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Abstract

Due to the widespread demands for efficient SAT solvers in Electronic Design Automa-
tion applications, methods to boost the performance of the SAT solver are highly desired.
We propose a Hybrid Solution to boost SAT solver performance in this paper, via an in-
tegration of local and DPLL-based search approaches. A local search is used to identify
a subset of clauses from the original formula to be passed to a DPLL SAT solver incre-
mentally until all the clauses have been passed. In addition, the solution obtained by the
DPLL solver on the subset of clauses is fed back to the local search solver to jump over
any locally optimal points. The proposed solution is highly portable to the existing SAT
solvers. For satisfiable instances, up to an order of magnitude speedup was obtained via
the proposed hybrid solver. For unsatisfiable instances, the speedup was smaller due to the
overhead.
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1. Introduction

Boolean Satisfiability (SAT) has many applications, including computer-aided design, arti-
ficial intelligence, planning, etc. Various Electronic Design Automation (EDA) problems,
such as equivalence checking, model checking, test pattern generation, placement and route,
etc., can be formulated as SAT problems. Much research has been dedicated on developing
highly scalable and efficient SAT solvers. Although a number of practical instances can be
solved within reasonable computational resources by the state-of-the-art SAT solvers, due
to the NP-Complete nature of SAT [8], many instances still remain extremely difficult.

A CNF-based SAT problem takes as input a propositional formula that is represented
in Conjunctive Normal Form (CNF), in which a formula is a conjunction of clauses, each of
which is a disjunction of literals. A literal is a variable in its positive or negative polarity.
There are two broad, search-based approaches to modern search-based SAT solvers. One
is based on a systematic search-tree and the other is based on stochastic local-search. The
classical DPLL [9] algorithm and its derivatives like Chaff [18] and Minisat [11] are all
search-tree based. In a search-tree-based algorithm, a variable is selected and assigned
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a value at each step. This assignment will be applied to the formula, after which new
assignments of variables may be implied. If the current assignment to the variables causes
a conflict, i.e., one or more clauses evaluate to false as all literals in those clauses evaluate
to false, the solver will backtrack and make a different decision. In the process, conflict
analysis can be performed to yield additional knowledge to aid future search. These steps
are repeated until:

1. a solution is found, or

2. no satisfying solution exists, or

3. computational resources have been exhausted.

On the other hand, local-search solvers, such as GSAT [20] and WALKSAT [19], generate
a complete assignment for all the variables at the beginning. Because every variable has
been assigned, each clause is either satisfied or unsatisfied (all literals in the clause evaluate
to false). A number of steps of local greedy search are applied next to try to minimize
the number of unsatisfied clauses. For example, in WALKSAT, at each step a clause is
selected from the current set of unsatisfied clauses, and the assignment to one of its literals
is flipped. After a number of iterations, hopefully a solution can be obtained when the set
of the unsatisfied clauses becomes empty. Nevertheless, it should be noted that it may be
possible for the search to be trapped in a locally optimal point, where at least one unsatisfied
clause still remains. The local optima here means an assignment in the solution space which
can satisfy an equal or greater number of clauses than all its neighbors, but fails to satisfy
all the clauses when the formula is actually satisfiable. To avoid being trapped indefinitely
in local optima, a CUTOFF threshold is used to denote the maximum number of steps
allowed. If the CUTOFF threshold is reached without obtaining a solution, a re-start in
the solver may be invoked.

Generally, search-tree based algorithms are complete while local search algorithms are
incomplete (Fang had published a complete local search algorithm [12]). Although local
search algorithms can perform faster on a number of applications, they are hindered by
their incompleteness.

Because both DPLL search and local search have their own strengths, there have been
various attempts to combine them [15] [17]. In [17], a local search was used to help the
DPLL solver select the next decision variable. Because the decision order of the DPLL SAT
solver is directly modified by the local search part, the underlying decision order heuristics
may potentially be degraded. This approach may not gain much performance as shown
in [13]. In [15], WALKSAT was used to exploit the variable equivalences and dependencies
at certain nodes of the DPLL tree.

In this paper, we propose a new hybrid framework to integrate local search and DPLL
search for SAT. This integration offers completeness in the search and does not change
the decision order heuristic in the underlying DPLL SAT solver. The non-deterministic
local search attempts to find an assignment that can satisfy as many clauses as possible
in the formula; any subset of clauses not satisfied is obtained and passed to a DPLL SAT
solver through an incremental solver interface [7]. In return, the solution obtained for this
subset of clauses by the DPLL solver is fed back to the local search solver to jump over
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any local optimal points. In order to take advantage of both the local and DPLL search
strategies, clause padding is proposed to make the integration both efficient and seamless.
For satisfiable instances, up to an order of magnitude speedup was obtained over the state-
of-the-art SAT solvers via the proposed hybrid solver. For unsatisfiable instances, smaller
speedups were observed.

The remainder of the paper is organized as follows: The next section describes the
preliminaries of the DPLL and the WALKSAT algorithms. The details behind our hybrid
incremental SAT solver are presented at Section 3. Section 4.1 discusses the synergies
between the DPLL and WALKSAT via some case studies. Section 4.2 presents the empirical
evaluation of our proposed SAT solver. This paper is concluded in Section 5.

