflict clauses indeed can be seen as a
sequence of resolution steps. Algorithm 1 shows a simple and efficient implementation of
the First-UIP resolution scheme, which is implemented in most competitive SAT solvers,
including our solver HaifaSat. We will refer to this algorithm simply as the resolution
algorithm. First, a conflicting clause is set to be the current resolved clause. The main
loop processes literals in the current clause. All literals from the previous decision levels
are gathered into NewClause at line 13 and marked. Literals from the current level are
marked in order to resolve on them (i.e., use them as resolution variables) further. In every
iteration a new marked (yet unprocessed) literal u is chosen in line 17. This literal must be
from the current decision level. The algorithm resolves on u by setting currentClause to
be the antecedent clause without u.

ResolveNum counts the number of the marked literals from the current decision level
that still have to be processed. When ResolveNum = 0 at line 22, then u is the FirstUIP
or the asserted literal. The negation of this literal is added to the NewClause causing
u’s value to be flipped after backtracking. For more details on the resolution algorithm
see [15, 17].

We will use the following definition in order to denote the initial state of NewClause:

Definition 1 (Asserting clause). Suppose a new conflict clause C was created in Alg. 1
with asserted literal u. Suppose also that the solver backtracks after the conflict to level dl.
Then C becomes an asserting clause when it implies u for the first time at level dl, and
stops being asserting when the solver backtracks from dl.

It follows from the definition that every conflict clause becomes asserting exactly once.

37

R. Gershman and O. Strichman

Algorithm 1 The First-UIP resolution algorithm

procedure AnalyzeConflict(Clause: conflict)
2: currentClause← conflict;

ResolveNum← 0;
4: NewClause← ∅;

repeat

6: for each literal lit ∈ currentClause do

v ← var(lit);
8: if v is not marked then

Mark v;
10: if dlevel(v) = CurrentLevel then

++ ResolveNum;
12: else

NewClause← NewClause ∪ {lit};
14: end if

end if

16: end for

u← last marked literal on the assignment stack;
18: Unmark var(u);

−−ResolveNum;
20: ResolveCl← Antecedent(u);

currentClause← ResolveCl \ {u};
22: until ResolveNum = 0;

Unmark literals in NewClause;
24: NewClause← NewClause ∪ {u};

Add NewClause to the clause database;
26: end procedure

Example 1. Consider the following partial implication graph [14] and set of clauses.

Denote by Resolve(s, t, x) the binary resolution of clauses s and t with the resolution
variable x. Then the conflict clause c5 : (x10, x2,¬x4) is computed through a series of binary
resolutions, starting from the conflicting clause c4, and going backwards on the implication
graph until all literals in the conflict clause are either from previous decision levels or the
firstUIP .

Resolve(Resolve(Resolve(c4, c3, x7)), c2, x6), c1, x5) = (x10, x2,¬x4)

Algorithm 1 implicitly performs these resolution steps while computing the conflict clause
c5.

NewClause is derived through a series of binary resolutions that can be seen as a
tree: every time the solver reaches line 21, an intermediate clause (consisting of all marked
literals) is resolved with the antecedent clause of the chosen resolution variable. We can treat
this process as one atomic action of Hyper-resolution (resolution between more than two
clauses). Since each conflict clause is derived from a set of other clauses, we can keep track

38

HaifaSat: a SAT solver based on an Abstraction/Refinement model

c3

c3

c4

¬x7@5

x6@5

c1

x5@5

κ

c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c2 = (¬x4 ∨ x10 ∨ x6)

c4 = (¬x6 ∨ x7)

c1 = (¬x4 ∨ x2 ∨ x5)

c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)

Figure 1. A partial implication graph and set of clauses demonstrate AnalyzeConflict. x4

is the FirstUIP , and x4 is the asserted literal.

of this process with a Resolve-Graph [21]. Here we define a variation of the resolve-graph
that distinguished between two types of resolutions:

Definition 2 (Colored Resolve Graph). A Resolve Graph is a DAG G(V, Eas, Enas). V

is the set of nodes, each of which corresponds to a clause; Both Eas and Enas correspond
to edges such that (u, v) ∈ Eas ∪ Enas if and only if v participated in the Hyper-resolution
of u. The distinction between these two nonintersecting sets is the following: For every
edge (u, v) ∈ Eas ∪ Enas, it holds that (u, v) ∈ Eas if v was an asserting clause during the
resolution and (u, v) ∈ Enas otherwise.

