
Journal on Satisfiability, Boolean Modeling and Computation 5 (2008) 217–242

Research Note

A Resolution Based SAT-solver

Operating on Complete Assignments

Eugene Goldberg egold@cadence.com

Cadence Research Labs,

2150 Shattuck Ave., 10th floor, Berkeley,

California, 94704, USA

Abstract

Most successful systematic SAT-solvers are descendants of the DPLL procedure and so
operate on partial assignments. Using partial assignments is explained by the “enumerative
semantics” of the DPLL procedure. Current clause learning SAT-solvers, in a sense, have
outgrown this semantics. Instead of enumerating the search space as the DPLL procedure
does, they explicitly build a resolution proof. In this paper, we suggest a semantics that,
in our opinion, is more suitable for clause learning SAT-solvers. The idea is to consider a
set of complete assignments not just as a part of the search space but as an “encryption”
of a resolution proof or a part thereof. Importantly, a set of points encrypting a resolution
proof can be dramatically smaller than the entire search space. We introduce a resolution
based SAT-solver with clause learning called FI (short for Find point Image of a proof)
that is inspired by the new semantics. FI operates on complete assignments. We compare
our naive implementation of FI with Minisat and BerkMin. Experiments show that FI is
competitive with Minisat and BerkMin in terms of backtracks. In terms of performance,
FI is slower than Minisat and BerkMin for small CNF formulas. On the other hand, even
the current primitive implementation of FI is competitive with Minisat and BerkMin on
large Bounded Model Checking formulas due to its superior decision making.

Keywords: SAT-solver, resolution , decision-making, local search, complete assignment

Submitted March 2007; revised April 2008; published June 2008

1. Introduction

The resolution proof system [1] has achieved outstanding popularity in practical applica-
tions. The best systematic SAT-solvers are descendants of the DPLL procedure [3] that
can be simulated by so-called tree-like resolution (a special type of general resolution). The
DPLL procedure operates on partial assignments. (An assignment is called partial if some
of the formula variables are not assigned any value). The current partial assignment is ex-
tended until a clause is falsified. Then, the DPLL procedure backtracks to the last decision
assignment and flips it.

The reason for using partial rather than complete assignments is that by rejecting a
partial assignment the DPLL procedure may simultaneously reject an exponential number
of complete assignments. (An assignment is called complete if every variable of the formula
is assigned a value.) This greedy approach is a natural consequence of enumerative

c©2008 Delft University of Technology and the authors.



E. Goldberg

semantics of DPLL. The DPLL procedure partitions the search space into non-overlapping
subspaces corresponding to the leaves of the search tree. For this reason, one can view this
procedure as enumeration of the complete assignments (or points) of the search space in
a particular order. (From now on we will use the terms complete assignments and points
interchangeably.) So, by enumerative semantics we mean the interpretation of DPLL as a
method for enumerating the points of the search space.

In this paper, we are making a case for using complete assignments in resolution based
SAT-solvers. This case is based on the following observations and results.

• Current resolution based SAT-solvers use clause learning. So instead of explicitly
enumerating the search space as it is done in the DPLL procedure, they actually build
a resolution proof. These SAT-solvers have outgrown the enumerative semantics of
DPLL.

• Using complete assignments is justified by the proof encryption semantics we introduce
in this paper. The proof encryption semantics can be viewed as a replacement of
enumerative semantics for SAT-solvers with clause learning. In this semantics, a set
of complete assignments is considered as an encryption of a resolution proof or a
part thereof. Proof encryption semantics gives a more precise metric for measuring
the quality of a set of points examined by a SAT-solver. Proof encryption semantics
implies that it is more important for a SAT-solver to try to visit a particular set of
points rather than attempt to enumerate all the points of the search space as fast as
possible.

• We introduce a resolution based SAT-solver FI (Find point Image of a proof) with
clause learning that operates on complete assignments. The set of points visited by FI
forms an encryption of the proof FI builds. So FI can be viewed as a SAT-solver that
builds a proof encryption along with the proof. Experimental results show that for
large industrial formulas, even a very primitive implementation of FI is competitive
with state-of-the-art SAT-solvers.

• FI can be viewed as a regular SAT-solver with clause learning whose choice of branch-
ing variables is limited to the variables of clauses falsified by the current complete
assignment. Importantly, experiments show that good performance of FI can not be
explained by great robustness of decision making based on computing conflict activity
of literals/variables that was first introduced in [14]. So FI performance looks mys-
terious in the enumerative semantics. On the other hand, it has a natural explanation
in proof encryption semantics.

• Complete assignments have more information about the formula than partial ones.
For example, when a CNF formula F has a small unsatisfiable core F ′, any complete
assignment p falsifies at least one clause of F ′. If one restricts the choice of branching
variables to those of clauses falsified by p, then there is a high probability to pick a
variable of F ′ as a branching variable. On the other hand, a SAT-solver operating
on partial assignments may get stuck in the clauses of F\F ′ never reaching clauses
of F ′. The reason is that it has to choose the next branching variable out of all free
variables of F , which significantly reduces the probability of picking a variable of F ′.

218



A Resolution Based SAT-solver Operating on Complete Assignments

• Greater informational capacity of complete assignments can be also leveraged when
solving satisfiable formulas. When backtracking, the complete assignment maintained
by FI remembers last assignments made in the subspace FI leaves. (A SAT-solver
operating on partial assignments stores this information only implicitly through con-
flict clauses.) Besides, FI reports satisfiability as soon as the set of clauses falsified by
the current complete assignment is empty. This may happen long before all clauses
are satisfied by fixed assignments. On the contrary, a SAT-solver operating on partial
assignments reports satisfiability only when all clauses of the formula are satisfied by
fixed assignments.

Although, resolution based SAT-solvers like Grasp [19],SATO [20], Chaff [14],BerkMin [8],
Siege and Minisat [4] are considered as descendants of DPLL, they are different from DPLL
in one very important aspect. Namely, they use clause learning (first introduced in Grasp).
For an unsatisfiable formula F , the DPLL procedure terminates if the right branch of the
root node of the search tree is proved not to contain a satisfying assignment. So the DPLL
procedure has to maintain a binary search tree. On the other hand, a clause learning
SAT-solver terminates when an empty clause is derived. For that reason, clause learn-
ing SAT-solvers enjoy great flexibility in organizing search e.g. they can perform frequent
restarts. (In addition to greater flexibility, adding learned clauses makes a SAT-solver more
powerful [2].) One can say that clause learning procedures only implicitly enumerate the
search space, while building a resolution proof is what these SAT-solvers do explicitly. (Even
if a clause learning SAT-solver does not generate a resolution proof, such a proof can be
extracted from the set of conflict clauses [9].) In a sense, current resolution based SAT-
solvers have outgrown the enumerative semantics of DPLL. New decision making heuristics
introduced by Chaff and then improved by BerkMin, Siege, Minisat and others can be
viewed as the recognition of the fact that clause learning SAT-solvers build a resolution
proof. Computation of literal/variable activity based on learned conflict clauses is nothing
else but decision making driven by a resolution proof.

The idea of proof encryption semantics is based on the following observation Let F be a
CNF formula and T be a set of complete assignments to the variables of F . Let SAT (T ,F )
be a procedure that resolves only the clauses of F and their resolvents that are specified by
the points of T (this procedure is described in Section 3 in more detail) Suppose SAT (T ,F )
results in derivation of an empty clause, which means that SAT (T ,F ) generated a resolution
proof R that F is unsatisfiable. We will say that T is a point image of R. One can view a
point image of R as its encryption in terms of complete assignments. Importantly, as we
show in this paper, every resolution proof R that a CNF formula F is unsatisfiable has a
point image T whose size is at most twice the size of R (in terms of resolution operations).
One can view the interpretation of a set of points as an encryption of a resolution proof
as an alternative to the enumerative semantics. (We will refer to this alternative semantics
as proof encryption semantics). The fact that the size of a point image of a resolution
proof can be dramatically smaller than the size of the entire search space, questions the
applicability of enumerative semantics to generation of resolution proofs. The notion of
a point image implies that it is much more important to visit a particular set of points
(which comprises a very small subset of the entire search space) rather than enumerate all
the points as fast as possible.

219



E. Goldberg

A straightforward way to use the notion of a point image of a proof is as follows. First,
a set T of points that is a point image of a resolution proof (or at least has a high chance
to be such) is generated. Second, the SAT (T ,F ) procedure above is applied to generate a
resolution proof. This approach has at least two problems. Firstly, it is not clear how to
generate a good set of points T . Second, even if we find a way to generate T , the SAT (T ,F )
procedure mentioned above is not practical because it may generate a very large number of
redundant resolvents. (The reason for introducing SAT (T ,F ) is to formalize the notion of
proof encryption.)

In this paper, we describe a SAT-solver FI inspired by the proof encryption semantics.
The main idea of FI is to use complete assignments to control decision making of a DPLL-
like procedure. That is instead of constructing a set of points T and a proof R separately,
FI builds them together. As we show later, the set of points visited by FI (after a natural
extension) indeed contains a point image of the resolution proof FI builds.

