
Journal on Satisfiability, Boolean Modeling and Computation 6 (2008) 13-32

Linear Satisfiability Algorithm for 3CNF Formulas of

Certain Signaling Networks

Utz-Uwe Haus∗ haus@imo.math.uni-magdeburg.de

Institute for Mathematical Optimization
Otto-von-Guericke University Magdeburg
39106 Magdeburg, Germany

Klaus Truemper truemper@utdallas.edu

Department of Computer Science
University of Texas at Dallas
Richardson, Texas 75080, USA

Robert Weismantel∗ weismantel@imo.math.uni-magdeburg.de

Institute for Mathematical Optimization

Otto-von-Guericke University Magdeburg

39106 Magdeburg, Germany

Abstract

A simple model of signal transduction networks in molecular biology consists of CNF
formulas with two and three literals per clause. A necessary condition for correctness of
the network model is satisfiability of the formulas. Deciding satisfiability turns out to be
NP-complete. However, for a subclass that still is of practical interest, a linear satisfiability
algorithm and related characterization of unsatisfiability can be established. The subclass
is a special case of so-called closed sums of CNF formulas.

Keywords: SAT algorithm, 2CNF, 3CNF, closed sum

Submitted December 2007; revised September 2008; published September 2008

1. Introduction

A signal transduction network is a simplified model of a biological unit that reacts to external
signals or environmental challenges like stimulation or infection. The relevant molecules of
the biological unit are classified as input substances, for example, receptors, intermediate
substances, and output substances, for example, transcription factors. The network depicts
how substances produce or trigger other substances.

In the setting considered here, the actions are represented by logic formulas where
the propositional variables represent the substances under consideration, and where logic
implications represent experimentally proven knowledge. For example, “MEK activates
ERK” is encoded by MEK → ERK, and “In the absence of (activated) pten and ship1 we
find that pi3k produces pip3” is handled by (¬pten ∧ ¬ship1 ∧ pi3k) → pip3 [9].

Using the notation of propositional logic, we can assume that all implications are of the
form (

∨

j∈J Aj) → C, where the Aj , j ∈ J , and C are literals of propositional variables. In

∗ Supported by FORSYS grant of the German Ministry of Education and Research.

c©2008 Delft University of Technology and the authors.

U.-U. Haus et al.

the networks of interest here, it is assumed that the reverse implications hold as well. This
is equivalent to claiming that we know all input patterns that may produce a given output.
The formulation and interpretation is related to the query evaluation process of [5]. That
process uses the negation as failure inference rule, where the negation of a conclusion is
declared to have been proved if every possible proof of the conclusion fails.

Let R be the conjunction of the implications of a network. If R represents the behavior
of the biological unit correctly, then necessarily R is satisfiable. On the other hand, if R
is unsatisfiable, then localizing the cause helps understand which part of R is defective.
Accordingly, establishing satisfiability as well as localizing causes of unsatisfiability are
important. Identifying causes of unsatisfiability is also important when some variables of
R represent external inputs. In the typical case, each possible assignment of values to the
input variables corresponds to a satisfying solution of a second formula T , and conversely.
We want to verify that for each satisfying solution of T , the corresponding input values leave
R satisfiable. The problem of deciding this question is called Q-ALL SAT in [8], where an
effective solution algorithm is described. If for some satisfying solution of T the formula R
does become unsatisfiable, then localizing the reason is important.

If an implication has on the left-hand side a disjunction with at least three literals, then
this case can be transformed with additional variables to implications with two literals on
the left-hand side. For example, the implication (A1∨A2∨A3∨A4) ↔ C has the equivalent
representation (A1∨A2) ↔ Z1, (Z1∨A3) ↔ Z2, and (Z2∨A4) ↔ C. Thus, we assume from
now on that all implications have two literals on the left-hand side. We call the variables
of those two literals the input variables of the implication and the variable of the single
right-hand side literal the conclusion variable.

A network may also impose side conditions in the form of disjunctions. Until Section 5,
we consider only short disjunctions having at most two literals. Due to the possibility
of such disjunctions, we may assume that any variable occurs at most once as conclusion
variable of the implications. Indeed, if two implications have literals of the same conclusion
variable c, then we replace the literals by literals of two new conclusion variables c1 and c2

and add the condition c1 ↔ c2, which is equivalent to the two disjunctions ¬c1 ∨ c2 and
c1 ∨ ¬c2.

To summarize, the formula R is a conjunction of implications of the form (A∨B) ↔ C
and of disjunctions with at most two literals. Furthermore, any variable occurs at most
once as conclusion variable of the implications.

Since (A ∨ B) ↔ C can be represented by the conjunction of ¬A ∨ C, ¬B ∨ C, and
A ∨ B ∨ ¬C, the formula R is equivalent to the formula S that is a conjunction of the
following disjunctions. First, any disjunction with at most two literals is allowed. Second,
disjunctions of the form A ∨ B ∨ ¬C may occur, in which case there must also be the
disjunctions ¬A ∨ C and ¬B ∨ C. For the second case, let c be the variable of the literal
C. Then there cannot be another disjunction of the second type with the same conclusion
variable c.

It turns out that the satisfiability problem of formulas S defined above is NP-complete,
but becomes solvable in linear time under certain assumptions. The presentation proceeds
as follows. Section 2 introduces a number of definitions and basic results, including NP-
completeness of the satisfiability problem of formulas S. Section 3 characterizes a subclass
where the formulas have totally unimodular (t.u.) representation matrices, which are integer

14

Linear Satisfiability Algorithm

{0,±1} matrices where each square submatrix has determinant equal to 0, +1, or −1. It
is well known that total unimodularity assures linear-time checking of satisfiability and
compact identification of causes of unsatisfiability. The characterization of the t.u. case
involves two conditions, one of them rather severe, the second one much less so. Section 4
describes a linear satisfiability algorithm assuming just the second, less severe, condition.
The linear complexity is due to a certain decomposition of logic formulas. The section also
provides a simple characterization of unsatisfiability under the same assumption. Section 5
shows that the decomposition used in Section 4 is a special case of the so-called closed sum
decomposition of [13]. That viewpoint also produces polynomial satisfiability algorithms
for some settings where implications have any number of input variables and additional
disjunctions have more than three literals.

2. Definitions and Basic Results

This section summarizes and extends the above definitions for logic formulas. It also cov-
ers definitions and basic results for the satisfiability problem and for certain graphs and
matrices. Most of the material is well-known to experts of logic or combinatorics. We
include it to make the paper self-contained and more accessible to readers outside logic or
combinatorics.