We use solid edges to denote elements of Eas edges, and dashed edges to denote elements
of Enas.

In (colored) resolve graphs, edges come from the resolvent to its resolving clauses, and
hence the leafs of the graph correspond to the original clauses in the formula.2. Notice
that since a conflict at level dl necessarily implies that the solver backtracks from dl and
unassigns all the variables that were resolved on, any asserting clause which participated in
the resolution will stop being asserting. Therefore for any conflict clause there can be at
most one incoming solid edge. The original clauses do not have outgoing edges, and only
dashed incoming edges.

Example 2. Consider once again the implication graph in Fig. 1. Assuming that c1 . . . c4

are original clauses, they are not asserting clauses at the time of resolving c5 (or at any
other time). The corresponding resolve-graph is thus as appears in Fig. 2(a).

Now consider a similar case in which c2 is not an original clause, and at the time when
x4@5 is asserted it does not yet exist (the notation l@i, adopted from [13, 14], means that
literal l is asserted at decision level i). The implication graph at this stage appears in Fig. 3.
Now assume that due to further decisions and implications in deeper decision levels a conflict
is encountered, the solver creates the new conflict clause c2, backtracks to decision level 5
and asserts x6@5. This, in turn, completes the implication graph to the way it looks in
Fig. 1. But now, since c2 asserts x6, its edge on the resolve-graph from c5 belongs to Eas.
Fig. 2(b) presents the corresponding colored resolve-graph.

2. This is somewhat counterintuitive because it goes in the reverse order of inference, but it is a common
convention because it reflects the data structure maintained by most SAT solvers, which is necessary for
traversing this graph.

39

R. Gershman and O. Strichman

c4

c1

c3

c2 c5

c4

c1

c3

c2 c5

(a) (b)

Figure 2. Two (colored) resolve-graphs corresponding to the implication graph in Fig. 1. The

left drawing corresponds to a case in which clauses c1, . . . , c4 are original clauses and hence were

not asserting at the time of resolving c5; The right drawing corresponds to a case in which c2 is a

conflict clause that was asserting at the time of resolving c5.

c4 = (¬x6 ∨ x7)

c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)

c1

x5@5

x4@5

¬x2@3

c1

c1 = (¬x4 ∨ x2 ∨ x5)

Figure 3. A partial implication graph corresponding to c1, c3, c4 and the decision x4@5.

The distinction between the two types of edges is important because a solid edge (u, v)
indicates that the solver had to create v in order to later create u3.. We will use this
distinction later on, when describing the scoring heuristic in Sect. 4.

2.2 The Berkmin Decision heuristic

We describe briefly the Berkmin Decision heuristic. Berkmin is a clause-based decision
heuristic, like HaifaSat’s heuristic, and therefore convenient for comparison. It is the
decision heuristic of the Berkmin SAT solver and of Forklift, which won the 2003 com-
petition [19] in the industrial category.

Berkmin [10] pushes every new conflict clause into a stack, and makes a decision by
choosing an unassigned variable from the last unresolved conflict clause in this stack. It
uses the VSIDS score system [15] to choose among such variables, and a similar scoring
mechanism to choose its value (VSIDS counts the number of times each literal appears, and
periodically divides these numbers so as to give priority to literals that occurred in recently
added conflict clauses. The unassigned literal with the highest score is the next decision
variable). If all the conflict clauses are satisfied, it uses the same scoring mechanisms to
choose among all unassigned variables.

In Fig. 4(a) we show a sketch of the progress of Berkmin, which is helpful in understand-
ing why this process can be seen as abstraction-refinement. Clauses c1, . . . , c100 are conflict

3. By this we do not mean that this is the only way to create u.

40

HaifaSat: a SAT solver based on an Abstraction/Refinement model

c1 c100 c110

Berkmin direction

c50

(a)

C104C103C37C13C20

C102
C110

C105.C51
C101

(b)

Figure 4. Berkmin’s decision heuristic can be thought of as an abstraction-refinement, where a

range of the conflict clauses from the right end until ci represents an abstract model of the clauses

on the left of ci. (a) Berkmin clauses stack: after encountering a conflict, the new resolved clauses

are added on the right end. By the time the solver returns to c50, it will have a partial assignment

that satisfies a refined model, i.e., the clauses c51 . . . c110 (b) The resolve sub-graph of some newly

created clauses. Dashed edges are defined in Definition 2.