Depending on semantics used, one can give two interpretations of FI that are equivalent
algorithmically. In the first interpretation, FI is considered as a DPLL-like SAT-solver with
clause learning that is allowed to make assignments only to variables of clauses that are
falsified by a complete assignment p. This complete assignment dynamically changes every
time FI assigns a variable xi a value that disagrees with the value of xi in p.

In the second interpretation, FI operates on complete assignments. In this interpre-
tation, all variables are assigned and so there are no free variables. However, a value of
variable xi can be fixed so that all the points visited by FI after that have the same value
of xi until the latter gets unfixed.

The first interpretation is easier to understand from the operational point of view. In
this interpretation, FI is just a “regular” clause learning SAT-solver in which the choice of
variables to branch on is limited. The second interpretation better explains the semantics
of FI which is visiting a set of points encrypting a resolution proof.

In the experiments described in this paper, we used a very simple implementation of FI
that lacked many techniques employed by state-of-the art SAT-solvers (like fast BCP, effi-
cient data structures, special treatment of binary clauses, removal of inactive conflict clauses
and so on). We compared FI with SAT-solvers BerkMin and Minisat. The experiments
showed that while FI was competitive with BerkMin and Minisat in terms of backtracks,
it was slower on small and medium size formulas. However, when we run these SAT-solvers
on large BMC formulas (up to a few millions of variables) the performance of FI was com-
parable with that of BerkMin and Minisat. In this case, the superior decision making of FI
compensated for the inefficiency of implementation. Note that the good performance of FI
can not be explained by enumerative semantics. In particular, we show that the SAT-solver
different from FI only in that it picks a window of variables randomly (rather than uses the
window specified by the set of clauses falsified by p) works much worse.

This paper is structured as follows. Section 2 describes FI. Section 3 introduces proof
encryption semantics. In Section 4, we argue that complete assignments contain more
information about the formula than partial ones. Section 5 compares FI with local search
and DPLL-based procedures. Experimental results are given in Section 6. We make some
conclusions in Section 7.

220



A Resolution Based SAT-solver Operating on Complete Assignments

2. Description of FI

In this section, we describe the SAT-solver FI. As mentioned in the introduction, there are
two interpretations of FI. This section uses the first interpretation i.e. we consider FI as
a regular SAT-solver with clause learning whose decision making is driven by a complete
assignment p. We will call assignments made by FI to decision and implied variables fixed
to distinguish them from those assignments of p that still can be changed.

This section is structured as follows. In Subsection 2.1, we recall some basic definitions.
Subsection 2.2 gives an example of how FI works. Subsection 2.3 gives the pseudo-code of
the main procedure of FI. The decision making of FI is explained in Subsection 2.4. The
other features of FI (BCP, conflict clause generation, restarts and initial point generation)
are described in Subsections 2.5, 2.6. Some details of the implementation of FI we used in
experiments will be described in Subsection 6.1.

2.1 Basic definitions

Let F be a CNF formula (i.e. conjunction of disjunctions of literals) over a set X of Boolean
variables. The satisfiability problem (SAT) is to find a complete assignment p (called a
satisfying assignment) to the variables of X such that F (p) = 1 or to prove that such
an assignment does not exist. If F has a satisfying assignment, F is called satisfiable.
Otherwise, F is unsatisfiable. A disjunction of literals is further referred to as a clause.
A clause with one literal is called unit. A complete assignment to variables of X will also
be called a point of the Boolean space B|X| where B={0,1}. A complete assignment p

satisfies clause C if C(p)=1. If C(p)=0, p is said to falsify C. We denote by Vars(C )
and Vars(F) the set of variables of clause C and CNF formula F respectively.

2.2 Example

In this subsection, we show how FI works when testing the satisfiability of the CNF formula
F below. Let F be the CNF formula consisting of the following eight clauses C1 = x1 ∨ x2,
C2 = x3 ∨ x4, C3 = x1 ∨ x4 ∨ x5, C4 = x2 ∨ x5, C5 = x3 ∨ x5, C6= x2 ∨ x4, C7 = x5 ∨ x6,
C8 = x1 ∨x3 ∨x5. First, FI generates a complete assignment p. Assume that p is equal to
(x1=0, x2=0, x3=0, x4=0, x5=0, x6=0). After generating p, FI computes the set M(p) of
clauses falsified by p. In our case M(p) = {C2, C3} because C2 and C3 are the only clauses
of F falsified by p.

Then FI starts making fixed assignments to variables of F . However, in contrast to a
regular DPLL-like SAT-solver, not all variables are available for fixed assignments. Initially,
only the variables of Vars(M(p))={x1, x3, x4, x5} i.e. the variables of clauses C2 and C3

falsified by p can be used for decision making. Assume that FI picks variable x1 and makes
fixed assignment x1=0. Since x1 is equal to 0 in p, the assignment x1=0 FI is making
agrees with p and so the latter remains the same. The set M(p) does not change either.
At this point, clause C1 is satisfied (by this fixed assignment) and literal x1 is removed from
C3 and C8. Since no clause of F becomes unit, the Boolean Constraint Propagation (BCP)
procedure does not make any new fixed assignments.

Suppose that the next fixed assignment FI makes is x3=1. (Since x1 is already assigned a
fixed value, the only variables of Vars(M(p)) that are available for branching are x3, x4, x5.

221



E. Goldberg

Since this assignment disagrees with p, FI flips the value of x3 in p, so the new current
complete assignment p is (x1=0, x2=0, x3=1, x4=0, x5=0, x6=0). Since p has changed,
M(p) has to be recomputed. The new value of M(p) is {C3,C5}. After making assignment
x3=1, clause C2 is satisfied by this fixed assignment while literal x3 is removed from C5 and
C8.

Since C5 and C8 became unit clauses, the BCP procedure makes new fixed assignments.
Assume that unit clause C8 is processed first. To satisfy C8, FI makes fixed assignment
x5=0 that agrees with the current assignment p so the set M(p) does not change. The fact
that x5=0 agrees with p means that the clause C8 is satisfied by the current p and hence it
is not in M(p). So in contrast to a decision assignment that can be made only to a variable
of Vars(M(p)), implied assignments performed during BCP can be made to any variable of
the formula whose value has not been fixed yet. After assigning x5=0, clause C5 becomes
unsatisfiable. (Note that at this moment C5 is falsified by the current assignment p.) FI
generates a conflict clause as described in Subsection 2.5. In this case, the conflict clause
C9 = x1 ∨ x3 is generated and added to F . Note that the conflict clause C is falsified by
the current point p. So it has to be added to M(p).

After generating a conflict clause, FI backtracks to the decision assignment that is closest
to the last one and is responsible for the conflict. In our case, FI backtracks to assignment
x1=0. The last decision assignment x3=1 and all implied assignments made after x3=1
are erased. When backtracking, the current complete assignment p does not change i.e.
it remains exactly the same it was at the moment of the conflict. After backtracking, the
conflict clause C9 = x1 ∨ x3 becomes unit due to the decision assignment x1=0 that is still
fixed. So the BCP procedure is invoked. At this time M(p) is equal to {C3,C5,C9}.

The fixed assignment x3=0 deduced from C9, does not agree with the current complete
assignment p= (x1=0, x2=0, x3=1, x4=0, x5=0, x6=0). So FI flips the value of x3 in
p and recomputes M(p). The new value of M(p) is {C2,C3}. After assigning x3=0, the
clause C2 becomes unit and the fixed assignment x4=1 is deduced from it. Since x4=1
disagrees with the current complete assignment p, the value of x4 is flipped in p. So p is
now equal to (x1=0, x2=0, x3=0, x4=1, x5=0, x6=0). The new value of M(p) is {C6}.
At this point, the clause C6 is unit. After making the assignment x2=1, deduced from C6,
and recomputing p and M(p) we obtain p= (x1=0, x2=1, x3=0, x4=1, x5=0, x6=0) and
M(p) = ∅. This means that F is satisfiable and p is a satisfying assignment. Note that
the current set of fixed assignments (x1=0, x3=0, x4=1, x2=1) does not satisfy clauses
C4 = x2 ∨ x5, C7 = x5 ∨ x6 (but they are satisfied by the assignment x5 = 0 of p that is
not fixed.) This is an important feature of FI. It may recognize the satisfiability of a CNF
formula much earlier than a SAT-solver operating on partial assignments (because such a
SAT-solver has to keep making fixed assignments until each clause of the formula is satisfied
by a fixed assignment).

2.3 Main procedure

The pseudo-code of FI (without restarts) is shown in Figure 1. An initial complete as-
signment is generated by the procedure generate initial assignment. Then the set M(p) of
clauses falsified by p is computed . After that, FI follows the well-known procedure of [19]
used by the state-of-the-art resolution based SAT-solvers. The only difference is that FI

222



A Resolution Based SAT-solver Operating on Complete Assignments

maintains two additional entities: a complete assignment p and the set M(p) of clauses
falsified by p. When FI makes an assignment to a variable xi (either decision or implied
one) it checks if the chosen value of xi is equal to the value of xi in p. If these values are
equal, then no re-computation of p or M(p) occurs. Otherwise, a new complete assignment
p

′ is produced from p by flipping the value of xi and the set M(p′) is computed (by re-
computation of M(p)). If an unsatisfiable clause is found, FI backtracks without changing
the current point p.