2. Preliminaries

We first provide a quick overview of the DPLL and the WALKSAT algorithms in this section.
The DPLL algorithm was first published by Davis, Putnam, Logeman and Loveland [9] [10],
and it is the basis for most modern SAT solvers. The pseudo-code of DPLL is listed in Figure
1.

As is shown in Figure 1, the DPLL algorithm works iteratively from line 4 to line 8. The
decide() function in line 4 incorporates the decision order heuristic, which decides which
unassigned variable should be assigned in this iteration. After a variable was assigned,
Boolean Constraint Propagation (function bcp()) is called in line 6. In function bcp(), the
BCP in [18] is implemented, where the current assignments are applied back to the formula
to generate implications on the unassigned variables. This is the most time-consuming
part in a given iteration of the DPLL algorithm because the formula is evaluated under the
current variable assignments to check if any other variable assignments may be implied, or if
a conflict has been encountered. If a conflict is met, function ResolveConflict() will be called
in line 7. This function tries to resolve the conflict by backtracking, shown between line 12
to 18. An UNSAT result will be returned if a conflict is not resolvable (ResolveConflict()
returns false). Otherwise the algorithm goes back to line 6 to invoke function bcp() again.
When there is neither future implication nor conflict available, the algorithm will be looped
back to line 4 to select the next decision variable. One can see that if the formula is
satisfiable, an assignment, A, to the variables will be generated eventually.

WALKSAT [19] was proposed in 1994 as an improvement of the previous GSAT [20].
First, several definitions will be given for the WALKSAT algorithm, which is shown in
Figure 2. A clause is said to be broken if all the literals in this clause evaluate to false
under the current variable assignment. The broken-count of a variable is the number of
clauses that will be broken if the value of this variable is flipped. The broken-count of a
variable is used to evaluate the gain from flipping the given variable. When a broken clause
becomes non-broken by flipping the value of a variable, this clause is referred to as having
been healed by the flipping. For example, given the formula (ā + b)(b + c)(a + c̄) and the
assignment {a = 1, b = 0, c = 0}, clauses (ā + b) and (b + c) are broken by this assignment.
If the value of variable a is flipped from 1 to 0, clause (ā + b) will be healed by this flip and
only clause (b + c) will be left as broken. After the flip, the broken-counts of the variables
{a, b, c} are {1, 0, 1}.
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1 def DPLL
2 begin
3 while (true)
4 if (!decide()) /∗if no unassigned vars∗/
5 return SAT
6 while (!bcp())
7 if (!ResolveConflict())
8 return UNSAT
9 end

10 def ResolveConflict()
11 begin
12 d = most recent decision not tried bothways
13 if (d == NULL) // no such d was found
14 return false;
15 flip the value of d;
16 mark d as tried both ways;
17 undo any invalidated implications;
18 return true;
19 end

Figure 1. DPLL Algorithm

1 def WALKSAT
2 begin
3 A=randomly generate truth assignment
4 for i=1 to CUTOFF
5 if (A satisfies the formula)
6 return A /∗SAT∗/
7 C=choose a broken clause
8 if (rand() %100 < p) /∗with prob. p∗/
9 v= var with smallest broken−count in C

10 else /∗with probability 1−p∗/
11 v= randomly select a variable in C
12 Flip(v) /∗reverse value of v∗/
13 UpdateAssignment(A) /∗A is updated with the value of v reversed∗/
14 return FAIL /∗ can’t determine ∗/
15 end

Figure 2. WALKSAT Algorithm

The major body of the WALKSAT algorithm is the loop shown in Figure 2 between
lines 4 and 14. Note that WALKSAT will try a preset number of steps before it claims
that it has failed to find a solution. The preset number is stored in variable CUTOFF.
First a complete assignment of all the variables is generated randomly as the start point
of the following flips. In line 7, a variable v is chosen from a broken clause C; the value
of v is flipped in an attempt to reverse the conflict currently caused in C. Normally v is
selected among several variable candidates by comparing the potential gains of the eligible
candidates. When the value of a variable v is flipped, some broken clauses may be healed
while some previously satisfied clauses may be broken. In the basic WALKSAT, a variable
with the smallest broken-count will be chosen to be flipped, as shown in line 9. Besides,
certain randomness is introduced in lines 10 and 11. In line 12 and 13, the assignment
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of v is flipped and its associated broken-counts are updated. To efficiently update the
broken-count, a two-literal watching scheme was proposed in [14].

3. Our Approach

In order to combine the powers of both local search and DPLL-based search, previous
approaches mainly tried to embed the local search result into a DPLL solver to guide the
decision order. In such approaches, the local search is invoked at each DPLL decision step
to supply the information for the next decision. On the contrary, in our approach, the local
search portion is used to identify a subset of clauses, which is passed to a DPLL-based
incremental SAT solver. Furthermore, the solution obtained by the incremental DPLL
solver on the subset of clauses is fed back to the local search solver to jump over the locally
optimal points encountered in the previous iteration in order to continue the search.

We call our solution HBISAT (HyBrid Incremental SAT Solver). It should be noted that
HBISAT does not necessarily rely on a specific SAT solver. HBISAT actually is a universal
solution to boost existing SAT solver performance.