clauses ordered by their creation time (c1 is first). Berkmin tries to satisfy these clauses from
last to first, i.e., from right to left. Suppose that the clauses c51 . . . c100 are already satisfied,
and now Berkmin focuses on c50. We refer to S = {c51, . . . , c100} as our current abstract
formula of the original formula ϕ (it is abstract because each of the clauses in S is derived
by a resolution chain from the clauses of ϕ). Clauses in S must be currently satisfied, since
the decision heuristic reached c50. Berkmin now makes a decision on a variable from c50

which leads to a conflict and learning of a new clause. The decision heuristic backtracks
to the clauses on the end of the list, until finally, through possibly additional iterations of
conflicts and added clauses, it reaches c50 again while all the clauses to its right are satisfied.
Denote by S′ the clauses to the right of c50 at this point, e.g., S′ = {c51 . . . , c110}. Clearly
S ⊆ S′ and S′ is an abstraction of ϕ. We can therefore say that S′ is a refinement of S with
respect to ϕ.

This view of the process possibly explains why a strategy of giving absolute priority to
variables in a specific clause is empirically better than previous approaches like VSIDS that
used only a score function.

Fig. 4(a) shows a ‘linear’ view of the conflict clauses in the order that they are added.
This is also the order by which Berkmin considers them. Berkmin never tries to satisfy a
clause before satisfying its resolvents and thus mimics a gradual process of refinement.

A different view of conflict clauses considers their partial order in the Resolve Graph.
Fig.4(b) presents a possible Resolve sub-Graph corresponding to the same set of clauses.
After the conflict, Berkmin starts from satisfying c110. c102 is a resolving clause that can
potentially refine the initial model, however Berkmin first passes through c105, c104, c103 to
which c110 is not connected at all. Therefore Berkmin is dispersed trying to refine several
abstractions. Such unfocused behavior can lead to longer proofs. This problem is exactly
what our decision heuristic CMTF attempts to solve, as we soon show.

Our SAT solver HaifaSat makes a decision in three steps: First, it chooses an unsat-
isfied clause according to the CMTF heuristic; Second, it chooses an unassigned variables
from this clause, and, finally, it gives this variable a value. The next sections describe in
detail these decision steps.

41

R. Gershman and O. Strichman

3. The Clause-Move-To-Front (CMTF) decision heuristic

The description above of Berkmin’s decision heuristic, and the alternative view of the conflict
clauses as being part of a resolve-graph, hints towards the process which is described in
Alg. 2. In the first line roots(ResolveGraph) refer to resolvent clauses that did not resolve
other clauses. Note that in this general scheme a clause is processed only if at least one
of its abstractions (its resolvent clauses) has already been processed. It is easy to see that
Berkmin is an instantiation of this scheme. In fact, Berkmin is more strict and processes a
clause only if all its abstractions are satisfied.

Algorithm 2 A Resolve-Graph Based decision heuristic

1: S = roots(ResolveGraph);
2: while there exists v ∈ S an unsatisfied clause (node) do

3: Process v; ⊲ Processing a clause, among other things, satisfies it.
4: S = S ∪ children(v);
5: end while

CMTF instantiates this scheme in a different way. It causes the decision heuristic to
be more focused on the current refinement path, i.e., to satisfy children of the currently
satisfied clause s. It works as follows:

• All the conflict clauses are stored in a list.

• During the resolution in Alg 1, a bounded number of resolving conflict clauses which
are processed at line 6 are moved to the front (front corresponds to the right end of
Fig. 4(a)). The newly created clause NewClause is also added to the list (can be
done at line 25).

• Clauses are processed from right to left in the list, while ignoring satisfied clauses.
If all the conflict clauses are satisfied then the solver reverts to some other heuristic
(HaifaSat uses the VMTF strategy [17] in this case, a strategy by which a user-
defined number of variables from the generated conflict clause are brought to the
beginning of the list. Their value is determined by VSIDS.).

The idea of this strategy is to keep clauses that participate in resolution adjacent to
their resolvents (at least until the next time they participate in a resolution, a case in which
they can be moved to a new location).