The current complete assignment p and the set M(p) are used in FI solely for the
purpose of decision making. Namely, the next variable to be assigned is picked only among
variables of Vars(M(p)) i.e among the variables of the clauses currently falsified by p. Note
that FI reports that F is satisfiable as soon as the set M(p) becomes empty. As we saw in
the example above, this may happen before the current set of fixed assignments (decision
and implied) satisfies all the clauses.

FI is sound because it only adds clauses implied by the original formula F . FI is also
complete because it never derives a conflict clause that is implied by another clause of the
current formula (see below). In particular, FI never derives a conflict clause that is identical
to another clause of the formula. In other words, FI adds to the formula only new clauses.
So if F is unsatisfiable, FI will eventually derive an empty clause (because the total number
of unique clauses of n variables is finite and equal to 3n.) Otherwise, it will find a satisfying
assignment. The reason is that every partial assignment leading to a conflict is also unique
(repetition of such a partial assignment is prohibited by the corresponding conflict clause).
On the other hand, the number of partial assignment is finite.

The reason why FI derives only new clauses is as follows. (The same argument applies to
other SAT-solvers like Zchaff, BerkMin under the assumption that they never delete derived
clauses.) FI uses complete BCP. That is at the time a new fixed decision assignment is made
(after the previous BCP is over), each clause of the current formula is either satisfied by a
fixed assignment or has at least two literals that are not assigned (by fixed assignments).
On the other hand, a conflict clause C derived by FI contains exactly one literal assigned
in the last BCP (i.e. BCP that has led to the conflict) and all literals of C are set to 0 by
fixed assignments.

Clause C can not be implied by a clause C ′ of the current formula that was satisfied by
a fixed assignment before the last BCP. The reason is that C ′ has to contain a literal that
is not in C. Clause C can not be implied by a clause C ′′ that was not satisfied before the
last BCP. If C ′′ became satisfied in the last BCP then C ′′ has at least one literal that is not
in C. If C ′′ became falsified by the last BCP it has at least two literals set to 0 in this BCP
while C has only one such literal. So again C ′′ has a literal that is not in C. Finally, if a
literal of C ′′ is left unassigned this literal is not in C (because all literals of C are assigned).

2.4 Decision making of FI

The decision making of FI is based on computing conflict activity of literals first introduced
in Chaff [14] and then developed in BerkMin [8], Siege, Minisat [4] and other SAT-solvers.
The activity of literals is computed similar to BerkMin (but in contrast to FI, BerkMin
computes the activity of variables rather than literals). Let lit(xi) be a literal of variable
xi. If lit(xi) occurs in k clauses of the current formula that were involved in the last conflict,

223



E. Goldberg

FI (F )
{p=generate initial point(F );
M(p)=find falsified clauses(F ,p);
assgn = nil ;
while (true)
{if (BCP(F ,p,M(p),assgn) == conflict)
{C=generate conflict clause(F );
if (empty(C) return(UNSAT);
else backtrack(F ,p,M(p));}

else // no conflict yet
if (M(p) =∅) return (SAT);
else assgn= assignment to fix (F , M(p)); } }

Figure 1. Pseudo-code of FI

then the activity of lit(xi) is incremented by k. After a fixed number of conflicts, the activity
of literals is divided by a small constant as it was first done in Chaff [14].

// Vars(M(p),n) denotes the set of variables of last n clauses of M(p).
assignment to fix1 (F ,M(p))
{ act lit = most active(Vars(M(p),n);
return(satisfying assgn(act lit)); }

assignment to fix2 (F , M(p))
{C = find derived clause(F ,M(p));
if (C == nil) return(assignment to fix1 (F ,M(p))); // no conflict clauses in M(p)
act lit = most active(Vars(C));
return(satisfying assgn(act lit)); }

Figure 2. Pseudo-code of the two decision-making procedures of FI

In the experiments described in this paper we used two decision making procedures.
Their pseudo-code is shown in Figure 2. The first procedure (assignment to fix1 ) just finds
the assignment satisfying the most active literal among the variables of clauses from M(p)
(obviously, only variables whose values are not fixed yet are considered). The number
of clauses in M(p) may be large which may slow down decision making. To solve this
problem we consider only the last n clauses of M(p) i.e. the last n entries of M(p). In the
experiments n was set to 32.

The second procedure (assignment to fix2 ) is BerkMin-like. First it looks for the conflict
clause C of M(p) that was derived the most recently. If all conflict clauses are satisfied by
p, it calls the first decision making procedure i.e assignment to fix1. Otherwise, it finds the

224



A Resolution Based SAT-solver Operating on Complete Assignments

assignment satisfying the most active literal among variables of C whose values have not
been fixed yet.

2.5 BCP procedure and conflict clause generation

The BCP procedure of FI is almost identical to that of a generic DPLL based SAT-solver.
The only difference is that after making a fixed assignment that disagrees with p, the latter
changes and the set M(p) is recomputed. The pseudo-code of a generic BCP procedure (it
does not use the speed-up scheme introduced in [20] and further improved in [14]) is shown
in Figure 3.

BCP(F ,p, M(p),assgn)
{ initialize(assgn queue,assgn); // initialize assignment queue with assgn
// assignment loop
while (assgn queue is not empty)
{ next assgn = extract assignment(assgn queue); // extract next assignment
// let next var denote the variable to be assigned by next assgn
for every clause C having variable next var
{if (next assgn satisfies C) mark as satisfied(C);
else if (unit(C)) // if next assgn falsifies a literal of C and it became unit
add new assgn (C,assgn queue)} // add the assignment satisfying C to the queue

if (next assgn agrees with p) continue;
else // next assgn does not agree with p

{flip value(next var, p); // flip the assignment of next var in p

recompute(next var,M(p)); }}} // recompute the set of falsified clauses

Figure 3. Pseudo-code of the BCP procedure of FI

In contrast to the decision making of FI, its BCP procedure is global. As described
above, in its decision making, FI fixes only assignments of variables that occur in clauses of
M(p). In the BCP procedure, FI keeps track of all the unit clauses regardless of whether
they are falsified or satisfied by p and so regardless of their presence in M(p) . (In terms of
fixed assignments, a clause is unit, if all its literals but one are set to 0 by fixed assignments.)

Let p
′ be the point obtained from p by flipping the value of next var (when next assgn

does not agree with p). The set M(p′) is obtained by re-computation of the set M(p) in
two steps. First, all the clauses of M(p) having variable next var are removed from M(p).
Second, all the clauses of F that have the literal of next var falsified by the new assignment
to this variable are examined. Every clause of this set that is falsified by the new complete
assignment is added to M(p).

FI employs a traditional conflict analysis and first-UIP conflict clause generation whose
description can be found in [19, 21].

225



E. Goldberg

2.6 Initial point generation and restarts

Currently FI uses the following procedure for generation of initial point p. This procedure
makes an assignment to a variable xi of the formula and runs BCP procedure to derive all
the implied assignments. If implied assignments to a variable contradict each other, one of
them is picked randomly. (The contradiction of implied assignments means that the set of
assignments made so far can not be extended to a satisfying assignment. In case of a conflict,
the DPLL procedure backtracks, but FI ’s goal here is to build a complete assignment. For
this reason, FI continues making assignments even if a conflict occurs.) This goes on until
all variables are assigned. This procedure may vary in how variable xi and its assignment
are chosen. Variable xi can be chosen randomly or according to a particular order. An
assignment to xi can be also picked randomly or according to some heuristic.

We use BCP when generating an initial point p to minimize the size of M(p). The
reason is twofold. First, by reducing the size of M(p) we make all operations involving
M(p) more efficient. Second, by minimizing the size of M(p) we make the decision making
of FI more precise. This part is explained in more detail in Subsection 4.1.

FI uses occasional restarts as suggested in [10]. (I.e. once in a while, FI abandons
the current search tree to start a new one.) After a restart, FI inherits the last complete
assignment p obtained before abandoning the previous search tree. In experiments, FI
performed a restart every 150 conflicts.

3. Proof encryption semantics

As mentioned in the introduction, one can give two interpretations of FI. In the previous sec-
tion we described FI in terms of the first interpretation. It views FI as a regular SAT-solver
with clause learning that maintains a complete assignment to direct its decision-making.
The advantage of this interpretation is that FI ’s operation is very easy to understand. The
problem is that this interpretation is based on enumerative semantics. From the viewpoint
of this semantics it is very hard to understand why FI should work at all. Indeed, the
set of variables that can be assigned a fixed value is specified by a complete assignment
i.e. by a minuscule piece of the search space. In this section, we describe and justify an
alternative interpretation of FI. In this interpretation, FI does not enumerate the search
space, but rather visits a set of points that encrypts a resolution proof. The latter is built
simultaneously with its encryption.