Logic Formulas

Definition 2.1. Let S be a propositional logic formula. The formula is in conjunctive
normal form (CNF) if it is the conjunction of CNF clauses, where each clause is a disjunction
of possibly negated propositional variables. Each occurrence of a possible negated variable
is a literal of S. A clause with exactly one literal is a unit clause. The empty clause has no
literals.

Definition 2.2. A 2CNF (resp. 3CNF) formula is a CNF formula that has at most two
(resp. exactly three) literals in each 2CNF (resp. 3CNF) clause.

Definition 2.3. A 3IFF formula R is a conjunction of 2CNF clauses and of 3IFF clauses
of the form (A∨B) ↔ C where A, B, and C are literals of three distinct variables a, b, and
c, respectively; the variables a and b are the input variables and variable c is the conclusion
variable. In R, any variable may occur at most once as conclusion variable. A 3IFF formula
is linearly ordered if the variables of the formula are linearly ordered such that, for each
3IFF clause, the conclusion variable is larger than both input variables.

Definition 2.4. A 3IFFCNF formula S is the CNF formula obtained from a 3IFF formula
R by representing each 3IFF clause (A ∨ B) ↔ C by the three equivalent CNF clauses
¬A ∨ C, ¬B ∨ C, and A ∨ B ∨ ¬C.

Satisfiability Problems

For details, see [7].

Definition 2.5. The satisfiability problem SAT has a CNF formula as instance, and the
question “Can S be satisfied?” is to be answered.

15

U.-U. Haus et al.

Definition 2.6. The problems 2SAT (resp. 3SAT, 3IFFSAT) are special SAT cases where
S is 2CNF (resp. 3CNF, 3IFFCNF). The problem ONE-IN-THREE 3SAT has as input a
3CNF formula S, and the question “Can S be satisfied such that in each clause exactly one
literal evaluates to True?” is to be answered.

Lemma 2.1. (see [7]) Problem 2SAT can be solved in linear time, while the problems SAT,
3SAT, and ONE-IN-THREE 3SAT are NP-complete.

We use the NP-completeness of ONE-IN-THREE 3SAT to prove the same conclusion for
3IFFSAT and two special cases. A third special case that properly contains the intersection
of the first two special cases, is solvable in linear time.

Theorem 2.1. Problem 3IFFSAT is NP-complete. Remains NP-complete if the instances
do not have 2CNF clauses or if they can be linearly ordered. Is solvable in linear time if the
2CNF clauses of the instances do not contain any conclusion variables and if the instances
can be linearly ordered.

Proof. All cases are clearly in NP. To prove completeness of 3IFFSAT, we reduce ONE-
IN-THREE 3SAT to 3IFFSAT. Take an instance S of ONE-IN-THREE 3SAT. We derive
the following formula R. For each 3CNF clause of S, say A ∨ B ∨ C, we assign the 3IFF
clause (A∨B) ↔ ¬C and the 2CNF clause ¬A∨¬B to R. Simple checking shows that the
satisfying solutions of A∨B∨C where exactly one literal evaluates to True are precisely the
satisfying solutions of the two clauses added to R. When all clauses of ONE-IN-THREE
3SAT have been processed as described, we satisfy the condition that each variable of R can
occur at most once as conclusion variable, by the transformation described in Section 1.
The resulting 3IFF formula has a satisfying solution if and only if the ONE-IN-THREE
3SAT instance has a satisfying solution where in each clause exactly one literal evaluates
to True.

To prove NP-completeness of the first special case, where the instances do not have any
2CNF clauses, we derive from an arbitrary 3IFF formula R an equivalent 3IFF formula
observing the special condition, as follows. We introduce a new variable w and replace each
2CNF clause A∨B by the 3IFF clause (A∨B) ↔ w. Then we introduce three new variables
x, y, and z, and add the three 3IFF clauses (w∨¬z) ↔ x, (z ∨¬x) ↔ y, and (x∨¬y) ↔ z.
The three 3IFF clauses force w = True in any satisfying solution, which makes each 3IFF
clause (A ∨ B) ↔ w equivalent to the corresponding 2CNF clause A ∨ B.

For an NP-completeness proof of the second special case, where the 3IFF clauses can be
linearly ordered, we convert an arbitrary 3IFF formula R to an equivalent, linearly ordered
3IFF formula, as follows. Let R have the variables x1, x2, . . . , xm. Suppose R has n 3IFF
clauses. For i = 1, 2, . . . , n, we replace the conclusion literal of the ith 3IFF clause by a
new variable zi. Let R′ be the resulting 3IFF formula. We order the variables of R′ as x1,
x2, . . . , xm, z1, z2, . . . , zn, with zn largest. Finally, we add to R′ 2CNF clauses enforcing
the equivalence of each zi with the conclusion literal it has replaced. The resulting 3IFF
formula R′′ is equivalent to R and linearly ordered.

Finally, we describe a linear-time algorithm for the third special case, where the 2CNF
clauses of the instances do not contain any conclusion variables and the instances can be
linearly ordered. Let R be one such 3IFF formula. Define ⊲ to be the partial binary relation
on the variables of R where c ⊲ a holds if some 3IFF clause has a as input variable and c

16

Linear Satisfiability Algorithm

as conclusion variable. Since any linear ordering of R must be consistent with ⊲, and since
at least one such ordering of R exists, we know that ⊲ is a partial order and thus can be
extended to a linear order of R. That extension can be done in linear time via a graph
representation of ⊲. We are ready to discuss the desired satisfiability algorithm. We first
check satisfiability of the 2CNF clauses of R using the linear-time algorithm of [6]. If the
2CNF clauses are unsatisfiable, then R is unsatisfiable, and we stop. Otherwise, we proceed
as follows. By assumption, the 2CNF clauses of R do not involve any conclusion variables
of the 3IFF clauses of R. Thus, we can use the ordering of the conclusion variables implied
by the linear ordering of R to assign True/False values so that all 3IFF clauses become
satisfied.

Graphs

For details, see, for example, [3].

Definition 2.7. An arc is a directed edge connecting two nodes, while the term edge refers
to the undirected case. Both the arc from node A to B and the edge connecting A and
B are denoted by (A, B). A graph is directed (resp. undirected) if it has only arcs (resp.
edges). In a directed graph, a directed cycle or path allows a traversal in the direction of
the arcs. A cutnode of a connected graph is a node whose removal increases the number
of connected components. A 2-connected component of an undirected graph is a maximal
connected subgraph that has no cutnode. A strong component of a directed graph is a
maximal subgraph where any two nodes i and j are connected by two directed paths from
i to j and from j to i.

Note that we utilize only directed or undirected graphs and thus do not make use of
graphs having both arcs and edges.