We use the WALKSAT v43 [1] algorithm as the base local search part. In the rest of
the paper, the local search solver will be referred to as WALKSAT. The complete HBISAT
algorithm is shown in Figure 3.

In Figure 3, the DPLL solver and WALKSAT are invoked interactively in each iteration
between lines 8 and 22. In each iteration, WALKSAT first performs a local search in an at-
tempt to find a satisfying assignment for the entire Boolean formula. If it is successful, then
HBISAT will verify the solution and return it. In Figure 3, the aforementioned WALKSAT
search is presented between lines 12 and 14. If WALKSAT cannot find a solution within
its CUTOFF value, it will collect the subset of broken (unsatisfied) clauses (Bi) under the
current assignment and add them to the clause database of the DPLL solver, shown at lines
26 through 30 in function CallDPLL(). Note that the initial clause database, C0, of the
DPLL solver is empty, and Ci−1 (for i > 1) denotes the subset of clauses that has already
been added into the DPLL solver before the current ith iteration. If the DPLL solver can
prove Ci = Bi

⋃
Ci−1 is UNSAT in any iteration i, then the original formula is guaranteed

to be UNSAT due to the reason that Ci is always a subset of the original formula; this
allows for early termination of the SAT search.The detailed proof is provided in Theorem
1. On the other hand, if an assignment is obtained by the DPLL solver for Ci, the vari-
able assignment will be passed back to WALKSAT as the starting assignment for the next
iteration, at line 18 in Figure 3. Note that since Ci may only contain a portion of the
variables, the assignment returned by the DPLL solver could be incomplete; those variables
not present in this assignment retain their values from the previous iteration. We can see
that the set of clauses added into the clause database of the DPLL solver grows gradually
with the increasing number of iterations. This is the underlying essence of a typical in-
cremental SAT solver, and it is also key to our hybrid incremental framework. To avoid
adding the same broken clause to the DPLL solver repeatedly, in our implementation, each
clause in the original formula processed by WALKSAT carries a flag to indicate whether it
has been added to the clause database of the DPLL solver or not. Another advantage of
employing an incremental SAT solver is that conflict clauses obtained by the DPLL solver
can be carried from one iteration to the next [21].
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1 def HBISAT Solver(F/∗input formula∗/)
2 begin
3 C=Ø /∗Set of broken clauses∗/
4 A=Ø /∗Assignment∗/
5 i=0 /∗iteration counter∗/
6 CUTOFF=MAX LOCAL SEARCH STEP
7 while (true)
8 if (A==Ø)
9 RandomInitalWalkSAT()

10 else
11 InitialWalkSAT(A)
12 Status=WALKSAT Solver(CUTOFF)
13 if (Status==SAT)
14 return SAT
15 else if (Status==UNKNOWN)
16 Result=CallDPLL(i)
17 if (Result==SAT)
18 A=GetAssignmentFromDPLL()
19 else /∗UNSAT or out of memory∗/
20 return Result
21 i++ /∗count iteration∗/
22 end
23
24 def CallDPLL(i)
25 begin
26 B=GetBrokenclause()
27 /∗guarantee one more clause will be added∗/
28 B = B

S

RandomPickOneNewClause()
29 C = B

S

C
30 AddClauseToDPLLSolver(C)
31 Status=DPLL Solver()
32 return Status
33 end

Figure 3. HBISAT Algorithm

We will now prove that HBISAT is a complete algorithm, in which it finds a solution if
one exists; otherwise it reports no variable assignment can satisfy the formula.

Theorem 1. HBISAT is complete.

Proof. In the HBISAT Algorithm shown in Figure 3, whenever Bi from iteration i is empty,
which means WALKSAT already found a solution that generates zero broken clauses, then
a satisfying solution has already been found for the formula. Otherwise, with a non-empty
Bi at iteration i, we know that Bi contains at least one clause from the original formula
that has not been included in the clause database of the DPLL solver previously. This is
due to at each iteration Bi = Bi

⋃
RandomPickOneNewClause(), at line 28 in Figure 3.

In function RandomPickOneNewClause(), a clause that has not been added to the DPLL
solver is randomly picked to guarantee that Bi contains at least one “new”clause. Let the
size of the original formula be n, and the clause database at iteration i of the DPLL solver
be DBi. Then, by gradually adding each Bi to the clause database of the DPLL solver, the
size of the DPLL database increments by at least 1 with each iteration. In other words,
|DBi+1| ≥ |DBi|+ 1. As the algorithm proceeds, if the DPLL solver returns UNSAT, then
an UNSAT core has been identified and the original formula is indeed unsatisfiable and
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HBISAT is complete. Otherwise, |DBi| will eventually equal to n, where DBi contains
the entire original formula. Because the DPLL solver is complete, we can conclude that
HBISAT is also complete.
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Figure 4. Operation of HBISAT on UNSAT and SAT formulas

Figure 4 illustrates how HBISAT works on a given formula. Figure 4(a) shows the
scenario that the formula is unsatisfiable and Figure 4(b) is for the scenario when the
formula is satisfiable. In both parts (a) and (b) of the figure, the outermost circle represents
all the clauses of the formula to be solved. The inner, shaded circles represent the sets of
broken clauses. The annotations I, II and III on the inner circles denote that they are three
different broken clause sets generated from three different iterations. Note that shapes I, II
and III are not necessarily overlapped because at each iteration the set of broken clauses
Ci could be totally different. They are overlapped only when their corresponding broken
clause sets are not disjoint.