This section is structured as follows. In subsection 3.1, we recall some basic definitions
of the resolution proof system. Subsection 3.2 introduces procedure SAT (T ,F ) that checks
if a set of points T encrypts a resolution proof that F is unsatisfiable. In Subsection 3.3,
we show that after a natural extension, the set of points visited by FI contains a point
image of the proof built by FI. This result substantiates interpretation of FI in terms of
proof encryption semantics. Subsection 3.4 shows that the SAT (T ,F ) procedure (and more
generally, proof encryption semantics) can be used to measure the quality of a set of points
visited by a SAT-solver.

226



A Resolution Based SAT-solver Operating on Complete Assignments

3.1 Resolution proofs

Here we recall basic definitions of the resolution proof system [1]. Let C1 and C2 be two
clauses that have opposite literals of a variable xi. Then the clause consisting of all the
literals of C1,C2 except those of xi is called the resolvent of C1,C2. (For example if
C1 = x1∨x3∨x5, C2 = x2∨x3 ∨x7, the resolvent of C1 and C2 is the clause x1∨x5∨x2∨x7.)
The resolvent of C1,C2 is said to be obtained by the resolution operation in variable xi.

The resolvent of C1,C2 is implied by C1 ∧ C2. So, if an empty clause is derived from
clauses of F , then F implies an empty clause and so F is unsatisfiable. Hence, the resolution
system is sound. It is also complete, that is, given an unsatisfiable CNF formula F , one
can always generate a sequence of resolution operations resulting in producing an empty
clause. This sequence of operations is called a resolution proof. The resolution proof
system is very important from a practical point of view because the best SAT-solvers for
solving “industrial” formulas are based on resolution.

3.2 Procedure SAT(T,F)

In this subsection, we introduce a procedure SAT (T ,F ). This procedure is not practical
(for the reason explained below) and we introduce it just to formalize the notion of a set of
points T encrypting a proof. Namely, T encrypts a resolution proof that F is unsatisfiable,
if SAT (T ,F ) terminates with the answer ‘unsatisfiable’.

Proof encryption is discussed more thoroughly in [7] using the notion of a stable set of
points [6]. In particular, in [7], we explain why one needs two points to encrypt a resolution
operation. (If C is the resolvent of clauses C ′ and C ′′, then to prove C ′ ∧ C ′′ → C it is
sufficient to build a stable set of two points.) Besides, in [7], we describe how one can
encrypt a resolution proof in such a way that the latter can be efficiently recovered. The
procedure SAT (T ,F ) described below is an adaptation of procedure SAT (T ,F ,L) of [7] for
the purpose of this paper. The full discussion of this topic is beyond the scope of this paper.

The pseudo-code of SAT (T ,F ) is given in Figure 4. First, SAT (T ,F ) checks if a point
p of T satisfies F . If such a point exists, then SAT (T ,F ) returns ‘satisfiable’. Then in the
while loop, SAT (T ,F ) generates resolvents specified by T in topological order i.e. level by
level. Clauses of the original formula F have level 0. If C is the resolvent of clauses C ′ and
C ′′, then level(C) = max (level(C ′),level(C ′′) + 1. The SAT (T ,F ) procedure generates the
resolvent C of clauses C ′, C ′′ of the current formula F , only if T contains points p

′ and p
′′

such that the following two conditions hold:

• C ′(p′) = 0 and C ′′(p′′)=0.

• C(p′) = 0 and C(p′′)=0.

The points p
′ and p

′′ are called a point image of the resolution operation over clauses
C ′ and C ′′. In other words, SAT (T ,F ) generates a resolvent C only if T contains a point
image of the corresponding resolution operation. We also assume that the resolvent C is
generated only if it is not implied by some existing clause of F . In other words, we assume
that SAT (T ,F ) generates only new clauses. Let F1 denote the set of resolvents generated at
the current topological level. If F1 = ∅ (i.e. no new resolvents were generated), SAT (T ,F )
returns ‘unknown’. This outcome means that T contains an insufficient number of points.

227



E. Goldberg

If F1 contains an empty clause, SAT (T ,F ) returns ‘unsatisfiable’. Otherwise, the clauses of
F1 are added to F and SAT (T ,F ) starts building a new topological level of the proof.

// T is a set of points, F is a CNF formula
SAT (T ,F )
{if (F (p)=1 for a point p of T ) return(‘satisfiable’);
while (true)
{F1 = generate next level resolvents(T ,F );
if (F1 == ∅) return(‘unknown’);
if (F1 contains an empty clause) return(‘unsatisfiable’);
F = F ∪ F1; } }

Figure 4. Pseudo-code of SAT (T ,F )

Let R be a resolution proof that a CNF formula F is unsatisfiable. Let T be a set of
points that has the following property. For any resolvent C of R obtained from parent clauses
C ′ and C ′′ there are two points p

′, p
′′ of T forming a point image of the resolution operation

over C ′ and C ′′. Then the set T is called a point image of resolution proof R. From
definitions of SAT (T ,F ) and point image it follows that SAT (T ,F ) returns ‘unsatisfiable’
if and only if the set T contains a point image of a resolution proof that F is unsatisfiable.
One can view a point image T of a proof R as an encryption of R, while SAT (T ,F ) can
be viewed as a procedure for recovering R from T .

It is not hard to show that a proof R has a point image whose size is at most twice
the size of the proof R (in terms of resolution operations). Indeed, if C is a resolvent of R

obtained from clauses C ′ and C ′′, one can always find points p
′, p

′′ forming a point image
of this resolution operation. The union of point images of all resolution operations of R is
a point image of R. Obviously, the size of such a point image is at most twice the size of R.

Note that one can not guarantee that SAT (T ,F ) will recover R from a point image T in
polynomial time (which makes SAT (T ,F ) impractical). Even though SAT (T ,F ) imposes
restrictions on generated resolvents, their number still can be prohibitively large. However,
since we do not use SAT (T ,F ) for real computation it does not matter much. Our goal here
is twofold. First, we want to show how one can encrypt a resolution proof using complete
assignments. Second, we use SAT (T ,F ) to measure the quality of a set of points visited by
a SAT-solver (see Subsection 3.4). So, in a sense, we only use the fact that for some sets
of points, SAT (T ,F ) results in generating an empty clause, while for others it stops before
generating such a clause.

3.3 FI builds a point image of the proof it generates

Let F be an unsatisfiable formula and R be a resolution proof found by FI when solving
F . Let T be the set of points visited by FI. In this subsection, we show that after a natural
extension of the set T , it becomes a point image of R. In Subsection 3.3.1, we describe
this extension and in subsection 3.3.2 we prove that the extended set T is a point image
of R. Importantly, the fact that the set of visited points forms an image of the proof FI

228



A Resolution Based SAT-solver Operating on Complete Assignments

builds does not mean that FI does anything “special”. This fact just implies that the proof
encryption semantics agrees with a resolution based SAT-solver using clause learning.

3.3.1 Extension of the set of visited points

Denote by T the set of points visited by FI when generating a proof R. We need to
extend T because during BCP FI may fix assignments of variables of clauses that are
not in M(p). This extension of T is natural in the sense that the only reason why FI
does not visit “explicitly” a point added by the extension is that this point can not be a
satisfying assignment. Let C be a unit clause (i.e all the literals of C but one are set to 0 by
fixed assignments). Suppose, the assignment satisfying C agrees with the current complete
assignment p. (So C is not M(p).) After this assignment is fixed by FI, the clause C may
get involved in a conflict without being falsified by any point of T . However, the necessary
condition for T to be a point image of R is that every clause of R is falsified by a point of
T . So, obviously, T is not an image of R.

Suppose we extend T by the set of points that falsify all clauses that became unit during
a run of BCP and from which an (implied) assignment was derived. This extension can be
built in the following way. If, during BCP a unit clause C is satisfied by fixing an assignment
to a variable xi and this assignment agrees with the current point p, we add to T the point
p

′ obtained from p by flipping the value of xi. Obviously, p
′ falsifies C. Note that each

added point is at Hamming distance one with an existing point of the current set T . The
size of the extended set is no more than n times the size of the original set T .

3.3.2 Extended set of points is an image of the proof built by FI

Let FI encounter a conflict and Ccnfl be the conflict clause produced in this conflict. The
conflict clause generation based on the first-UIP scheme (that is used by FI ) is well de-
scribed in [21]. According to this scheme, Ccnfl is generated by resolving clauses from which
assignments were deduced at the conflict decision level and the clause that became unsat-
isfiable. Let Ccnfl be obtained by resolving clauses C1,..,Ck of the current CNF formula
F . Here C1,..,Ck−1 are clauses from which assignments were deduced during BCP at the
conflict level and Ck is the unsatisfiable clause. (Note that during BCP at the conflict level,
assignments may have been deduced from clauses other than C1,..,Ck−1. But we are inter-
ested only in the clauses involved in the conflict.) Assume that C1,..,Ck−1 are numbered in
the order in which they were processed by BCP (that is if i < j, then an assignment was
deduced from Ci before deduction from Cj).

In the first-UIP scheme, Ccnfl is obtained from C1,..,Ck by resolving them in the “reverse
order”. That is, first, Ck is resolved with Ck−1. Then Ck−2 is resolved with the resolvent
of Ck and Ck−1 and so on.