For any CNF formula S, we define two graphs G(S) and H(S). The graph G(S) is
based solely on the clauses of S with two literals, while H(S) is based on those clauses as
well as the unit clauses.

Definition 2.8. Let S be a CNF formula.

(a) The undirected graph G(S) has for each variable of S a node and, for each clause of
S with two literals, one edge that connects the two nodes corresponding to the two
variables of the clause. The edge is regular if exactly one of the two variables occurs
negated in the clause, and it is special otherwise. All unit clauses and clauses with at
least three literals are ignored in the construction.

(b) The directed graph H(S) has a node for each literal of S. Each clause A∨B produces
two arcs (¬A, B) and (¬B, A). Each unit clause A generates one arc (¬A, A). All
clauses with at least three literals are ignored.

The two arcs (¬A, B) and (¬B, A) specified in Definition 2.8(b) represent the implication
¬A → B and its contrapositive ¬B → A. Each of these implications is equivalent to A∨B.

17

U.-U. Haus et al.

Matrices

For details, see, for example, [4].

Definition 2.9. Let S be a CNF formula. The integer representation matrix M(S) of S
has for each variable of S a column, and for each clause of S a row. The nonzero entries of
M(S) are {0,±1} and are defined as follows. If variable y occurs nonnegated (resp. negated)
in clause x, then the entry of M(S) in column y and row x is equal to +1 (resp. −1).

Balancedness and Total Unimodularity

We introduce some graph and matrix properties and results. For details, see, for example,
[4] and [10].

Definition 2.10. A cycle of a graph G(S) is even (resp. odd) if it has an even (resp. odd)
number of special edges. The graph G(S) is balanced if it has no odd cycles.

A standard graph result is the following.

Lemma 2.2. A graph G(S) is balanced if and only if the graph obtained from G(S) by
contraction of all regular edges is bipartite.

Definition 2.11. A hole of an integer matrix M with {0,±1} entries is a minimal submatrix
of M having exactly two {±1} entries in each row and column. A hole is even (resp. odd)
if the entries of the hole sum to 0(mod 4) (resp. 2(mod 4)).

Definition 2.12. An integer {0,±1} matrix M is balanced if it has no odd holes.

Definition 2.13. An integer matrix M is totally unimodular (t.u.) if each square submatrix
has determinant equal to 0, +1, or −1.

The following two lemmas have simple proofs. For details, see Chapter 19 of [10].

Lemma 2.3. The determinant of an even (resp. odd) hole is equal to 0 (resp. ±2).

Lemma 2.4.

(a) If S is a 2CNF formula, then G(S) is balanced if and only if M(S) is balanced.

(b) If S is a 3CNF formula, then M(S) is balanced if and only if it is totally unimodular.
Furthermore, if M(S) is balanced, then G(S) is balanced.

In subsequent sections, we sometimes replace logic variables by their complements to
simplify the discussion. The next lemma says that such a change does not affect any of the
properties introduced above. The proof involves trivial checking of cases.

Lemma 2.5. In the cases below, S′ is derived from a CNF formula S by replacing an
arbitrary variable by its complement.

(a) Each cycle of G(S) has the same parity as the corresponding cycle of G(S′). Further-
more, G(S) and G(S′) have the same cutnodes and are either both balanced or both
not balanced.

18

Linear Satisfiability Algorithm

(b) For any variable t of S, the nodes t and ¬t of H(S) are in the same strong component
if and only if this holds for H(S′).

(c) Each hole of M(S) has the same parity as the corresponding hole of M(S′). Further-
more, M(S) is t.u. if and only if M(S′) is t.u.

Polyhedra

For a given CNF formula S, define the polyhedron P (S) as

P (S) = {w | M(S) · w ≥ 1 − n(M(S))} (1)

0 ≤ w ≤ 1

where the 1s are vectors of 1s of suitable length, and where the ith entry of the vector
n(M(S)) is the number of −1s in row i of M(S).

Lemma 2.6. (see Chapter 2 of [4]) If S is a CNF formula without unit clauses, then P (S)
contains the vector x = 1

2 · 1 and thus is nonempty.

The above definitions and Chapter 19 of [10] imply the following.

Lemma 2.7. If M(S) is t.u., then either P (S) is empty, or all vertices of P (S) are {0,±1}.
In the former case, S is unsatisfiable. In the latter case, the vertices are in one-to-one
correspondence with the satisfying solutions of S where the value +1 (resp. −1) for a variable
of P (S) corresponds to True (resp. False) for the related logic variable of S.

Assume M(S) to be t.u. Then Lemmas 2.6 and 2.7 justify the following linear-time
satisfiability algorithm for S.

1. Reduce S by recursively fixing the variables of unit clauses. If the empty clause is
produced, declare S to be unsatisfiable, and stop. If there are no clauses left, declare
the values on hand, plus arbitrary True/False values for variables not yet decided, to
be a satisfying solution of S, and stop.

2. Arbitrarily assign a True/False value to a variable of S, and go to Step 1.

Still assume M(S) to be t.u. If S is unsatisfiable, then the Farkas Lemma of Linear
Programming applied to the inequalities of (1) provides a compact identification of the
clauses causing that conclusion. Finally, if minimum cost versions of SAT are to be solved,
then general linear programming techniques or, alternately, special methods for t.u. matrices
provide optimal answers in polynomial time.

These attractive results motivate us to look for a compact characterization of total
unimodularity of M(S). We already have one such a characterization, since Lemma 2.4
implies that M(S) is t.u. if and only if M(S) has no odd holes. Also, there is a cubic
algorithm for testing total unimodularity for general matrices [12]. The next section supplies
a characterization that provides better insight and supports more efficient testing.

19

U.-U. Haus et al.

3. Total Unimodularity

This section characterizes total unimodularity of M(S) and provides a linear algorithm
for deciding whether that property is present. We begin with a small case where S is
derived from one 3IFF clause where no variable occurs negated. That is, the 3IFF clause
is (a ∨ b) ↔ c where a, b, and c are the variables. The equivalent 3IFFCNF clauses are

¬a ∨ c

¬b ∨ c (2)

a ∨ b ∨ ¬c

The matrix M(S) for this case is

M(S) =

a b c




−1 0 1
0 −1 1
1 1 −1





a
b
c

(3)

Note that we use the variables to index both the columns and rows of the matrix. Thus,
we may say “column a” or “row a” of M(S) without risk of confusion. In the general case
of S representing a single 3IFF clause, some variables are replaced by their complements.
The replacement by complements corresponds to scaling of some columns of M(S) of (3)
by −1. Thus, M(S) becomes the matrix

M(S) =

a b c




x′ 0 z′

0 y′ z′′

x y z





a
b
c

(4)

where the various symbols denote {±1} entries obeying the following relationships.

x = −x′

y = −y′ (5)

z = −z′ = −z′′

We use z′ and z′′ even though they have identical value, since later we need to refer to
specific entries. Direct checking confirms the following equations implied by (5).