If the original formula is unsatisfiable, there exists at least one unsatisfiable core [23].
Without loss of generality, let us assume there is only one unsatisfiable core, and this core
is represented by the region enclosed by the thicker line in part (a) of the figure. Each set of
broken clauses must cover a portion of the unsatisfiable core (as will be proved in Theorem
2). In each iteration of HBISAT, a portion of the unsatisfiable core will be identified. With
an increasing number of iterations, the entire unsatisfiable core will be extracted from the
formula which leads to an early termination.

Theorem 2. If a formula f is unsatisfiable, every broken clause set returned by WALKSAT

contains at least one clause that belongs to an unsatisfiable core.

Proof. We prove this by contradiction. Given that f is unsatisfiable, there always exists
at least one unsatisfiable core UC ⊆ F (F : set of clauses of f). Let a broken clause set,
B, returned by WALKSAT not contain any clause belonging to UC, i.e., B

⋂
UC = Ø.

This means that WALKSAT must have obtained an assignment that satisfies all clauses
outside of B. However, because B

⋂
UC = Ø, the clauses outside B contain the complete

UC. This means that all clauses within UC must have been satisfied by the obtained
assignment, indicating that UC is satisfiable: a contradiction.
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From Theorem 2 we know that at each iteration, at least some portion of an unsatisfiable
core will to be added to the clause database of the DPLL solver, if the original formula is
unsatisfiable. Stated differently, HBISAT can filter the hard spots like the unsatisfiable
core or hard-to-simultaneously-satisfy sets of the formula. Due to the nature of the DPLL-
based incremental SAT solver, these hard spots will be solved incrementally and the conflict
clauses learned through them have tremendous potential to help finally solve the formula.

On the other hand, if the formula is satisfiable, for hard satisfiable instances usually
there will be one or more sets of clauses called hard-to-simultaneously-satisfy sets. Part (b)
of Figure 4 shows such a scenario where the region enclosed by the dashed line represents
a hard-to-simultaneously-satisfy set. Because WALKSAT attempts to find an assignment
via a local search, we can assume that the assignment generated by WALKSAT is more
likely to satisfy those easy clauses outside the hard-to-simultaneously-satisfy region first.
With this assumption, the hard-to-simultaneously-satisfy sets will be identified by HBISAT
gradually in a similar way as the unsatisfiable core. It is important to find and solve these
hard-to-simultaneously-satisfy sets earlier because they are the major obstacles in solving
the hard satisfiable formulas.

Refinement

Original Formula (CNF)

AbstractionAbstraction,

Generate over-approximation CNF
DPLL Solver

No solution,

END

NO
Solution?

YES

Solution spurious?
Clauses for 

refinementWALKSATp refinement

NO

YES

Real solution

END

Figure 5. Abstraction and refinement in HBISAT

To better understand HBISAT, it can be explained as an abstraction and refinement
scheme, shown in Figure 5 . Abstraction-refinement is a widely used technique in formal
verification [6]. Because abstraction helps to reduce the complexities and refinement guar-
antees the correctness of the abstract model, an abstraction-refinement scheme usually can
significantly boost the performance in many applications. Due to the fact that the set of
clauses that the DPLL solver works on is a subset of the original formula, this set of clauses
can be viewed as an abstraction of the original formula. We call this an abstraction model
of the original formula with less constraints. Thus the partial assignment returned from the
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DPLL solver actually can be regarded as an over-approximation of the true solution, since
it satisfies an abstraction of the original formula. If we look at the solution spaces, one can
see that the partial assignment represents a sub-space where true solutions might reside in.
It should be noted that there is no guarantee that a true solution will be in the sub-space
defined by the partial assignment. It is possible that there does not exist any solution in
this sub-solution-space to satisfy the original formula. In other words, each solution in the
sub-space can only satisfy the abstraction which includes less constraints compared with
the original formula. Under such a circumstance this over-approximation solution is called
spurious which indicates that the current abstract model is not accurate enough to lead to
a true solution. Then the refinement will be invoked to calibrate a better abstraction. In
HBISAT the WALKSAT takes over the over-approximation solution to verify whether it is
spurious or not, along with a local greedy search to find a real solution. If a real solution
can’t be found by WALKSAT, a set of broken clauses B will be provided as the refinement,
where B will be added to the clause database of the DPLL solver to make the abstraction
more precise.

HBISAT is a flexible SAT framework. Instead of the specific local search and DPLL
solvers we used in this paper, other such engines can be plugged in. The interaction between
our local-search solver and DPLL-search solver is simple, which is supported by most modern
SAT solvers. The requirements for the DPLL-based solver are that it should support an
incremental interface and be able to return its search results. For the local search solver,
it must be able to supply the set of broken clauses. We believe the flexibility of HBISAT
offers a significant value, because it holds potential for future explorations.