Proposition. The extended set of points T is a point image of the proof generated by
FI.

Proof. We need to show that for each of k-1 resolution operations performed to generate
Ccnfl, the extended set T contains two points forming a point image of this resolution
operation. This can be proved by induction in the number of resolutions. Note that by
definition of the conflict situation, the clause Ck (i.e. the clause that became unsatisfiable)
had to be falsified by the current complete assignment (denote it by pcnfl).

229



E. Goldberg

Basis. The fact that T contains a complete assignment pcnfl falsifying Ck and that the
variables of Vars(Ck) have fixed assignments is the basis of our inductive proof.

Denote by Rm the clause equal to the unsatisfiable clause Ck for m=1 or to the resolvent
of clause Ck−(m−1) and clause Rm−1 (obtained by resolving clauses Ck,Ck−1,..,Ck−(m−2))
for m > 1.

The inductive statement of the proof is as follows. We assume that Rm is falsified by
pcnfl and all the variables of Vars(Rm) have assignments fixed before an assignment was
deduced from clause Ck−(m−1).

Using this assumption we will show that

1. The inductive statement holds for the next value of m.

2. T contains a point pm falsifying the clause Ck−m such that pcnfl and pm form a point
image of the resolution operation over Rm and Ck−m producing clause Rm+1.

Proof of the first condition. Denote by Ded var(Ck−m) the variable whose value
was deduced from Ck−m during BCP. Note that before a value of Ded var(Ck−m) was
deduced from Ck−m, the literals of the other variables of Ck−m were set to 0 by fixed
assignments. So these literals are set to 0 by pcnfl too. Then, taking into account that
pcnfl falsifies Rm we conclude that the clause Rm+1 is falsified by pcnfl. Note that the
assignments to the variables of Vars(Ck−m)\ {Ded var(Ck−m)} were fixed before deducing
a value of Ded var(Ck−m). So all the literals of Rm+1 were fixed at 0 before derivation of
Ded var(Ck−m).

Proof of the second condition. Let p be the point that was the current complete
assignment of FI at the time an assignment was deduced from clause Ck−m. Denote by pm

the point of T defined as follows. If Ck−m was falsified by p, then pm = p. If Ck−m was
satisfied by p, then pm=p

′ where p
′ is obtained from p by the extension of T described

above (i.e. by flipping the value of variable Ded var(Ck−m)). In either case, Ck−m(pm)=0.

Now we need to show that both pm and pcnfl falsify the resolvent Rm+1 of Ck−m and
Rm (and so pm and pcnfl form a point image of the resolution operation over Ck−m and
Rm.) We already showed above that pcnfl falsifies Rm+1. Now we show that pm sets to
0 all the literals of Rm (except maybe the literal of Ded var(Ck−m)) and hence, taking
into account that Ck−m(pm)=0, the point pm falsifies Rm+1. Let lit(xi) be a literal of Rm

(where xi is different from Ded var(C k−m)). Assume the contrary i.e. that the value of xi

in pm sets lit(xi) to 1 and so pm satisfies the resolvent Rm. This assignment to xi can not
be fixed because then pcnfl would have the same value of xi and so it would satisfy Rm.
So the opposite value of xi must have been deduced later. This value of xi could not have
been deduced from Ck−m (because xi is different from Ded var(Ck−m)) or Ck−(m−1) (or
from any clause Ck−(m−p), p > 1) because all assignments to the variables of Rm were fixed
before derivation from Ck−(m−1)). This implies that there was one more derivation between
Ck−m and Ck−(m−1). But this contradicts our assumption that the sequence C1,. . . ,Ck lists
all the clauses involved in the conflict in the order in which assignments were deduced from
them by BCP.

230



A Resolution Based SAT-solver Operating on Complete Assignments

3.4 Using proof encryption semantics to measure quality of sets of points

One of the main problems of the enumerative semantics is as follows. Let T i and T j be
two sets of points which have been proved not to contain a satisfying assignment. Enumer-
ative semantics essentially implies that if |T i| > |T j | then T i is more “valuable” than T j .
This makes perfect sense if the search space is partitioned into non-overlapping subsets T i.
However this is not true, for example, for SAT-solvers with clause learning where subspaces
T i corresponding to leaf nodes may overlap. In such a case, the most important quality of
subspaces T i is not their size but their synergy i.e. how well they fit each other to produce
an empty clause as a proof of unsatisfiability.

The proof encryption semantics gives a way to measure the quality of a set of visited
points. We illustrate this claim by two examples below.

Suppose that a CNF formula F is equal to F ′∧{xi} where xi is just a unit clause. From
the viewpoint of enumerative semantics setting xi to 1 (that would be done by a DPLL-like
SAT-solver to satisfy the unit clause xi) rules out half the search space. So one has to
conclude that 50% of work has been done. On the other hand, obviously, the complexity of
proving that F (xi=1) is unsatisfiable may be arbitrary high.

From the viewpoint of the proof encryption semantics, the situation is different. Let R

be a “reasonable” resolution proof that F is unsatisfiable. By a reasonable proof we mean
one that first derives clause xi from F ′ and then resolve xi and xi to produce an empty
clause. (This is exactly the kind of a proof a state-of-the-art SAT-solver with clause learning
would build). If one constructs a point image of such a proof, only one point of this image
has to falsify xi (namely a point of the image of the resolution operation over clauses xi

and xi.) So in the proof encryption semantics, the work done by ruling out the subspace
xi=0 amounts to gaining only one point of the image of a future proof.

Let us consider another example. Suppose an unsatisfiable CNF formula F contains a
clause C = xi ∨ xm. Suppose that C is irredundant i.e. removing C from F makes the
latter satisfiable. Then C has to be a part of any resolution proof R that F is unsatisfiable.
Let us T ′ be the set of complete assignments falsifying C (i.e. T ′ consists of all complete
assignments with xi = 0 and xm = 0). Although T ′ makes up a quarter of the search space,
it does not contain a point image of a resolution proof (because T ′ can not contain point
images of operations resolving clauses in xi or xm). On the other hand, there might be a
dramatically smaller set of points T ′′ that contains a point image of a proof.

4. Complete assignments contain more information about the formula

than partial assignments

In this section, we compare partial and complete assignments at a different angle. A partial
assignment specifies more points of the search space, but it contains much less information
about formula F (because a partial assignment “sees” only a fraction of variables of F ).
On the contrary, a complete assignment specifies only one point p of the search space but
contains more information about F . In Subsection 4.1 we show that this advantage of a
complete assignment can be used for identifying small unsatisfiable cores. Subsection 4.2
demonstrates how greater informational capacity of complete assignments can be used for
solving satisfiable formulas.

231



E. Goldberg

4.1 Identification of unsatisfiable cores

Let F be a CNF formula that can be represented as F1∧F2 where F1 is a large CNF formula
(either satisfiable or unsatisfiable) that is very hard to solve and F2 is a small unsatisfiable
CNF formula. Assume for the sake of simplicity, that the variables of F1 and F2 do not
overlap. Since F1 is much larger than F2, first conflict clauses derived by a SAT-solver
will depend on variables of F1. Indeed, suppose, for example, that |Vars(F2)|=10 and
|Vars(F1)|=106. Suppose that to get a conflict in F2 one has to assign at least 5 variables
of F2. Then the probability of producing a conflict in F2 is roughly speaking (10−6)5 i.e.
10−30. (Of course we assume here that the clauses derived from conflicts in F1 are not
too long. Otherwise we would need to take into account that a SAT-solver has to make
many assignments in F1 before a conflict occurs. This increases the chances of producing
a conflict in F2.) So with great probability conflicts will be generated in the formula F1.
Then the activity of variables of F1 will be growing (we assume that our SAT-solver uses
Zchaff -like decision making). This will force the SAT-solver to keep branching on variables
of F1 until an assignment satisfying F1 is produced or F1 is proved unsatisfiable.

Let us consider solving the formula above by FI. No matter what the current complete
assignment p is, it falsifies a clause of F2 (because the latter is unsatisfiable). Then, although
the choice of branching variables reduces to Vars(M(p)) (i.e. to the variables of clauses
falsified by p), a variable of F2 is always available for branching and so good choices remain
intact. Moreover, since the set Vars(M(p)) is much smaller than Vars(F ), finding a variable
of F2 becomes dramatically easier.

One may think that the case when a CNF formula has a small unsatisfiable core is
relatively rare. However, even if the original CNF formula F is irredundant (i.e. no clause
of F can be removed without making F satisfiable), it becomes redundant after adding
conflict clauses and/or making decision assignments. This may lead to appearance of small
unsatisfiable cores. So the problem of finding such cores is ubiquitous in resolution based
SAT solving.

Interestingly, the reasoning above implies that to make identification of an unsatisfiable
core easier one should keep the size of the set M(p) small. One can view variables Vars(F2)
of the small unsatisfiable core F2 as “signal” and variables Vars(F1) of F1 as “noise”. No
matter how FI picks p, a signal variable will be in Vars(M(p)). On the other hand, by
minimizing the size of M(p), FI may considerably reduce the number of noise variables
and so improve the signal/noise ratio in Vars(M(p)). In particular, when generating an
initial point p (Subsection 2.6) FI tries to minimize the size of M(p).