(x + z)(mod 4) = (x′ + z′)(mod 4)

(y + z)(mod 4) = (y′ + z′′)(mod 4) (6)

(x + y + 2)(mod 4) = (x′ + y′ + z′ + z′′)(mod 4)

It is easy to check that M(S) of (3) is t.u. By Lemma 2.5, this also holds for M(S) of
(4).

In the general case, any number of 3IFF clauses define S. For 3IFF clause i, we assume
the variables to be ai, bi and ci. The three corresponding rows of M(S) are indexed by
these variables, as are the related columns. Note that this may produce several column

20

Linear Satisfiability Algorithm

labels, since a variable may occur in several 3IFF clauses. But that fact shall not trouble
us. The 3 × 3 submatrix Mi of M(S) representing the ith 3IFF clause has the form of (4),
except that the column and row labels have a subscripted i. We display Mi since we use
that matrix repeatedly.

Mi =

ai bi ci




x′ 0 z′

0 y′ z′′

x y z





ai

bi

ci

(7)

We call Mi block i of M(S).

We define cutnodes of G(S) that are of particular interest.

Definition 3.1. Let a, b, and c be three nodes of a graph. The node c is an a/b cutnode
if removal of c from the graph disconnects the nodes a and b. Two nodes (resp. edges)
of a graph are in distinct 2-connected components of the graph if there is no 2-connected
component that contains both nodes (resp. edges).

Lemma 3.1. Assume that one of the 3IFF clauses involved in the definition of S has input
variables a and b and conclusion variable c. Then the node c is an a/b cutnode of G(S) if
and only if the nodes a and b are in distinct 2-connected components of G(S).

Proof. Suppose c is an a/b cutnode of G(S). If the nodes a and b are in the same 2-
connected component, then removal of any node from that component cannot disconnect
any two remaining nodes, in particular a and b.

Suppose that the nodes a and b are in distinct 2-connected components of G(S). Since
c is the conclusion variable, the two 2CNF clauses produced by the 3IFF clause create in
G(S) an edge connecting nodes a and c and a second edge connecting nodes b and c. Since
the nodes a and b are in distinct 2-connected components, so must be the two edges. This
is possible only if c is a cutpoint.

Definition 3.2. The cutnode condition holds for G(S) if for each 3IFF clause involved in
the definition of S, say with input variables a and b and conclusion variable c, the node c
is an a/b cutnode of G(S).

Next, we investigate holes of M(S).

Lemma 3.2. If a hole of M(S) uses the entry in column ci and row ci of block i, then the
hole can be changed to another hole of same parity using the first row ai or the second row
bi of the block i instead of row ci.

Proof. We assume that the nonzero entries of block i are x, y, z, x′, y′, z′, z′′ as depicted in
(7). Thus, the lemma states that the given hole of M(S) contains the entry z of block i.

Due to symmetry, we may assume that the hole uses in row ci the entry x besides the
entry z. Instead of row ci, we now use row ai to define the hole. This change replaces
the entries x and z by x′ and z′ of the row ai of block i. Since row ai of block i has
just two nonzero entries, the resulting submatrix of M(S) must also be a hole. By (6),
(x + z)(mod 4) = (x′ + z′)(mod 4), so the two holes must have the same parity.

21

U.-U. Haus et al.

Definition 3.3. The row ci of the assumed hole of Lemma 3.2 is a type I row of the hole,
and the exchange of rows is a type I exchange.

Lemma 3.3. If a hole has no type I rows, but contains, for some block i, the two entries x
and y of row ci, then the hole can be changed to a hole of opposite parity by deleting row ci

and instead using rows ai and bi and column ci of the block.

Proof. We first argue that replacement of the row ci by the rows ai and bi and the column
ci results in a hole. Indeed, the column ci cannot be part of the original hole since otherwise
the row ci would induce three nonzero entries in the hole, a contradiction. But conceivably
another row of the hole, taken from another block, may have a nonzero entry in column ci.
Thus, that row of M(S) has three nonzeros. By assumption, the corresponding row of the
hole is not of type I. Thus, the row of M(S) must have variable ci as conclusion variable.
But Definition 2.3 rules out such duplicate use of variable ci as conclusion variable.

To establish the change of parity, we use the notation of Mi of (7). Thus, the two entries
x and y of row ci are replaced by the four entries x′, y′, z′, z′′ of rows ai and bi of block i.
By (6), x+y +2(mod 4) = x′ +y′ +z′ +z′′(mod 4). Thus, the parity of the two holes differs
as claimed.

Definition 3.4. The row ci of the given hole of Lemma 3.3 is a type II row of the hole, and
the exchange of rows and addition of column ci is a type II exchange.

We are ready for the characterization of t.u. matrices M(S).

Theorem 3.1. Let S be a 3IFFCNF formula. Then M(S) is t.u. if and only if G(S) is
balanced and satisfies the cutnode condition.

Proof. Assume that M(S) is t.u. By Lemma 2.4, G(S) is balanced. Suppose for some
block i, the nodes ai and bi are in one 2-connected component of G(S). Hence, some path
connects ai and bi while avoiding node ci. That path plus the two edges of G(S) connecting
node ci with the nodes ai and bi form a cycle of G(S). Since M(T) is t.u., the corresponding
hole of M(T) is balanced. We carry out the inverse of a type II exchange, where the rows
ai and bi are replaced by row ci, and where column ci is deleted. According to Lemma 3.3,
the resulting hole is odd, a contradiction of the total unimodularity of M(S).

For proof of the converse, assume balancedness of G(S) and the cutnode condition. If
M(S) is not t.u., then by Lemma 2.4 it has an odd hole. Due to the parity of the hole and
the general structure of holes, the hole contains, for any block i, nonzero entries of at most
two rows of the block; in the case of two rows, the entries must be from rows ai and bi. Since
G(S) is balanced, the odd hole cannot correspond to a cycle of G(S) and thus must have a
nonzero number of type I and/or type II rows. If there are type I rows, we eliminate them
by repeated application of Lemma 3.2 and get an odd hole without type I rows. If that hole
corresponds to a cycle of G(S), then we have a contradiction of the balancedness of G(S).
Thus, the odd hole has no type I rows and at least one type II row. We now exchange each
type II row as described in Lemma 3.3. Eventually we get a hole that corresponds to a
cycle of G(S). The parity of the resulting hole depends on the number of type II exchanges.
But the parity does not matter here. Indeed, upon termination of the exchange process,
we have a hole corresponding to a cycle of G(S) where for at least one block i, the nodes

22

Linear Satisfiability Algorithm

ai, ci, bi occur consecutively on the cycle. Thus, ci is not an ai/bi cutnode. By Lemma 3.1,
the cutnode condition does not hold for G(S), a contradiction.