CMTF shows an improvement on many industrial problems comparing to the Berkmin
heuristic. Both are specific instantiation of the scheme showed above. The advantages of
CMTF is its simplicity and the fact that the explicit storage of the resolve-graph is not
required. However, it seems that there is still room for future research on how to use the
general scheme. For example, classic AI search methods like best-first-search can be used
to decide on the exploration order of nodes in S at line 2. It may happen that partial or
full storage of the resolve-graph will improve the performance.

42

HaifaSat: a SAT solver based on an Abstraction/Refinement model

4. Resolution-based scoring

In the previous section we showed how HaifaSat decides which clause to satisfy first. Given
a clause c there can still be several ways to satisfy it. HaifaSat computes dynamically an
activity score for each variable and then chooses the variable with the maximal score. Then
another sign score is used to determine its Boolean value. This scoring mechanism, which is
simple to implement (only a few lines added to Algorithm 1) but somewhat hard to explain,
is the subject of this section.

The idea, intuitively, is to give higher weights to variables that were frequently resolved
on recently, while distinguishing between resolutions that were necessary for the progress of
the solver, and those that were made due to the imperfection of the decision heuristic. We
will need several definitions and lemmas to explain this heuristic more precisely.

Suppose that every time the solver makes a decision or processes a conflict it writes
into a log the event ai = (dl, e) where dl is the decision level where the event occurred and
e ∈ Conflicts ∪Decisions is either a conflict event or a decision event. The global index
i is incremented every time the event happens. We call the sequence {ai}

N
1 the flat log of

the solver’s run. We will denote by DL(ai) the decision level of the event. We consider
only the case in which dl > 0. All conflict events other, potentially, than the last one in an
unsatisfiable instance are included by this definition. It must hold that for any conflict c

there exists a decision d at the same level as c. In such a case, we say that d is refuted by
c. More formally:

Definition 3 (Refuted decision by a conflict). Let aj = (dl, c) be a conflict event. Let
ak = (dl, d), k < j, be the last decision event with decision level dl preceding aj (note that
for i ∈ [k + 1, j − 1] : DL(ai) > dl). We say that d is the refuted decision of the conflict c,
and write D(aj) = ak.

Note that because of non-chronological backtracking the opposite direction does not
hold: there are decisions that do not have conflicts on their levels that refute them.

For any conflict event aj , the range (D(aj), aj) defines a set of events that happened
after D(aj) and led to the conflicts that were resolved into the conflict aj which, in turn,
refuted D(aj). These events necessarily occurred on levels deeper than DL(D(aj)).

Definition 4 (Refutation Sequence and sub-tree events). Let aj be a conflict event with
D(aj) = ak. Then the (possibly empty) sequence of events ak+1, . . . , aj−1 is called the
Refutation Sequence of aj and denoted by RS(aj). Any event ai ∈ RS(aj) is called a
sub-tree event of both aj and ak.

Example 3. Consider the conflict event aj := (27, c110) in Fig. 5. For every event ai that
follows decision D(aj) (the decision on x30 in level 27) until (but not including) the conflict
c110 it holds that ai ∈ RS(aj). Note that the solver can backtrack from deeper levels to level
27 as a result of conflict events. However no event between D(aj) and aj occurred on levels
smaller or equal to 27.

The number of resolutions for each variable is bounded from above by the number of
sub-tree conflicts that were resolved into the current conflict. However, not all sub-tree
conflict clauses resolve into the current ‘refuting’ conflict. Some of them could be caused
by the imperfection of the decision heuristic and are therefore not used at this point of the

43

R. Gershman and O. Strichman

D
ec

is
io

n
L

ev
el

Time
Conflict
Decision

BCP

c110

27
x30 x43 x78

c109c106

Figure 5. A possible scenario for the flow of the solver’s run. After deciding x30 at decision

level 27 the solver iteratively goes down to deeper decision levels and returns twice to level 27

with new asserted literals x43 and x78. The latter causes a conflict at level 27 and the solver back-

tracks to a higher decision level. Horizonal lines correspond to BCP. Some of the asserting clauses

(c106, c109, c110) are marked in the place in which they are created.

search. Our goal is to build a scoring system that is based solely on those conflicts that
contribute to the resolution of the current conflict clause. In other words, we compute for
each variable an activity score which reflects the number of times it was resolved-on in the
process of generating the relevant portion of the refutation sequences of recent conflicts. We
hypothesize that this criterion for activity leads to faster solution times.