4.2 Storing information about previous assignments when solving satisfiable
formulas

Greater informational “capacity” of complete assignments can be also leveraged when solv-
ing satisfiable formulas. A DPLL-like SAT-solver operating on complete assignments loses
information about assignments made before backtracking (although some part of this in-
formation is represented implicitly in the learned clauses). Besides, to find a satisfying
assignment such a SAT-solver has to keep extending the current partial assignment until all
clauses are satisfied. On the contrary, when backtracking, FI preserves more information
due to maintaining a complete assignment (that remembers the last assignments made be-

232



A Resolution Based SAT-solver Operating on Complete Assignments

fore backtracking). Besides, FI does not have to satisfy all the clauses by fixed assignments.
It stops as soon as the current complete assignment p satisfies all the clauses (at this time,
only a small fraction of assignments of p may be fixed).

5. Background

In this section, we compare FI with other SAT-solvers and give some background informa-
tion. As mentioned above, FI has two different interpretations. In the first interpretation,
FI should be compared with other DPLL-like SAT-solvers like Zchaff [14], BerkMin [8],
Siege, Minisat [4]. (In this interpretation, FI is a DPLL-like SAT-solver with clause learning
whose choice of branching variables is limited to Vars(M (p))). The main difference of FI

from these SAT-solvers is in decision making. The decision making driven by conflict activ-
ity of literals (introduced by Zchaff ) is very slow for large formulas if one has to examine
all free (i.e. unassigned) variables. A solution of BerkMin was to branch on variables of the
most recently derived conflict clause that was still unsatisfied. This considerably reduced
the number of variables to examine. (A similar solution was independently introduced in
Siege.) The flaw of this approach is that if the current CNF formula does not have any
unsatisfied conflict clauses, BerkMin still has to pick an assignment out of the entire set
of free variables. (As we show in Section 6 this drawback slows down the performance of
BerkMin for large BMC formulas.)

Minisat took a slightly different approach. The activity of variables is computed in
Minisat similarly to BerkMin. Like BerkMin it is more aggressive than Zchaff in giving
preference to recently derived clauses. However, in contrast to BerkMin and Siege, Minisat
still looks for the most active variable among all the free ones. It does this efficiently by
maintaining a heap of variable activities. FI suggests a new way to speed up decision
making. It reduces the choice of available branching variables to those that are falsified by
the current complete assignment.

In the second interpretation, FI is a resolution based algorithm with clause learning
that operates on complete assignments. From this point of view FI should be compared
with algorithms operating on complete assignments pioneered in [16, 17]. One can classify
these algorithms into three groups: incomplete stochastic local search algorithms, hybrid
algorithms combining DPLL and local search and local search algorithms that can solve
unsatisfiable formulas. The first group comprises of algorithms like gsat [16],walksat [17],
unitwalk [12]. Although FI bears some similarity to walksat (they both maintain the set
M (p) of clauses falsified by the current complete assignment), the main difference of FI
from the algorithms of this group is that it is complete. So FI can escape local minima
that may trap a local search algorithm. On the other hand, being a DPLL-like procedure,
FI does not work well for classes of formulas like satisfiable random formulas where local
search algorithms show strong performance.

The second group consists of algorithms like [13, 11]. In [13], in every node of the DPLL
procedure, a local search procedure is invoked to identify the next variable to branch on.
In [13], an important observation was made that local search can be used for identifying
an unsatisfiable core of the initial formula. The approach of [13] was also tried in [11]
with the following modification. Before running a local search procedure at a node of the
search tree, dependencies between variables of the current formula were computed. The

233



E. Goldberg

difference of FI from the algorithms of this group is twofold. First, FI uses clause learning
and decision making based on computing conflict activity of literals and so it can be applied
to solving very large CNF formulas. Second, algorithms of this group consider local search
procedures and DPLL procedure as separate entities. On the contrary, in FI these two
kinds of procedures are merged together into a single DPLL-like procedure operating on
complete assignments.

There are very few local search procedures that can be applied to solving unsatisfiable
formulas. A complete local search algorithm augmented by clause generation was introduced
in [5]. Clauses were generated in the algorithm of [5] in “a mechanical way” just to escape
local minima. Our experiments showed that the SAT-solver of [5] generates an enormous
number of new clauses and so fails to prove the unsatisfiability of even very small CNF
formulas. In [18], the idea of proving unsatisfiability by local search was introduced. The
suggestion was to encrypt proofs in some way and then look for proof encryptions by a
stochastic local search procedure. This idea was implemented in [15] but the suggested
algorithm performed well only on a fraction of CNF formulas. Since FI is based on proof
encryption semantics one can view it as an implementation of the elegant idea of [18].
However, in contrast to [18], FI is a complete algorithm that builds a proof encryption
along with the proof itself. Such a strategy makes sense because, intuitively, an encryption
that is good for one formula may not work well for another.

6. Experimental Results

In this section, we give results of some experiments with an implementation of FI. Exper-
iments were run on Intel’s Xeon CPU (3.06GHz) under Linux. The main objective of the
experiments was to show that although FI was very limited in the choice of branching vari-
ables, it was still competitive with state-of-the-art SAT-solvers in the number of backtracks
(conflicts). So we used a very simple implementation that lacked the techniques commonly
employed to speed up a SAT-solver. Besides, we tried to keep our implementation of FI
as simple as possible (to facilitate changing the code of FI ). Nevertheless we give some
results of FI performance showing that even our primitive implementation is competitive
with highly optimized SAT-solvers for large Bounded Model Checking (BMC) formulas. In
our experiments, we used the second decision-making heuristic of Subsection 2.4 for the
formulas of Tables 1, 7 (it was slightly modified for the formulas of Table 7 as described
below). For the rest of the formulas we used the first decision-making heuristic of subsection
2.4 with n=32 (i.e. FI took into account only last 32 entries of the set M(p)). In all the
experiments, a restart was performed every 150 conflicts.

This section is structured as follows. In Subsection 6.1 we briefly describe the imple-
mentation we used in experiments. Subsection 6.2 compares FI with Zchaff, Minisat and
BerkMin. In Subsection 6.3, we show that FI can not be efficiently simulated by a SAT-
solver that reduces choices by picking the next branching variable from a random window of
variables. Finally, Subsection 6.4 gives some results on testing the satisfiability of formulas
with small unsatisfiable cores.

234



A Resolution Based SAT-solver Operating on Complete Assignments

6.1 A brief description of the implementation we used in experiments

FI was implemented in C++ using the gcc compiler (version 3.2.2). We used the STL
library for data structures like dynamic arrays. As mentioned above, our implementation
of FI was very simple. It did not have advanced features like fast BCP, efficient formula
representation, special treatment of binary clauses, removal of inactive conflict clauses and
so on. In our implementation of the BCP procedure, to check if a clause was unit FI just
counted the number of unassigned literals (as it was done, for example, in Grasp [19]).
Instead of “watching” literals, for every literal lit(xi), FI maintained the list of clauses of
the current formulas having lit(xi). So when lit(xi) was set to 0, FI just needed to examine
the clauses of the corresponding list to see if new unit clauses appeared. To avoid examining
satisfied clauses, when lit(xi) was set to 1, all the clauses with lit(xi) unsatisfied so far were
marked as satisfied. The clauses satisfied at a particular decision level were recorded so
that they could be easily unmarked when backtracking.

For more efficient processing of the set M(p) of clauses falsified by the current complete
assignment p, our implementation of FI maintained the following three data structures.
An array weight contained the information about variable occurrences in clauses of M(p).
If weight [i] = 0, then no clause of M(p) contains xi. An array Vars contained the set
of all variables that were present in M(p) (i.e. all variables xi with weight [i] > 0). Fi-
nally, FI maintained an array falsified clauses, where falsified clauses[i] gave the clauses
of M(p) having variable xi. All three data structures were updated every time, the set
M(p) changed. The array weights allowed one to efficiently check if xi was in a clause of
M(p). The array Vars was used to efficiently enumerate all variables of clauses falsifying
p. The array falsified clauses was used for updating M(p). When the value of variable xi

was flipped, the clauses to be removed from M(p) were extracted from falsified clauses[i ].

6.2 Comparison with other SAT-solvers

In this subsection, we compare our implementation of FI with BerkMin [8], version 561 and
Minisat [4], version 1.13. To put FI performance in perspective, we also give the results of
Zchaff (version Z2001.2.17 of year 2001). Table 1 compares SAT-solvers for some known
benchmark formulas of small and medium size (up to 60 thousand variables). The second
column gives the number of formulas in a benchmark set. For every SAT-solver the run-
time (in seconds) and number of conflicts is reported. Results of Table 1 show that FI was
competitive with BerkMin and Minisat in terms of conflicts (with the exception of the hole
formulas where FI had considerably fewer backtracks). FI was better than Zchaff in terms
of backtracks (except for the hole formulas where Zchaff had slightly fewer backtracks). As
for performance, BerkMin and Minisat were much faster than FI due to their advanced
optimization techniques. Zchaff was also faster than FI and only when it had a significantly
larger number of backtracks (bmc and ii benchmarks) it was slower than FI.