Theorem 3.1 supports the following linear-time algorithm for testing total unimodularity
of M(S).

1. Use Lemma 2.2 and breadth-first search to decide bipartiteness of the graph derived
from G(S) by contraction of all regular edges. If G(S) is not bipartite, M(S) is not
t.u., and we stop.

2. Employ the linear-time algorithm of [11] to determine the 2-connected components of
G(S) to verify the cutnode condition. If the condition is not satisfied, M(S) is not
t.u., and we stop.

3. Declare M(S) to be t.u.

The following structural result can be established for t.u. matrices M(S) and may be
used to characterize unsatisfiability and to solve minimum cost versions of SAT by network
flow techniques. For details of the latter techniques, see, for example, [1].

Define I to be an identity matrix of appropriate size, and let the superscript t denote
the transpose operation. A pivot in a given matrix consists of elementary row operations
that convert one column to a unit vector.

A network matrix is an integer {0,±1} matrix with at most two nonzeros in each column.
In the case of two nonzeros, they have opposite sign.

Theorem 3.2. If M(S) is t.u., then the matrix
[

I | M(S)t
]

can by row scaling and pivots
be transformed to a network matrix.

Proof. The arguments use the closed k-sum of Section 5 and matrix/matroid techniques of
[14]. Due to space constraints, we omit details.

The requirement of balancedness of G(S) is rather severe. For example, if S contains
the two, rather innocuous, clauses a∨ b and ¬a∨ b, then these two clauses already produce
an odd cycle in G(S). Not quite so stringent is the cutnode condition. In the next section, it
is shown that the cutnode condition, by itself, implies a linear-time satisfiability algorithm
for S.

As an aside, the algorithm to come is of no use for the ONE-IN-THREE 3SAT problem.
Even if an instance of that problem has just one clause, say a ∨ b ∨ c, where a, b, and c
are the variables, then the equivalent 3IFFSAT instance has the clauses a ∨ b ∨ c, ¬a ∨ ¬b,
¬a ∨ ¬c, and ¬b ∨ ¬c. Accordingly, G(S) is a cycle with three edges, the nodes a and b are
in the same 2-connected component of G(S), and the cutnode condition does not hold.

4. Satisfiability Test and Characterization of Unsatisfiability

This section describes, for the instances S of 3IFFSAT observing the cutnode condition,
a linear-time algorithm that for satisfiable S produces a satisfying solution and for unsat-
isfiable S computes a compact characterization of unsatisfiability. We recall the cutnode

23

U.-U. Haus et al.

condition for S. It demands that, for each block i of M(S), the node ci of G(S) is an ai/bi

cutnode of G(S).
The characterization of unsatisfiability produced by the algorithm builds upon the char-

acterization of unsatisfiability for 2CNF formulas S of [2] and uses the directed graph H(S)
of Definition 2.8(b). Recall that in H(S), each literal of the given 2CNF formula corre-
sponds to a node. Each clause A∨B of the formula produces the arcs (¬A, B) and (¬B, A),
while each unit clause generates the arc (¬A, A). The clauses with at least three literals are
ignored in the construction.

Theorem 4.1. [2] A 2CNF formula S is unsatisfiable if and only if, for some variable r of
S, the graph H(S) has a directed path from node r to node ¬r and a second directed path
from node ¬r to node r. The variable r and the two paths can be found in linear time.

Theorem 4.1 has the following corollary.

Corollary 4.1. Suppose a 2CNF formula S is satisfiable. Let S′ be obtained from S by
adding, for some variable t, the unit clause ¬t. Then S′ is unsatisfiable if and only if H(S)
has a directed path from node ¬t to node t. The path can be found in linear time.

Proof. By Theorem 4.1, H(S′) has, for some node r, directed paths from r to ¬r and from
¬r to r. These paths can be found in linear time. The arc (t,¬t) corresponding to the unit
clause ¬t must be part of the paths, since otherwise the paths prove S to be unsatisfiable,
a contradiction. Then it is trivial to extract a directed path from ¬t to t from the two
paths.

Unsatisfiability of S′ of Corollary 4.1 is equivalent to the fact that in all satisfying
solutions of S, we necessarily have t = True.

The characterization of unsatisfiable 3IFFCNF formulas S observing the cutnode con-
dition involves an extension of the two directed paths of Theorem 4.1 that we refer to as
collection Q. The collection consists of directed paths and logic implications. In general,
the collection Q is recursively constructed as follows. Initially, there are two directed paths
P1 and P2 just as in the case of unsatisfiable 2CNF formulas. Thus, P1 and P2 have common
endpoints, say r and ¬r, and one of the paths goes from r to ¬r, while the other one goes
from ¬r to r. In the recursive construction step, a directed arc (¬C, C) of the collection Q
on hand is replaced by a directed path whose direction is in conformance with the arc direc-
tion; or the path P (A,¬A) and the implication ¬A → (C → B) are assigned to whichever
arc (C, B) or (¬B,¬C) is present in Q. We call the pair (P (A,¬A),¬A → (C → B)) an
assigned path/implication pair.

The interpretation of the path (A,¬A) and the implication ¬A → (C → B) is as follows.
If A = True is assumed, then the clauses represented by the path P (A,¬A) force A = False.
Thus, A = False must hold. Based on that conclusion, the implication ¬A → (C → B)
justifies the implication C → B and the equivalent ¬B → ¬C. The latter fact then validates
presence of whichever arcs (C, B) and (¬B,¬C) occur in Q.

The collection Q is such that each arc without assigned path/implication pair corre-
sponds to a clause of S. Furthermore, each assigned implication is equivalent to a clause of
S with three literals.

Theorem 4.2. A collection Q as defined above exists if and only if S is unsatisfiable.

24

Linear Satisfiability Algorithm

Proof. Assume that Q exists. If P1 or P2 has at least one arc with assigned path/implication
pair, then there must be an assigned pair (P (A,¬A),¬A → (C → B)) where the arcs of
P (A,¬A) themselves have no assigned pair. As argued above, the pair (P (A,¬A),¬A →
(C → B)) justifies existence of the arc(s) to which it is assigned. We now erase the
pair (P (A,¬A),¬A → (C → B)) associated with those arcs. Carrying out this process
recursively, eventually we arrive at the situation where each arc of the two paths P1 and P2

either has been justified or represents an original 2CNF clause of S. Thus, the contradictory
conclusions by the two paths prove S to be unsatisfiable.