The information in the colored resolve-graph can enable us to compute such a score.

Definition 5 (Asserting set). Let G = (V, Eas, Enas) be a colored resolve-graph, and let
v ∈ V represent a conflict clause. The Asserting set B(v) ⊂ V of v is the subset of
(conflict) clauses that v has a solid path to them in G (i.e., a path made of Eas edges).

The following theorem relates between a resolve-graph and sub-tree conflicts.

Theorem 1. Let ev be the conflict event that created the conflict clause v. Then the
asserting set of v is contained in the refutation sequence of ev, i.e., B(v) ⊆ RS(ev). In
particular, since conflict events in B(v) participate in the resolution of v by definition, they
necessarily correspond to those sub-tree conflicts of ev that participate in the resolution of
v.

Note that B(v) does not necessarily include all the sub-tree conflicts that resolve into v,
since the theorem guarantees containment in only one direction. Nevertheless, our heuristic
is based on this theorem: it computes the size of the asserting set for each conflict.

In order to prove this theorem we will use the following lemmas.

Lemma 1. Denote by stack(aj) the stack of implied literals at the decision level DL(aj),
where aj is a decision event. Suppose that a literal t is asserted and entered into stack(aj),

44

HaifaSat: a SAT solver based on an Abstraction/Refinement model

where aj is a decision event. Further, suppose that t is asserted by the conflict clause cl (cl
is thus asserting at this point) which was created at event ai. Then it holds that j < i, i.e
cl was created after the decision event aj occurred.

Proof. Right after the creation of cl, the DPLL algorithm backtracks to some level dl′ with
a decision event ak = (dl′, d) and implies its asserted literal. It holds that k < i, because
the solver backtracks to a decision level which already exists when cl is created. By the
definition of an asserting clause, cl can be asserting exactly once, and since cl is asserting
on level dl′, it will never be asserting after the DPLL algorithm will backtrack from dl′.
Therefore it must hold that ak = aj (k = j) and dl′ = dl.

Lemma 2 (Transitivity of RS). Suppose that ai, aj are conflict events such that ai ∈ RS(aj).
Then, for any event ak ∈ RS(ai) it follows that ak ∈ RS(aj).

Proof. First, we will prove that D(ai) ∈ RS(aj), or, in other words, that D(ai) occurred be-
tween D(aj) and aj . Clearly, D(ai) occurred before ai and, therefore, before aj . Now, falsely
assume that D(ai) occurred before D(aj). Then the order of events is D(ai), D(aj), ai.
However, this can not happen since D(aj) occurred on shallower (smaller) level than ai and
this contradicts the fact that all events between D(ai) and ai occur on the deeper levels.
Therefore, both D(ai) and ai occurred between D(aj) and aj . Now, since ak happened
between D(ai) and ai it also happened between D(aj) and aj and from this it holds that
ak ∈ RS(aj).

Using this lemma we can now prove Theorem 1.

Proof. We need to show that any solid descendant of v is in RS(ev). By Lemma 2 it
is enough to show it for the immediate solid descendants, since by transitivity of RS it
then follows for any solid descendant. Now, suppose that there exists a solid edge (v, u)
in the resolve-graph. By the definition of a solid edge, clause u was asserting during the
resolution of v. On the one hand, u was resolved during the creation of v and, therefore, was
created before v. On the other hand, by Lemma 1 it was created after D(ev). Therefore,
eu ∈ RS(ev).

Definition 6 (Sub-tree weight of the conflict). Given a resolve-graph G(V, E) we define for
each clause v a state variable W (v):

W (v) =

∑

(v,u)∈E

W (u) + 1 v is asserting

0 otherwise

The function W (v) is well-defined, since the resolve-graph is acyclic. Moreover, since
the solid sub-graph rooted at v forms a tree (remember that any node has at most one
incoming solid edge), W (v) equals to |B(v)|+ 1. Our recursive definition of W (v) gives us
a simple and convenient way to compute it as part of the resolution algorithm. Algorithm 3
is the same as Algorithm 1, with the addition of several lines: in line 5 we add W ← 1, at
line 24 we add W+=W (ResolveCl) and, finally, we set W (NewClause) ← W at line 29.
We need to guarantee that W (C) is non-zero only when C is an asserting clause. Therefore,
for any antecedent clause C, when its implied variable is unassigned we set W (C)← 0.