3.1 Clause Padding

In a given iteration, the number of broken clauses may be small, which implies that a
large number of iterations may be needed before all clauses in the original formula are
added to the clause database for the DPLL solver. Therefore, in addition to the broken
clauses from WALKSAT, some other related clauses may also be inserted into the DPLL
solver. This feature is called clause padding. By adding more clauses to the DPLL solver at
each iteration, there are two potential benefits. First, clause padding may help the DPLL
solver to find the unsatisfiable core earlier since adding more clauses further constrains the
problem, and second, it can speed up the incremental SAT solver process. The padded
clauses are chosen mainly based on their correlations to the broken clauses.

In HBISAT two categories of clauses are padded in the clause padding procedure:

1. Based on the assumption that the flip frequency of a variable (how many times a
variable flipped) usually indicates its importance of solving the formula, the clauses
which contains the most frequently flipped variable are padded to the clause database
of the DPLL solver.

2. We put all the literals of broken clauses in the current iteration into an array R.
Then any clause with two or more of its literals having opposite polarities with the
corresponding literals in R will be padded into the clause database. The intuition
here is that we want to pad those clauses that are highly correlated with the broken
clause set, with the hope that they will help to constrain the SAT solver.
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3.2 Enhance WALKSAT with Conflict Clauses from DPLL

The learned conflict-induced clauses during the DPLL search process could be very powerful
to block unnecessary search spaces. Because the DPLL solver is called through an incre-
mental interface, naturally it will take advantage of those conflict-induced clauses inherited
from the previous iterations. However, its counterpart (WALKSAT) cannot directly benefit
from these conflict clauses. Since WALKSAT works without history information in each
iteration, no helpful information will be carried over to the next iteration. To overcome this
limitation, the conflict clauses are introduced back to the original formula in WALKSAT,
which means that WALKSAT will be operated on a set of clauses constituted by the original
formula plus the conflict clauses generated by the DPLL solver. Note that this new set of
clauses constitutes an expanded formula. The expanded formula may vary from an itera-
tion to the next. Given the fact that the conflict clauses represent some hard-to-discover
implications from the original formula, they could help WALKSAT to reach a minimum
faster. We will illustrate this with the following example.

Considering the CNF formula (a+c)(b+ c̄)(ā+ b̄+c)(a+ b̄+ c̄)(ā+b+c)(ā+b+ c̄), with
an initial assignment of abc = 100, the broken-count is {1, 1, 2}. If we pick the broken clause
(ā + b + c), it is not easy for WALKSAT to make a clear decision because variables a and
b tie on the broken-count. Randomly flipping a will be a step in a wrong direction because
(a) can only be 1 in order to satisfy the formula. Suppose an additional conflict clauses
(a + b) returned by the DPLL solver was added to this formula, then the broken-counts
would have been updated as {2, 1, 2}. Based on the broken-counts {2, 1, 2}, WALKSAT
flips variable b and that leads to a new assignment {1, 1, 0} with broken-counts {1, 1, 0}.
Now in the broken clause (ā+ b̄+ c), variable c will be chosen to be flipped due to its lowest
penalty on broken-count, thus a solution abc = 111 will be obtained.

When applying WALKSAT to the expanded formula, the effectiveness of conflict clauses
could be overshadowed by the huge number of clauses in the original formula. In order to
leverage the importance of the conflict clauses, they are assigned a bigger weight in broken-
count counting, which is 2 in our implementation.

4. Experimental Results

4.1 Study of Synergies Between WALKSAT and DPLL Solvers

In this subsection, we will explore the interactions between the WALKSAT and DPLL
solvers through some benchmarks. We will illustrate the discussion via a number of figures;
in each figure, the X-axis denotes the iteration index and the Y -axis denotes the percentage
of clauses. In Figure 6, results for benchmark c10 s.cnf from [16] are shown. In this case,
an early termination case is evident (HBISAT stopped before 100% clauses in the original
formula were added to the clause database of the DPLL solver). The top curve with stars
represents the number of clauses that are added to the DPLL solver at each iteration
step. We call it the “ADD curve.” The bottom curve shows the number of broken clauses
returned by WALKSAT, which is called the “BRK curve.” It can be observed that when
90% of the clauses have been added, the DPLL solver can conclude that the instance is
UNSAT. Although it does not necessarily mean that the current clauses in the DPLL solver
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form a minimal UNSAT core, the early termination provides the potential to reduce the
computational effort for solving the complete formula.

Figure 7 presents a case where WALKSAT becomes more effective when guided by the
solutions returned from the DPLL solver. The benchmark used here is pipe-64-4-bug01.cnf
in Table 3 [22]. One can observe that the BRK curve generally drops with the increasing
number of iterations. This is because the partial assignments supplied by the DPLL solver
give a better guide to the WALKSAT. Another interesting phenomenon is that the ADD
curve grows much faster at certain points. This is due to the clause padding mechanism.
It is possible that a small group of broken clauses returned by WALKSAT can induce a
larger group of clauses to be padded, where the padded clauses help to increase the chance
of conflicts in the DPLL solver. After 14 iterations, a solution is found by WALKSAT for
this satisfiable instance. In contrast, the pure WALKSAT cannot obtain the solution for
this instance after 200 iterations with the same CUTOFF value in each iteration.
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Figure 6. Early termination of an UNSAT instance, c10 s.cnf