We prove the converse below by constructing a collection Q of the prescribed form when
a 3IFFCNF formula S is found to be unsatisfiable.

In the recursive part of the algorithm, we repeatedly fix some variables to True/False
values. Formally, we accomplish this by adding unit clauses. Below, we refer to a node of
a block, meaning a node corresponding to a column of a block.

We are ready for the description of the algorithm. Comments are added in parentheses.
We suppose that the given formula S cannot be partitioned into subformulas with disjoint
variable sets, since otherwise the algorithm can be applied to the subformulas one-by-one
until either a subformula turns out to be unsatisfiable or all subformulas have been proved
to be satisfiable.

1. If S is not a 2SAT instance, then determine the 2-connected components of G(S) with
the linear-time algorithm of [11].

(Steps 2–5 constitute the recursive part of the algorithm.)

2. If S is a 2SAT instance: Solve the instance with the linear-time 2SAT algorithm of
[6].

If S satisfiable: Begin backtracking with the satisfying solution.

If S unsatisfiable: Construct H(S). Use the linear-time algorithm of Theorem 4.1 to
initialize the collection Q as two directed paths P1 = P (r,¬r) and P2 = P (¬r, r) of
H(S). Begin backtracking with this Q.

3. (S is not a 2SAT instance. By the cutnode condition, G(S) is not 2-connected. By
induction, the 2-connected components of G(S) are on hand.)

The 2-connected components are joined in a tree structure. Arbitrarily select a leaf of
the tree, define G1 be the 2-connected subgraph of G(S) corresponding to that leaf,
and let G2 be the subgraph of G(S) represented by the remaining edges of the tree.
Thus, identification of one node of G1, say c, with node c of G2 creates G(S).

If G1 minus node c, denoted by G1 − {c}, contains a node of a block, say indexed by
i, then go to Step 4. Otherwise, go to Step 5.

4. By the cutnode condition, the node of block i occurring in G1 −{c} cannot be ci and
thus must be ai or bi. By symmetry we may suppose that it is ai. Furthermore, ci

must be the node c, and bi must be a node of G2 − {c}. Due to scaling, we also may
suppose that the 3CNF clause associated with block i is ai ∨ bi ∨ ¬ci.

25

U.-U. Haus et al.

Define S1 to contain the clauses of S all of whose variables are represented by nodes
of G1, and declare S2 to have the remaining clauses of S save the clause ai ∨ bi ∨¬ci.
Due to this definition, S1 is a 2SAT instance, and all variables of the clauses of S2

occur as nodes in G2.

We now drop the index i and denote the nodes and variables ai, bi, and ci just by a,
b, and c. The logic clauses connected with the block are shown in (2).

With the linear-time 2SAT algorithm of [6], we solve three 2SAT cases derived from
S1 by fixing the variables a and c as follows.

Case 1: a = True, c = True

Case 2: a = False, c = False

Case 3: a = False, c = True

We have several subcases, depending on the outcomes for the three instances defined
by Cases 1–3. In each subcase, we define a formula S′

2 from S2.

(We proceed roughly as follows. Recursively, we compute a satisfying solution for S′
2

or determine S′
2 to be unsatisfiable. In the former case, we combine the satisfying

solution for S′
2 with one of the three solutions computed for Cases 1–3 above, and

get a solution for S that satisfies the clause a ∨ b ∨ ¬c of (2). In the latter case,
the construction of S′

2 implies that S is unsatisfiable. We assume that the recursive
processing of S′

2 produces a collection Q′
2 that characterizes the unsatisfiability of S′

2.)

(In the detailed discussion of the subcases below, we explicitly define S′
2 and show

that the solution for S′
2 plus a solution selected for S1 satisfy the clause a∨b∨¬c. But

we omit repetition of the statement that we solve S′
2 recursively, that the combined

solutions constitute a satisfying solution of S, and that unsatisfiability of S′
2 implies

unsatisfiability of S and produces a collection Q′
2 characterizing that situation.)

4.1 Cases 1 and 2 satisfiable: Define S′
2 = S2.

If S′
2 is satisfiable: If the satisfying solution for S′

2 has c = True (resp. c = False),
then the solution for Case 1 (resp. Case 2) is combined with that for S′

2. Due to the
values defined in Cases 1 and 2 for a and c, the clause a ∨ b ∨ ¬c is satisfied.

If S′
2 is unsatisfiable: Since S′

2 = S2, the collection Q′
2 characterizes the unsatisfiability

not just of S′
2 but also of S2 and S. Hence, the collection Q = Q′

2 characterizes the
unsatisfiability of S.

4.2 Case 1 satisfiable, Case 2 unsatisfiable: In S1, the clause ¬a ∨ c of (2) rules out the
case a = True, c = False. Thus, the outcomes for Cases 1 and 2 imply that in any
satisfying solution of S1, necessarily c = True. Accordingly, we define S′

2 to be S2

with an added unit clause forcing c = True.

If S′
2 is satisfiable: We combine the solution for S′

2 with the solution for Case 1 of S1.
Since Case 1 has a = True, the clause a ∨ b ∨ ¬c is satisfied.

If S′
2 is unsatisfiable: If the arc (¬c, c) occurs in Q′

2, then we construct the graph H(S1)
and use the linear-time algorithm of Corollary 4.1 to find a directed path P (¬c, c) in
the graph H(S1), and replace in Q′

2 the arc (¬c, c) by the path P (¬c, c) to get a
collection Q for S. If the arc (¬c, c) does not occur in Q′

2, we declare Q = Q′
2.

26

Linear Satisfiability Algorithm

4.3 Case 1 unsatisfiable, Case 2 satisfiable, Case 3 satisfiable: Arguing as in Step 4.2, we
must have a = False in any satisfying solution of S1 or S. We use that value to reduce
the clause a ∨ b ∨ ¬c of (2), getting b ∨ ¬c. We define S′

2 to be S2 with the added
clause b ∨ ¬c.

If S′
2 is satisfiable: If the solution specifies c = True (resp. c = False), then we combine

that solution with the one of Case 3 (resp. Case 2) of S1. Due to the specification of
b ∨ ¬c in S′

2, the solution satisfies the clause a ∨ b ∨ ¬c.

If S′
2 is unsatisfiable: If the arc (¬b,¬c) or (c, b) occurs in Q′

2, then we use the linear-
time algorithm of Corollary 4.1 to find a directed path P (a,¬a) in the graph H(S1).
To the arcs (¬b,¬c) and (c, b), whichever occur in Q′

2, we assign the path P (a,¬a)
and the implication ¬a → (c → b). This produces Q for S.