45

R. Gershman and O. Strichman

Computing the scores of a variable

Given the earlier definitions, it is now left to show how activity score and sign score are
actually computed, given that we do not have the resolve-graph in memory. For each variable
v we keep two fields: activity(v) and sign score(v). At the beginning of the run activity

is initialized to max{lit num(v), lit num(v)} and sign score to lit num(v) − lit num(v).
Alg. 3 shows the extended version of the resolution algorithm which computes the weights
of the clauses and updates the scores. Recall that any clause weight is reset to zero when
its implied variable is unassigned, so that any clause weight is contributed at most once. In
order to give a priority to recent resolutions we occasionally divide both activities and sign
scores by 2.

Algorithm 3 First-UIP Learning Scheme, including scoring

procedure AnalyzeConflict(Clause: conflict)
2: currentClause← conflict;

ResolveNum← 0;
4: NewClause← ∅;

wght← 1;
6: repeat

for each literal lit ∈ currentClause do

8: v ← var(lit);
if v is not marked then

10: Mark v;
if dlevel(v) = CurrentLevel then

12: ++ ResolveNum;
else

14: NewClause← NewClause ∪ {lit};
end if

16: end if

end for

18: u← last marked literal on the assignment stack;
Unmark var(u);

20: activity(var(u)) += wght;
sign score(var(u)) −= wght · sign(u);

22: −−ResolveNum;
ResolveCl← Antecedent(u);

24: wght+= W(ResolveCl);
currentClause← ResolveCl \ {u};

26: until ResolveNum = 0;
Unmark literals in NewClause;

28: NewClause← NewClause ∪ {u};
W(NewClause)← wght ;

30: Add NewClause to the clause database;
end procedure

46

HaifaSat: a SAT solver based on an Abstraction/Refinement model

Our decision heuristic chooses a variable from the given clause with a biggest activity
and then chooses its value according to the sign score: true for the positive values and
false for the negative values of the sign score.

5. Experiments

We present several sets of experiments. The first set compares HaifaSat to Berkmin, and
the second set compares HaifaSat to Rsat on the benchmarks from the 2007 competition.

HaifaSat vs. Berkmin.

Table 1 shows experiments on an Intel 2.5Ghz computer with 1GB memory running Linux,
sorted according to the winning strategy, which is CMTF combined with the RBS scoring
technique. The benchmark set is comprised of 165 industrial instances used in various SAT
competitions. In particular, fifo8, bmc2, CheckerInterchange, comb, f2clk, ip, fvp2, IBM02
and w08 are hard industrial benchmarks from SAT02; hanoi and hanoi03 participated in
SAT02 and SAT03; pipe03 is from SAT03 and 01 rule, 11 rule 2, 22 rule, pipe-sat-1-1,
sat02, vis-bmc, vliw unsat 2.0 are from SAT04 each instance was set to 3000 seconds. If
an instance could not be solved in this time limit, 3000 sec. were added as its solving
time. All configurations are implemented on top of HaifaSat, which guarantees that the
figures faithfully represent the quality of the various heuristics, as far as these benchmarks
are representative. The results show that using CMTF instead of Berkmin’s heuristic for
choosing a clause leads to an average reduction of 10% in run time and 12-25% in the
number of fails (depending on the score heuristic). It also shows a 23% reduction in run
time when using RBS rather than VSIDS as a score system, and a corresponding 20-30%
reduction in the number of fails. The differences in run times between HaifaSat running
the berkmin heuristic and Berkmin561 are small: the latter solves these instances in 210793
sec. and 53 timeouts. We also ran zChaff2004.5.13 on these formulas: it solves them in
210395 sec, and has 53 timeouts.

HaifaSat vs. Rsat.

On the benchmarks listed in Table 1 Rsat performs very well: It fails only in 17 instances,
and the overall runtime is 84371 sec., which is 43% less than the runtime of HaifaSat. The
detailed results appear in Table 2.

Table 3 compares the results of HaifaSat and Rsat on the benchmarks from the 2007
competition with a timeout set to 1200 sec. HaifaSat is about 32% slower and timesout
in 33% more cases. From the 108 instances that at least one of them solved before time
out, Haifasat is better in 30 (27.7%). The experiments were run on the same machine as
the first set of benchmarks.