If early termination is not achievable and a solution cannot be found by WALKSAT,
the entire instance will eventually be added to the DPLL solver. Figure 8 illustrates how
the conflict clauses help to finally solve the instance with the benchmark Mat25.shuffled.cnf
from the SAT competition 2002 [2]. Since the discrepancy between the two curves in the
figure represents the number of conflict learned clauses, we can see that more conflict learned
clauses emerge when more clauses are added to the DPLL solver. This is easy to understand
because a more strongly correlated clause set has a higher probability for conflict learning.
After 90 iterations, by measuring the discrepancy between the two curves, one can see that
more than 10% of the clauses in the DPLL solver are conflict clauses. At this point, when
HIBSAT adds all the clauses from the original instance to the DPLL solver it takes 4.48
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Figure 7. Solution found at an early stage by WALKSAT after 15 iterations in pipe-64-4-

bug01.cnf, with less than 55% clauses in the original formula added to the DPLL solver
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Figure 8. Example of gradually learning in Mat25.shuffled.cnf
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seconds to prove UNSAT with a total running time of only 6.26 seconds. On the other
hand, solving the original instance directly by the DPLL solver requires 15.07 seconds. The
gradually learned clauses can significantly boost the DPLL solver’s performance.
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Figure 9. Broken clauses distribution for pipe-64-4-bug03.cnf

Figure 9 shows an example about the distribution of broken clauses in each iteration for
benchmark pipe-64-4-bug03.cnf in Table 3 [22]. The X-axis is again the iteration indices
but the Y-axis now denotes the clause ID. If a clause with a clause ID i is returned by
WALKSAT as a broken clause at iteration j, position (i, j) in the figure will be dotted.
While the size of the broken clauses does not monotonically decrease during HBISAT’s
solving process, it can be observed that at higher iteration numbers, the size of the broken
clauses does begin to shrink.

4.2 More Results

The proposed HBISAT was implemented in C++ under the 64-bit Linux operating system,
and experiments were conducted on a Intel Xeon 3.0-GHz workstation with 2 GB of RAM.
To demonstrate the portability of our algorithm, HBISAT was built on top of two popular
SAT solvers, ZChaff version 2004.11.15 Simplified [3] and Minisat 1.14 [4]. They are called
HBIz and HBIm in the experiments. Because we are interested in improving the SAT
performance of EDA applications, all of the benchmarks chosen are hard publicly available
EDA instances. Three categories of benchmarks were used in our experiments. The first
category is the IBM Formal Verification Benchmarks Library [5]. Several groups of instances
were chosen from the library and each group contained six instances. Note that each group
corresponds to a bounded model checking (BMC) application, where instances in a group
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represent different lengths of time-frame expansion. The second category comes from a
parameterized benchmark suite of Hard-Pipelined-Machine verification problem [16], which
includes twelve instances. The third category contains fifteen instances which are generated
in the formal verification of buggy variants of an out-of-order superscalar processor from
CMU [22]. In order to evaluate the performance of HBISAT, results for both DPLL solvers
(ZChaff and Minisat) and their corresponding HBISATs were reported. We believe similar
results can be obtained if other different SAT solvers were used in place of ZChaff or Minisat,
as the framework for HBISAT requires only that the underlying DPLL solver includes an
incremental solver interface. Finally, because completeness is needed to handle UNSAT
instances, pure local-search based SAT solvers were not compared. In fact, for most of the
satisfiable instances in the experiments, the pure WALKSAT could not complete.

In our implementation, in order to avoid unnecessary iterations, whenever one of the
following three conditions is met, all the remaining clauses will be added into the DPLL
solver. The first condition is when less than one percent clauses is left that have not been
added to the DPLL solver. The second condition is if less than fifty clauses are left, for
cases where fifty clauses are greater than one percent of all clauses in the formula. The third
condition is if the number of learned clauses is more than twenty percent of the number of
original clauses. We also limit the number of iterations to 300.
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Figure 10. Histogram of run time distribution for 01.k50

As WALKSAT is embedded within HBISAT, there is a certain level of randomness in
its searching process. To investigate the robustness of HBISAT, a case study was set up
to show the run time distribution. In this experiment, HBIz was called 100 times on the
benchmark. The benchmark we will use to illustrate this is 01.k50 from Table 1 [5]. In
Figure 10, the histogram of the 100 trials was shown with each bin size of 10, where the
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X-axis is the run time and Y-axis shows the number of trials that fall into this time period.
One can see that although the run time varies, the trend is clear that for most runs, the
run-time is more likely to be small. In other words, the probability of larger run time
decreases. One key point to note is that except for the very first iteration, in all the rest of
the iterations the embedded WALKSAT always starts from the partial assignment returned
by the DPLL solver. This can help reduce the randomness in the algorithm. For all the
experimental results in the following are the average value of five runs on each benchmark.