4.4 Case 1 unsatisfiable, Case 2 satisfiable, Case 3 unsatisfiable: We must have the values
a = c = False of Case 2 in any satisfying solution of S1 or S. Accordingly, we add a
unit clause enforcing c = False to S2 to obtain S′

2.

If S′
2 is satisfiable: We combine its solution with that of Case 2 for S1. Since c = False,

the clause a ∨ b ∨ ¬c is satisfied.

If S′
2 is unsatisfiable: This is handled like the case of unsatisfiable S′

2 in Step 4.2,
except that c plays the role of ¬c and vice versa.

4.5 Cases 1 and 2 unsatisfiable, Case 3 satisfiable: The values a = False, c = True of
Case 3 would allow us to reduce a∨b∨¬c to the unit clause b. Instead, we use the two
equivalent, seemingly more cumbersome, clauses c and b ∨ ¬c. We make this choice
since it simplifies the treatment of unsatisfiability, as will be seen below. Add the two
clauses c and b ∨ ¬c to S2 to obtain S′

2.

If S′
2 is satisfiable: We combine the solution with that of Case 3 of S1. Since b must

have the value True, the clause a ∨ b ∨ ¬c is satisfied.

If S′
2 is unsatisfiable: Update Q′

2 as described in Steps 4.2 and 4.3. This produces Q
for S.

4.5 Cases 1–3 unsatisfiable: Then S1 and hence S are unsatisfiable. Initialize the collection
Q as done for the unsatisfiable case of Step 2, except that S1 here plays the role of S
of Step 2. Begin backtracking with this Q.

5. Since the node c is not the conclusion of a 3IFF clause, the procedure is a simplified
version of the above steps. That is, S1 is solved twice, using first c = True and then
c = False, and the four possible outcomes are processed analogously to the above
procedures.

The proof of the linear time bound of the algorithm follows directly from Steps 2–
5, except for the claim made in Step 3 that the 2-connected components are on hand for
G(S). We examine that claim. Step 1 computes the 2-connected components for the original
S. By induction, in each of the Steps 4 and 5, the 2-connected components of G(S2) are
available, and it suffices that we show that the 2-connected components of G(S′

2) can be
obtained from those of G(S2) in constant time. Indeed, except for Step 4.3 and 4.5, all

27

U.-U. Haus et al.

steps add at most unit clauses to S2 to get S′
2, and G(S′

2) = G(S2). In Steps 4.3 and 4.5,
the clause b∨¬c is added to S2 to create S′

2. Since S2 contains the clause ¬b∨ c of (2), the
additional edge representing b∨¬c is parallel to the edge for ¬b∨ c. Thus, the 2-connected
components of G(S′

2) are the 2-connected components of G(S2) save for the addition of a
parallel edge in one 2-connected component.

We should point out that the unsatisfiable Q obtained by the algorithm may not be
minimal. The root cause is the fact that the configuration of the two paths produced by
the linear algorithm of Theorem 4.1 need not be minimal. Of course, minimality of Q can
be achieved by iteratively removing one clause of Q at a time, checking satisfiability, and
reinstating the clause if the reduced case is satisfiable. As an alternative, in the recursive
construction of Q, we can use instead of the linear algorithm of Theorem 4.1 the polynomial
algorithm (6.3.6) of [13], which finds minimal unsatisfiable 2CNF formulas and describes
them in terms of cycles and so-called ladders of a certain graph. Details of the cases
are provided in Corollary (6.3.5) of the cited reference. The description of the minimal
unsatisfiable subformula in terms of cycles and ladders may be useful for interpreting the
unsatisfiability in the biological unit. We should mention that Corollary (6.3.5) of [13]
assumes that the given unsatisfiable 2CNF formula has no unit clauses. But if there are
unit clauses, the formula is easily transformed to a slightly larger, equivalent one having no
unit clauses.

The decomposition used in the processing of 3IFFCNF formulas satisfying the cutnode
condition is a special case of a logic decomposition called closed sum. The next section
provides details.

5. Closed Sum

We show that the class of 3IFFCNF formulas observing the cutnode condition is a subset
case of a class of satisfiability instances that is recursively constructed from 2CNF formulas
and single CNF clauses by the closed sum operation of [13]. The instances of the class
can be solved in polynomial time. Unfortunately, characterization of unsatisfiability of the
instances is rather cumbersome, and we do not cover that aspect here.

The closed sum is based on a concept of Boolean closed, for short closed, integer {0,±1}
matrices. A review of the definition, properties, and various characterizations of closed
matrices is beyond the scope of this paper. Instead, we turn a part of Theorem (7.3.5) of
[13], which characterizes closed matrices in various ways, into a definition. We say that a
given matrix D contains a column-scaled version of a matrix N if column scaling with {±1}
factors and reordering of columns and rows can turn N into a submatrix of D.

Definition 5.1. (based on Theorem (7.3.5) of [13]) A matrix D is closed if it does not
contain any column-scaled version of any one of the matrices N1–N4 below.

N1 =

[

1 0
0 1

]

(8)

N2 =





1 0
1 1

−1 1



 (9)

28

Linear Satisfiability Algorithm

N3 =





1 1
1 −1

−1 1



 (10)

N4 =





1 1
−1 1
−1 −1



 (11)

Of particular interest are the {0,±1} closed matrices that, when viewed over the ternary
field GF(3), have GF(3)-rank of at most 2. These matrices can be characterized as follows.

Theorem 5.1. (Theorem (7.4.8) of [13]) Let D be a {0,±1} matrix, considered to be integer
or over GF(3) as appropriate.

(a) If GF(3)-rank(D) ≤ 1, then D is closed.

(b) If GF(3)-rank(A) = 2, then D is closed if and only if column scaling followed by
deletion of duplicate columns and rows can reduce D to a matrix that has GF(3)-rank
equal to 2 and that is a submatrix of one of the matrices F 1–F 3 below.

F1 =

[

1 −1 0
1 1 1

]

(12)

F2 =









−1 0
1 −1
1 1
1 0









(13)

F3 =









−1 0
−1 −1

1 1
1 0









(14)

For any integer k ≥ 1, define a {0,±1} matrix M to be a closed k-sum if

M =

[

M1 0
D M2

]

(15)

where the submatrix D is closed and has GF(3)-rank equal to k− 1. The submatrices
[

M1

D

]

and [D | M2] are the components of the closed k-sum. Note that any one of the submatrices
of M may have no columns or no rows.

Let M be a class of {0,±1} matrices that is closed under submatrix taking. That is, if
a matrix is in M, then every submatrix of the matrix is in M as well. Further, assume that
two polynomial algorithms exist, one for determining membership in M, and the second
one for the satisfiability problem of the formulas S whose representation matrix is in M.
When these conditions hold for M, then the class M is SAT central [13].