In Table 2, we compare these four SAT-solvers on a set of large BMC formulas (up to
a few million variables). These formulas describe various properties of more than a dozen
of customer designs. This set consists of 79 formulas (28 satisfiable and 51 unsatisfiable).
The formulas were generated by the SMV model-checker [22]. For all the four SAT-solvers,
Table 2 gives the number of conflicts (in thousands) and runtime (in hours). (Zchaff and

235



E. Goldberg

Table 1. Comparison of FI with other SAT-solvers on some known benchmarks

Name #inst
Zchaff-2001 BerkMin561 Minisat FI
#cnfls time

(s)
#cnfls time

(s)
#cnfls time #cnfls time

blocksworld 7 15,325 9.5 4,239 1.6 4,732 1.7 7,211 25.3

miters 13 124,987 7.9 31,998 1.8 48,118 2.7 28,386 9.8

bmc 13 309,652 523.1 53,989 54.0 44,195 29.8 41,846 210.4

planning 6 74,639 49.2 31,238 13.4 17,153 6.0 22,786 159.1

ii 41 75,859 53.4 6,505 0.5 4,088 0.4 905 1.8

hole 5 37,452 11.3 224,803 32.3 1,538,350 33.6 48,383 159.0

BerkMin were not able to finish 5 and 3 formulas respectively with the timeout limit of 10
hours.)

In terms of performance, FI was considerably faster than Zchaff and BerkMin. FI was
faster than Minisat on satisfiable formulas and about two times slower for unsatisfiable
formulas. These surprising results can be explained as follows. Using fast BCP is crucial
only when a CNF formula has a lot of long clauses. These long clauses may be either
present in the initial formula or may appear as conflict clauses. When solving a large BMC
formula that initially consists of clauses with no more than three literals, fast BCP becomes
beneficial only if the SAT-solver has to generate a lot of conflict clauses. However, if the
number of conflicts is relatively small (like 10-20 thousands of conflict clauses for a formula
of a few million clauses) the speed-up provided by fast BCP is not so significant. In this
situation, efficient and “precise” decision making becomes very important. However, the
decision making of all three SAT-solvers that we compared with FI (we briefly described
their decision-making in the previous section) has drawbacks.

Zchaff takes a large amount of time to find next branching variable. For smaller formulas
this drawback did not show but for large formulas of Table 2 it became a big problem. The
decision making of BerkMin is much faster than Zchaff’s when the current formula has
unsatisfied conflict clauses. However, for large BMC formulas that can be solved without
generating too many clauses, BerkMin often had to pick next branching variable out of all
free variables. (Version 561 of BerkMin does use a method to reduce time taken by the
decision-making procedure, but it was designed for small or medium size formulas.)

Minisat spends much less time on decision making. The problem, however, is in the
quality of decision making of Minisat. In general, Minisat had to make many more decisions
per conflict than FI, which increased the amount of work done during BCP. (The same
applies to Zchaff and BerkMin.)

Tables 3 and 4 give more detailed comparison of Minisat and FI on BMC formulas
used in Table 2. Their performance on a sample of these formulas is given in Table 3. The
names of satisfiable formulas are marked in the first column of Table 3 with an asterisk. For
either SAT-solver, Table 3 gives the number of decision assignments (in thousands), implied
assignments (in millions), conflicts (in thousands) and runtime (in seconds). Results for the

236



A Resolution Based SAT-solver Operating on Complete Assignments

first three formulas (always.100, mcbdm.40, cfet.22 ) show that FI was faster because it made
fewer implied and decision assignments. So even though Minisat is much more optimized
than FI, the amount of extra work Minisat had to do slowed it down. For example, for the
formula cfet.22, FI made more backtracks (31,000 versus 14,000) but considerably fewer
decisions (368,000 versus 1,763,000) and implied assignments (23×106 versus 98×106).

For satisfiable formulas, in addition to making more implied and decision assignments,
in many cases Minisat had many more backtracks. The reason for the good performance
of FI on satisfiable formulas was already mentioned in the introduction and in Section 2.
FI reports satisfiability as soon as the set M(p) becomes empty. This may happen even
if only a fraction of variables have fixed values while the rest of the variables are assigned
a value only in p. In this case, only a fraction of clauses of the original formula are
satisfied by fixed assignments. On the contrary, a traditional SAT-solver operating on
partial assignments has to go on making assignments until all the clauses are satisfied by
fixed assignments. Needless to say, that such a SAT-solver may still encounter a lot of
conflicts before a satisfying assignment is found. For example, for a formula of Table 2 of
700 thousand variables, FI reported satisfiability after 1700 backtracks when only 22,000
variables were assigned fixed values. It took Minisat 420,000 backtracks and more than one
hour of runtime to assign the rest of the variables of this formula

In Table 4, we summarize the performance of Minisat and FI on the formulas of Table 2
in terms of implied and decision assignments (given in millions). This table shows that FI
made considerably fewer assignments of either kind for both satisfiable and unsatisfiable
formulas. Note that this result can be explained by better identification by FI of unsatis-
fiable cores. After FI has fixed some assignments a small unsatisfiable core may appear in
the current formula. The same occurs after Minisat has made some assignments to free vari-
ables. However, FI is more likely to pick a core variable than Minisat (see Subsection 4.1).
Making assignments to variables outside the core may lead to redundant BCP calls.

Table 2. Comparison of FI with other SAT-solvers on large BMC formulas (timeout 10 hours)

Cate- #inst Zchaff-2001 BerkMin561 Minisat FI
gory #cnfls

×103
time
(hrs)
[aborted]

#cnfls
×103

time
(hrs)
[aborted]

#cnfls
×103

time
(hrs)

#cnfls
×103

time
(hrs)

Sat. 28 > 488 > 65 [4] > 2, 204 > 40 [2] 3,406 16.4 756 4.5

Unsat. 51 > 1, 603 > 87 [1] > 1, 772 > 27 [1] 1,269 4.0 1,448 9.5

Total 79 > 2, 091 > 152 [5] > 3, 976 > 67 [3] 4,675 20.4 2,204 14.0

6.3 Can FI be simulated by a random windowing of variables?

In the previous section, we saw that in the number of backtracks, FI is competitive with
state-of-the-art SAT-solvers. One might think that this result can be attributed to the great
robustness of decision making based on computing conflict activity of variables (or literals).
It might be the case that even if a SAT-solver branches on a variable with a reasonably

237



E. Goldberg

high activity score (instead of the most active variable), it still may get the same or similar
results. Then even though FI has a dramatically smaller pool of variables to select from,
the set Vars(M (p)) may still contain variables with good activity scores.

Table 3. Comparison of FI and Minisat on a sample of large BMC formulas

Name #vars #cla Minisat FI
×103 uses

×103
#decis.
×103

#imp.
×106

#cnfl.
×103

time
(s)

#dec.
×103

#impl.
×106

#cnfl.
×103

time
(s)

always.100 249 758 379 168 21 211 83 109 16 157

mcbdm.40 273 773 231 50 6 84 59 19 9 28

cfet.22 613 1,808 1,763 98 14 385 368 23 31 58

ccc.16 317 1,081 163 187 22 150 44 375 21 1,559

*sched.30 974 2,653 3,805 834 23 937 245 643 26 737

*prop9.100 1,001 2,981 521 599 40 411 305 549 48 1,190

*iuf.200 2,083 6,443 134,305 3,891 593 9,873 57 24 6 59

*fft.2000 260 736 54,883 2,188 148 2,433 26 947 1 8

Table 4. Comparison of Minisat and FI in terms of decision and implied assignments

Category Minisat FI
#decis.
×106

#impl.
×106

#decis.
×106

#impl.
×106

Sat. 91 10,616 10 5,979

Unsat. 587 40,003 15 12,979

Total 679 50,619 25 18,958

To resolve this issue we ran some experiments on formulas of Table 2 (we observed
similar results on other classes of benchmarks). The idea was to compare FI with a SAT-
solver whose only difference from FI was in the way the set of branching variables was
restricted. In FI, we pick the next variable to branch on out of Vars(M(p)) (i.e. the
variables of the clauses falsified by the current complete assignment p). We compared FI
with a SAT-solver that randomly chooses a window of |Vars(M(p))| variables and then
picks the most active literal among the window variables. If the good performance of FI
is due to great robustness of decision making based on variable/literal activity, then the
performance of these two SAT-solvers should be close.

The results of experiments are shown in Tables 5 and 6. Both tables have identical
structure and give data for unsatisfiable and satisfiable formulas. The second and third
columns describe the number of variables and clauses (in thousands). The fourth and
fifth columns give the number of conflicts and the average window size (in percent) for FI
computed over all decision assignments. For every decision, the window size was computed
for the current set of variables whose values had not been fixed yet. For example, if, in

238



A Resolution Based SAT-solver Operating on Complete Assignments

the current formula, there are 100,000 of such variables and |Vars(M(p))| =1000, then the
window size is 1%. For the formula pa.25 (first formula of Table 5) the average window size
(computed over all decision assignments) was 0.43%.