Table 1. Category I Benchmarks

Instance #Var/#Cls SAT? ZChaff [s] HBIz [s] Speedup #Iter
01.k40 29249/124460 SAT 99.26 61.73 1.61× 41
01.k50 36339/154810 SAT OUT 177.89 INF 29
01.k60 43429/185160 SAT OUT 490.74 INF 17
03.k40 46225/198298 SAT 31.45 57.56 0.55× 14
03.k50 58595/251378 SAT 258.28 195.81 1.32× 11
03.k60 70965/304458 SAT 434.55 250.99 1.73× 11
06.k40 49126/213666 SAT 124.31 115.54 1.08× 193
06.k50 61776/268886 SAT 1921.92 247.1 7.78× 15
06.k60 74426/324106 SAT 1709.39 1605.57 1.06× 10
07.k40 13151/35904 UNSAT 6.04 20.59 0.29× 300
07.k50 15221/40774 UNSAT 5.94 19.19 0.31× 300
07.k60 17291/45644 UNSAT 6.06 20.58 0.29× 300
Total 8915.4 3270.57 2.73×

Instance #Var/#Cls SAT? Minisat [s] HBIm [s] Speedup #Iter
01.k70 50519/215510 SAT 53.89 53.01 1.02× 34
01.k80 57609/245860 SAT 174.8 132.74 1.32× 32
01.k90 64699/276210 SAT 330.41 60.03 5.48× 26
03.k70 83335/357538 SAT 45.84 76.39 0.60× 42
03.k80 95705/410618 SAT 81.71 80.19 1.01× 36
03.k90 108075/463698 SAT 267.64 197.57 1.36× 30
06.k70 87076/379326 SAT 60.22 109.09 0.55× 36
06.k80 99726/434546 SAT 201.19 135.64 1.48× 30
06.k90 112376/489766 SAT 296.07 189.53 1.56× 29
07.k70 19361/50514 UNSAT 9.86 15.33 0.64× 300
07.k80 21431/55384 UNSAT 1065.7 17.45 60.76× 300
07.k90 23501/60254 UNSAT 5.97 16.21 0.37× 300
Total 2593.7 1077.86 2.41×

We first report the results for Category I benchmarks, shown in Table 1. The upper
portion represents the comparison between ZChaff and HBIz. The bottom portion compares
Minisat and HBIm. A total of four groups (24 instances) is listed in the first column.
Next, the number of variables and clauses for each instance are reported, followed by the
satisfiability of each instance. The forth and fifth columns correspond to the run times
of the DPLL solvers and its HBISAT. Whenever HBISAT outperformed the DPLL solver,
the run times are highlighted in bold. “OUT” indicates that the SAT solver aborts after a
preset limit is met, which is 3,000 seconds in our experiments. The sixth column exhibits
the speedup of HBISAT, which was calculated by computing the ratio between the run time
the DPLL solver and HBISAT. Note that INF means at least one of the solvers time out
thus no run time ratio can be computed. Finally, the last column reports the number of
iterations the HBISAT used.

It can be observed that among all the twenty-four Category-I instances, ZChaff aborted
on two of them while HBIz could solve every instance within 500 seconds, except 06.k60.
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Table 2. Category II UNSAT Benchmarks

Instance #Var/#Cls ZChaff [s] HBIz [s] Speedup #Iter Minisat [s] HBIm [s] Speedup #Iter
c7b 26058/77128 147.4 149.3 0.99× 300 55.54 54.27 1.02× 300
c8n 53697/159595 386.93 363.89 1.06× 300 146.18 169.25 0.86× 300
c9b 36757/109045 407.53 381.7 1.07× 300 263.54 226.02 1.17× 300
f9n 185149/552412 2011 1604.91 1.31× 300 OUT OUT INF 300
g9n 54631/161950 251.33 222.53 1.13× 300 61.84 84.12 0.74× 300
g9b 59110/175387 208.65 233.03 0.90× 300 41.49 106.8 0.39× 300
g9idw 125885/371998 250.55 263.39 0.95× 300 70.64 136.11 0.52× 300
g9nidw 170918/506584 1552.48 1098.25 1.41× 300 942.97 691.3 1.36× 300
c10 17121/50803 9.87 16.25 0.61× 300 12.15 24.44 0.50× 300
c10b 43517/129265 669.88 529.1 1.27× 300 589.1 567.78 1.04× 300
c10bi 147116/437224 OUT OUT INF 300 OUT OUT INF 300
c10bid 291912/828039 OUT OUT INF 300 OUT OUT INF 300
Total 5476 4549.4 1.20× 2183.45 2060.09 1.04×

HBIz outperformed ZChaff in 8 of the 12 instances. For the other four instances, they
were all easy instances. For such easier instances, the overhead of HBISAT became a
burden. On the other hand, with larger BMC instances (due to deeper circuit unrolling),
the computational costs of ZChaff were increased dramatically while the run times of HBIz
increased relatively linearly. Similarly HBIm outperformed Minisat in 9 of 12 instances. For
the UNSAT instance 07.k80, HBIm only took 17.45 second while Minisat’s running time is
60 times that. One can see that the number of iterations varies from 11 to 300. For those
UNSAT cases HBISAT could not finish within 299 iterations, at the 300th iteration, all
clauses are added into DPLL Solver, since this is the last iteration allowed. The rest of the
benchmarks take less iterations due to reason that after a few iterations HBISAT already
accumulated enough learned clauses thus to trigger adding of all clauses, as mentioned
before.