Define C to be the class of matrices created from the matrices of a given class C0 by
recursive closed k-sum steps, k ≥ 1, where in each sum operation one component is taken

29

U.-U. Haus et al.

from C0 while the second component is also taken from C0 or has been created so far by the
recursive process. We say that the class C is created from C0 by repeated closed k-sum steps.

In [13], the following result is established for C.

Theorem 5.2. (Theorem (10.4.21) of [13]) Let C0 be a SAT central class of matrices. Define
C to be the class of matrices created from C0 by repeated closed k-sum steps with k ≤ 3. Then
C is SAT central.

The corollary of Theorem 5.2 included next establishes a SAT central class C from a C0

that is based on 2CNF formulas and single CNF clauses.

Corollary 5.1. Let S0 be the class of CNF formulas each of which is a 2CNF formula or a
single CNF clause. Define C0 = {M(S) | S ∈ S0}, and declare C to be the class of matrices
created from C0 by repeated closed k-sum steps with k ≤ 3. Then C is SAT central.

Proof. Due to the linear-time algorithm of [6] for the 2CNF instances, the class C0 is SAT
central. By Theorem 5.2, the class C is SAT central as well.

In a moment, we also need the following lemma.

Lemma 5.1. Let C be created from a given class C0 by repeated closed k-sums, k ≤ 3.
Suppose each {0,±1} column or row vector is in C0. If a zero or unit vector is added as
column or row to any matrix of C, then the enlarged matrix is also in C.

Proof. Any such an extension can be viewed as a closed 1- or 2-sum where one component
is the given matrix of C and the second component is just one column or row vector.

Here is the main result of this section.

Theorem 5.3. Let S be a 3IFFCNF formula for which the cutnode condition holds. Then
the matrix M(S) is in the class C of Corollary 5.1.

Proof. In the nontrivial case of the inductive proof, S is not a 2CNF formula. In the
satisfiability algorithm of Section 4, such S is decomposed in Step 4 or 5. We examine the
more complex case of Step 4 and leave that of Step 5 to the reader. Recall that each clause
of S save the clause a∨ b∨¬c is assigned to either S1 or S2 such that the variables a and c
are in S1, the variables b and c are in S2, and the variable c is the single variable common
to S1 and S2. Derive S2 from S2 by deleting all literals of the variable c occurring in the
clauses of S2. Define M1 to be M(S1), and let M2 be M(S2) plus one additional row unit
vector representing the subclause b of a ∨ b ∨ ¬c. Declare D to be an appropriately sized
matrix whose nonzeros represent the subclause a ∨ ¬c of a ∨ b ∨ ¬c and the literals c and
¬c dropped a moment ago from S2. Suitable column scaling and deletion of duplicate rows
and columns reduce D to a submatrix of the following matrix D′.

D′ =





1 1
1 0

−1 0



 (16)

Now D′ is a submatrix of F3 of (14), and D is closed by Theorem 5.1. Accordingly, the
matrix M of (15) created by the just-defined M1, M2, and D is a closed 2- or 3-sum.

30

Linear Satisfiability Algorithm

Since S1 is a 2CNF formula, and since each row of D has at most two nonzeros, the
component

[

M1

D

]

of the closed sum represents a 2CNF formula and thus is in C0.

From the second component [D | M2], we delete all zero columns of D and the column
unit vector defined by variable a, getting a matrix

[

D | M2

]

that represents a 3IFFCNF
formula S smaller than S. By induction,

[

D | M2

]

is in C, and by Lemma 5.1, [D | M2] is
in C as well. Then the closed sum M is in C, as desired.

The construction of SAT central matrix classes via closed k-sums with k ≤ 3 supports
several generalizations of the 3IFFSAT formulas observing the cutnode condition. For
example, instead of two input variables for each 3IFF clause, we may consider any number
of input variables and thus may have implications of the form (∨j∈JAj) ↔ C for any
|J | ≥ 2. In the introduction it was argued that this case can always be reduced to 3IFF
clauses. That is correct, but it is easily seen that, if the ultimately resulting 3IFFCNF
formula is to obey the cutnode condition, then the original formula must observe a very
severe condition. Instead, we can treat that case directly by closed k-sums, using for the
definition of the class C0 single CNF clauses and 2CNF formulas that possibly are augmented
by exactly one clause with at least three literals. The class C0 is SAT central, so the closed
k-sum construction with k ≤ 3 can still be carried out.

For the definition of another SAT central class C0, define a CNF formula to be Horn
if each clause has at most one nonnegated variable, and to be hidden Horn if suitable
complementation of variables produces a Horn formula. Then C0 consists of the matrices of
formulas that after deletion of at most one clause become hidden Horn.

The linearly solvable case defined in Theorem 2.1 leads to yet another SAT central class
C0. For additional classes, see [13].

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[2] Bengt Aspvall, Michael F. Plass, and Robert E. Tarjan. A linear-time algorithm for
testing the truth of certain quantified boolean formulas. Information Processing Letters,
8:121–123, 1979.

[3] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. Elsevier North-
Holland, 1976.

[4] Vijay Chandru and John Hooker. Optimization Methods for Logical Inference. John
Wiley & Sons, 1999.

[5] Keith L. Clark. Negation as failure. In Logic and Databases, pages 293–322. Plenum
Press, 1978.

[6] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing, 5:691–703, 1976.

31

U.-U. Haus et al.

[7] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co, 1979.

[8] Anja Remshagen and Klaus Truemper. An effective algorithm for the futile questioning
problem. Journal of Automated Reasoning, 34:31–47, 2005.

[9] Julio Saez-Rodriguez, Luca Simeoni, Jonathan A. Lindquist, Rebecca Hemenway, Ur-
sula Bommhardt, Boerge Arndt, Utz-Uwe Haus, Robert Weismantel, Ernst D. Gilles,
Steffen Klamt, and Burkhart Schraven. A logical model provides insights into T cell
receptor signaling. PLoS Computational Biology, 3(8):1580–1590, August 2007.

[10] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
1986.

[11] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1:146–160, 1972.

[12] Klaus Truemper. A decomposition theory for matroids. V. Testing of matrix total
unimodularity. Journal of Combinatorial Theory Series (B), 49:241–281, 1990.

[13] Klaus Truemper. Effective Logic Computation. John Wiley & Sons, 1998.

[14] Klaus Truemper. Matroid Decomposition (revised edition). Leibniz, 1998.

32

	Introduction
	Definitions and Basic Results
	Total Unimodularity
	Satisfiability Test and Characterization of Unsatisfiability
	Closed Sum