6. Summary

We presented an abstraction/refinement model for analyzing and developing SAT decision
heuristics. Satisfying a conflict clause before satisfying the clauses from which it was re-
solved, can be seen according to our model as satisfying an abstract model before satisfying

47

R. Gershman and O. Strichman

Table 1. A comparison of various configurations, showing separately the advantage of CMTF,

the heuristic for choosing the next clause fromwhich the decided variables will be chosen, and RBS,

the heuristic for choosing the variable from this clause and its sign. The second column indicates

the number of instances in each benchmark family.

berkmin+rbs berkmin+vsids cmtf+rbs cmtf+vsids
Benchmark # time fails time fails time fails time fails

hanoi 5 389 0 530 0 130 0 74 0

ip 4 191 0 395 0 203 0 324 0

hanoi03 4 1548 0 1342 0 426 0 386 0

CheckerI-C 4 1368 0 3323 0 681 0 3457 0

bmc2 6 1731 0 1030 0 1261 0 1006 0

pipe03 3 845 0 6459 2 1339 0 6160 1

fifo8 4 1877 0 3944 0 1832 0 3382 0

fvp2 22 1385 0 8638 1 1995 0 11233 3

w08 3 2548 0 5347 1 2680 0 4453 0

pipe-sat-1-1 10 1743 0 3881 0 3310 0 6053 0

IBM02 8 7083 1 9710 1 3875 0 7163 0

f2clk 3 4389 1 5135 1 4058 1 4538 1

comb 3 3915 1 3681 1 4131 1 4034 1

vis-bmc 8 15284 3 7905 1 13767 3 10119 2

sat02 9 17518 4 22785 5 17329 4 21262 4

01 rule 20 22742 4 33642 9 19171 2 23689 5

vliw unsat 2 8 16600 4 24003 8 19425 5 22756 7

11 rule 2 20 31699 8 34006 10 22974 6 28358 6

22 rule 20 28844 8 33201 10 27596 8 30669 8

Total: 165 161706 34 208967 50 146193 30 189125 38

48

HaifaSat: a SAT solver based on an Abstraction/Refinement model

Table 2. Rsat’s results on the same benchmark set listed in Table 1. Rsat’s runtime is lower by

43% comparing to HaifaSat, and fails in 44% less cases.

Rsat2.0
Benchmark # time fails

hanoi 5 79 0

ip 4 79 0

hanoi03 4 510 0

CheckerI-C 4 116 0

bmc2 6 258 0

pipe03 3 6668 2

fifo8 4 310 0

fvp2 22 5831 1

w08 3 720 0

pipe-sat-1-1 10 4705 1

IBM02 8 3392 0

f2clk 3 1291 0

comb 3 3319 1

vis-bmc 8 6979 1

sat02 9 11256 3

01 rule 20 1826 0

vliw u 2.0 8 24000 8

11 rule 2 20 4358 0

22 rule 20 8664 0

Total: 164 84371 17

Table 3. A comparison of HaifaSat and Rsat on the industrial benchmarks from the 2007

competition, with a timeout of 1200 sec.

HaifaSAT Rsat
Benchmark # Time Timeouts Memory Time Timeouts Memory

anbulagan 60 43005 31 1 46698 37 0

babic 30 8098 4 0 224 0 0

crypto 10 11999 10 0 6202 2 0

fuhs 16 17857 14 0 15029 10 0

grieu 10 7722 6 0 6622 5 0

jarvisalo 7 6221 5 0 5521 4 0

manolios 10 11467 9 0 7180 5 0

narain 5 3311 2 1 2266 1 0

palacios 27 28852 19 0 15196 11 0

Total: 175 138535 100 2 104942 75 0

49

R. Gershman and O. Strichman

a more concrete version of it. Our Clause-Move-To-Front decision heuristic, according to
this model, attempts to satisfy clauses in an order associated with the resolve-graph. CMTF
does not require to maintain the resolve-graph in memory, however: it only exploits the con-
nection between each conflict clause and its immediate neighbors on this graph. Perhaps
future heuristics based on this graph will find a way to improve the balance between the
memory consumption imposed by saving this graph and the quality of the decision order.
A recent publication by Yorav and Shacham [18] show how to exploit the fact that most
clauses are erased in order to maintain the entire resolve graph in memory. Perhaps this is
the key for more sophisticated decision heuristics based on an analysis of this graph. We
also presented a heuristic for choosing the next variable and sign from the clause chosen by
CMTF. Our Resolution-Based-Scoring heuristic scores variables according to their involve-
ment (‘activity’) in refuting recent decisions. Our experiments show that CMTF and RBS
either separately or combined are better than Berkmin and the VSIDS decision heuristics.
As a whole tool, HaifaSat, while not truly competitive anymore, holds reasonably well
comparing to the currently best solver, Rsat.