Next, experiment II was set up to evaluate the unsatisfiable instances, with the results
reported in Table 2. The first six columns of Table 2 are similar as in Table 1. The run
time of Minisat, HBIm, the corresponding speedup and the iteration number of HBIm were
reported in the last four columns. The performance of HBISAT was comparable to the
DPLL solver for most instances. Minisat and HBIm aborted on exactly three instances and
the average run times for the other instances were nearly equal. Meanwhile, Zchaff and HBIz
aborted on two instances. Generally HBIz gives better performance on harder instances
thus leads to a total 900 seconds run time reduction. The reason that the performance
gain on unsatisfied instances sometimes was not as significant can be explained by the
nature of incremental SAT solvers. For hard UNSAT instances, it may not be easy to
obtain a small UNSAT core (or a superset of the UNSAT core) from the original formula.
Subsequently, the incremental clause databases may all be satisfiable, and we may need to
wait until nearly all the original clauses have been added before concluding that the formula
is UNSAT. Furthermore, during the incremental steps, the subset of clauses currently in
the database of the DPLL solver may constitute a hard satisfiable instance, and this hard
satisfiable instance may consume significant computational resources. On the other hand,
the non-incremental DPLL solver searches directly on the entire formula, where such hard
intermediate steps are implicitly avoided.
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Finally, the results for Category III benchmarks are shown in Table 3. For all the SAT
instances, HBISAT exhibits a very significant performance gain, where HBISAT achieved
nearly an order of magnitude reduction in run times. For instance, in benchmark bug07,
where Minisat failed in 3000 seconds and ZChaff took 997.67 seconds, HBIz took 28.41
seconds with 41 iterations while HBIm needed only 15.01 seconds in 66 iterations. The
small number of iterations here is due to the fact that a solution can be found by the
local search at an early stage. The power of combining local search and DPLL search is
evident via experiments I, II and III. In terms of UNSAT instances in both experiments
II and III, HBISAT performances comparably with its DPLL counterpart with acceptable
overhead on some instances. The experimental results between HBIz and HBIm are consis-
tently matched, which demonstrate the flexibility and effectiveness of our proposed hybrid
framework.

Table 3. Category III Benchmarks

Instances #Var/#Cls SAT? ZChaff [s] HBIz [s] Speedup #Iter Minisat [s] HBIm [s] Speedup #Iter
bug01.cnf 35853/1021170 SAT 40.83 8.17 5.00× 21 1.55 4.29 0.36× 3
bug02.cnf 35853/1021171 SAT OUT 14.81 INF 38 OUT OUT INF 300
bug03.cnf 35947/992674 SAT 4.8 11.19 0.40× 30 0.97 4.28 0.23× 10
bug04.cnf 35854/1012315 SAT 39.07 11.16 3.5× 24 4.39 7.84 0.56× 9
bug05.cnf 35853/1022271 SAT 555.54 40.86 13.60× 97 OUT OUT INF 300
bug06.cnf 35853/1022271 SAT 282.08 6.67 42.30× 27 OUT 9.4 INF 13
bug07.cnf 35853/1022271 SAT 997.67 28.41 35.11× 41 OUT 15.01 INF 66
bug08.cnf 35622/1003074 SAT 38.5 6.44 5.98× 13 OUT 4.63 INF 6
bug09.cnf 35726/1011764 SAT 0.4 10.09 0.04× 26 180.03 5.29 38.88× 6
bug10.cnf 35839/1012135 SAT 0.62 12.18 0.05× 20 1242.21 3.6 345.06× 3
bug11.cnf 35853/1012271 SAT 1148.21 93.65 12.26× 148 2.6 10.37 0.25× 42
Total 3107.73 243.63 12.6× 1431.75 64.71 22.13×
5pipe.cnf 9471/195452 UNSAT 10.99 30.78 0.36× 300 78.77 185.66 0.42× 300
5pipe-5-ooo.cnf 10113/240892 UNSAT 34.30 52.75 0.65× 300 OUT OUT INF 300
6pipe.cnf 15800/394739 UNSAT 86.98 66.52 1.30× 300 OUT OUT INF 300
6pipe-6-ooo.cnf 17064/545612 UNSAT 159.35 276.63 0.58× 300 252.53 205.35 1.23× 300
7pipe.cnf 23910/751118 UNSAT 275.58 284.23 0.97× 300 OUT OUT INF 300
7pipe-7-ooo.cnf 24415/711050 UNSAT 2768.58 2425.08 1.14× 300 OUT OUT INF 300
Total 3335.78 2926.7 1.14× 349.74 381.95 0.92×

5. Conclusions

In this paper, a new Hybrid SAT solver framework (HBISAT) was presented that combines
the power of local search and modern DPLL-based search with conflict-driven learning. In
HBISAT, the local search interacts with a DPLL SAT solver incrementally. In effect, the
local search helps to identify incremental sets of clauses that are hard, and these clauses
are subsequently added to the clause database of the DPLL solver. On the other hand the
assignments returned from the DPLL solver guide the local search with a new start point.
The synergies from both the local search and DPLL search were investigated. Experimen-
tal results demonstrated up to an order of magnitude performance improvement for hard
satisfiable instances. Future research directions include WALKSAT guided preprocessing
and alternative padding mechanisms. Due to the fact that HBISAT tries to accumulate a
set of broken clauses in the clause database of the DPLL solver that might be unsatisfiable,
further studies could be conducted on the potential to extract an UNSAT core using this
hybrid approach.
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