7. Acknowledgments

We thank Maya Koifman for helpful comments on an earlier version of this paper.

References

[1] Nina Amla and Kenneth L. McMillan. Combining abstraction refinement and sat-based
model checking. In TACAS, pages 405–419, 2007.

[2] P. Beame., H. Kautz, and A. Sabharwal. Towards understanding and harnessing the
potential of clause learning. Journal of Artificial Intelligence Research, 22:319–351,
2004.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs.
In Proc. of the Workshop on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’99), LNCS, pages 193–207. Springer-Verlag, 1999.

[4] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. J. ACM, 50(5):752–794, 2003.

[5] E.M. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction-
refinement using ILP and machine-learning techniques. In E. Brinksma and K.G.
Larsen, editors, Proc. 14th Intl. Conference on Computer Aided Verification (CAV’02),
2404 of LNCS, pages 265–279, Copenhagen, Denmark, July 2002. Springer-Verlag.

[6] Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. A clause-based heuristic for
sat solvers. In SAT, pages 46–60, 2005.

[7] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In SAT, pages 502–518,
2003.

50

HaifaSat: a SAT solver based on an Abstraction/Refinement model

[8] Roman Gershman and Ofer Strichman. Haifasat: A new robust SAT solver. In
Yaron Wolfsthal Shmuel Ur, Eyal Bin, editor, First International Haifa Verification
Conference, 3875 of Lect. Notes in Comp. Sci., pages 76 – 89. Springer-Verlag, 2005.

[9] M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer, and M. Y. Vardi. Multiple-
counterexample guided iterative abstraction refinement: An industrial evaluation. In
Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2003,,
LNCS, pages 176–191, 2003.

[10] E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat-solver. In Design,
Automation and Test in Europe Conference and Exhibition (DATE’02), page 142, Paris,
2002.

[11] Anubhav Gupta and Ofer Strichman. Abstraction refinement for bounded model check-
ing. In K. Etessami and S. Rajamani, editors, Proc. 17th Intl. Conference on Computer
Aided Verification (CAV’05), 3576 of Lect. Notes in Comp. Sci., pages 112–124, Ed-
inburgh, July 2005. Springer-Verlag.

[12] R. Kurshan. Computer aided verification of coordinating processes. Princeton Univer-
sity Press, 1994.

[13] João P. Marques-Silva and Karem A. Sakallah. GRASP - a new search algorithm for
satisfiability. In Proceedings of the 1996 International Conference on Computer-Aided
Design (ICCAD ’96), pages 220–227. IEEE Computer Society Press, 1996.

[14] João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propo-
sitional satisfiability. IEEE Transactions on Computers, 48:506–516, 1999.

[15] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proc. Design Automation Conference (DAC’01), 2001.

[16] Knot Pipatsrisawat and Adnan Darwiche. Rsat 2.0: Sat solver description. SAT
competition’07, 2007.

[17] L. Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis, Simon
Fraser University, 2004.

[18] Ohad Shacham and Karen Yorav. On-the-fly resolve trace minimization. In DAC,
pages 594–599, 2007.

[19] Laurent Simon and Daniel Le Berre. SAT competition 2003.
http://www.satcompetition.org/2003/, 2003.

[20] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven learning
in a boolean satisfiability solver. In ICCAD, 2001.

[21] L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatisfiable boolean
formulas. In In Sixth International Conference on Theory and Applications of Satisfi-
ability Testing (SAT2003), S. Margherita Ligure, 2003.

51

http://www.satcompetition.org/2003/

	Introduction
	Background
	Conflict clauses and resolution
	The Berkmin Decision heuristic

	The Clause-Move-To-Front (CMTF) decision heuristic
	Resolution-based scoring
	Experiments
	Summary
	Acknowledgments