The column before the last shows the results of the SAT-solver that used random win-
dowing. For example, for the formula pa.25, for all decisions we used windows of the size
0.43% (the average size of FI windows for this formula). For instance, if the current set of
available branching variables was 100,000, then this SAT-solver would generate a random
window W of 430 variable and then picks the most active literal among the variables of W .
For the formula pa.25, the SAT-solver with random windowing proved unsatisfiability after
374 backtracks (conflicts). The last column gives the result when the most active literal
was selected among all available branching variables (i.e. the window size was 100%).

The results of Table 5 and 6 show the advantage of windowing of FI over random win-
dowing. So one can not claim that good performance of FI is due to robustness of decision
making based on computing conflict activity of literals. Interestingly, the advantage of FI
windowing is greater for satisfiable formulas. Only in one case (fetch.30 ), the SAT-solver
with random windowing had fewer backtracks before finding a satisfying assignment. For
the rest of the formulas, FI found a satisfying assignment with a considerably smaller num-
ber of backtracks. The results of this subsection show that windows specified by complete
assignments are “special”. So these results can be considered as a strong argument in favor
of proof encryption semantics.

Note that, in general, the SAT-solver choosing the most active literal out of all available
variables, had fewer backtracks than FI. But as we saw in the previous subsection the
number of decision and implied assignments (not shown here) made by such a SAT-solver
may be much larger than for FI.

Table 5. Different choice of windows for unsatisfiable formulas

Name
#Vars
× 103

#Clauses
× 103

FI no complete assgn.

#cnfl. window
size (%)

#cnfl.
(window)

#cnfl
(all vars)

pa.25 337 995 127 0.43 374 88

pa.50 727 2,146 1,436 2.02 46,590 480

mcbdm.20 127 360 157 2.03 549 163

mcbdm.40 273 773 2,019 1.22 12,280 8,700

cmt.100 63 178 194 0.03 9,753 469

cmt.200 127 358 403 0.01 27,529 1,715

always.20 61 186 158 1.28 238 244

always.40 136 415 2,955 2.89 4,763 1,994

pc top.40 379 1,126 1,066 0.41 5,447 752

pc top.50 480 1,424 3,609 0.52 11,786 3,747

lsu.10 89 239 3,253 1.01 7.015 1,024

stdata.10 110 302 2,764 1.65 7,901 725

239



E. Goldberg

Table 6. Different choice of windows for satisfiable formulas

Name
#Vars
×103

#Clauses
×103

FI no complete assgn.

#cnfl. window
size (%)

#cnfl.
(window)

#cnfl
(all vars)

sched.10 188 508 159 0.36 4,992 60

sched.20 384 1,044 1,367 0.51 21,038 389

byteen.10 69 184 1,007 1.25 7,093 1,566

byteen.15 110 292 5,196 1.55 21,277 5,171

bar.10 371 1,102 1,157 0.08 56,594 36

gmtx.50 645 1,887 708 2.42 12,298 199

muls.20 307 944 647 0.20 594,669 57

fetch.30 168 501 325 2.29 19 168

write.40 233 695 1,949 1.24 46,773 1,172

prop7.50 496 1,475 1,527 1.35 86,349 148

resp grant.20 302 892 877 2.97 9,775 82

Table 7. Formulas with unsatisfiable core (1 hour timeout)

Names BerkMin561
#conflicts

Minisat
#conflicts

FI
#conflicts

f10k10 1 > 2, 354, 579 > 1, 586, 998 756

f10k10 2 > 2, 530, 886 > 1, 509, 013 935

f10k10 3 > 2, 014, 759 > 1, 519, 403 908

f10k10 4 6 1,209

f3k50 1 > 6, 542, 130 > 3, 188, 959 48

f3k50 2 > 6, 538, 252 > 4, 300, 869 18,127

f3k50 3 > 6, 479, 246 79 18,890

f3k50 74 71 15,447

6.4 Finding unsatisfiable subformulas

In this subsection, we consider the performance of BerkMin, Minisat and FI on 8 artificial
formulas with small unsatisfiable subformulas. The results are shown in Table 7. Formulas
f10k10 i and f3k50 i, i=1,2,3 were obtained from formulas f10k10 and f3k50 by random
permutation of variables. The formula f10k10 was obtained by adding to a hard random
formula F1 of 10,000 variables the clauses of a random unsatisfiable formula F2 of 10 new
variables. The formula f3k50 was obtained in the same way as f10k10. The only difference
was that formula F1 had 3,000 variables and F2 had 50 variables. (Note that we got results
similar to those of Table 7 even when variables of F1 and F2 had a “weak” overlap.) Timeout
limit was set to 1 hour.

240



A Resolution Based SAT-solver Operating on Complete Assignments

As we mentioned in Subsection 4.1, one of the advantages of operating on complete
assignments is easy identification of unsatisfiable subformulas. For a formula F1 ∧ F2 of
Table 7, no matter how FI picks a complete assignment p, the set M(p) will contain a
clause of the unsatisfiable subformula F2. In this experiment, we modified the first decision-
making heuristic of FI (described in Subsection 2.4) as follows. For every clause C of the
formula, its activity was maintained. This activity was computed as the number of conflicts
in which C was involved. Every 100 decisions FI picked the clause C ′ of M(p) with the
lowest activity and fixed an assignment to a variable of C ′. This way we made FI to look for
unsatisfiable subformulas (because the modification above forced FI to fix an assignment
to a variable of F2 once in a while). Note that this modification does not change FI ’s
performance on other formulas much because in 99% cases FI makes a regular decision. As
one can see from Table 7, BerkMin and Minisat easily solved 2 and 3 formulas respectively,
but for the rest of the formulas they got stuck in the hard subformula F1. On the other
hand, FI easily solved all 8 formulas.

7. Conclusions and future directions

In this paper, we introduce a proof encryption semantics whose main idea is to treat a
set of complete assignments as an “encryption” of a resolution proof. We believe that this
semantics better explains what resolution-based SAT-solvers with clause learning do. We
describe a SAT-solver FI inspired by the proof encryption semantics. FI can be viewed as
a regular DPLL-like SAT-solver that maintains a complete assignment to reduce the choice
of variables to branch on. Experiments show that for large industrial formulas even our
primitive implementation of FI is competitive with Minisat and BerkMin. Experiments
also give a strong evidence in favor of proof encryption semantics. Namely they show that
FI can not be efficiently simulated by random windowing of branching variables.

References

[1] L. Bachmair and H. Ganzinger. Resolution theorem proving in A.Robinson, A.Voronkov
editors, The Handbook of Automated Reasoning, chap. 2, vol. 1, pp. 19-99. Elsevier
Science Pub., 2001.

[2] P. Beame, H. A. Kautz, and A. Sabharwal. Towards Understanding and Harnessing
the Potential of Clause Learning. JAIR 2004, number 22, pp.319-351.

[3] M. Davis, G. Logemann, and D.Loveland. A Machine program for theorem proving.
Communications of the ACM, 1962, vol. 5, pp. 394-397.

[4] N. Eén. and N. Sörensson. An extensible SAT-solver. Proceedings of SAT-2003 in LNCS
2919, pp.503-518.

[5] H. Fang and W. Ruml. Complete Local Search for Propositional Satisfiability. Proc. of
19th National Conference on Artificial Intelligence, 2004, pp.161-166.

[6] E. Goldberg. Testing satisfiability of CNF formulas by computing a stable set of points.
CADE-2002, pp. 161-180.

241



E. Goldberg

[7] E. Goldberg. On bridging simulation and formal verification. VMCAI-2008, San Fran-
cisco, USA, LNCS 4905, pp.127-141.

[8] E. Goldberg and Y. Novikov. BerkMin: a Fast and Robust SAT-Solver. DATE-2002,
pp. 142-149.

[9] E. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for CNF formulas.
DATE-2003, pp. 886-891.

[10] C. P. Gomes, B. Selman, H. A. Kautz. Boosting combinational search through ran-
domization. AAAI-1998, pp. 431-437.

[11] D. Habet, C. M. Li, L. Devendeville, and M. Vasquez. A hybrid approach for SAT.
International Conference on Principles and Practice of Constraint Programming, 2002,
pp. 172-184.

[12] E. Hirsch, A. Kojevnikov. UnitWalk: A new SAT solver that uses local search guided
by unit clause elimination. Annals of Math. and Artif. Intelligence 2005, vol. 43(1-4),
pp.91-111.

[13] B. Mazure, L. Sais, and R. Gregoire. Boosting complete techniques thanks to local
search methods. Annals of Math. and Artif. Intelligence 1998, vol. 22, pp. 319-331.

[14] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
Efficient SAT Solver. Design Automation Conference, 2001, pp. 530-535.

[15] S. Prestwich and I. Lynce. Local Search for Unsatisfiability. SAT-2006, LNCS 4121,
pp. 283-296.

[16] B. Selman, H. Levesque, and D. Mitchell. A New Method for Solving Hard Satisfiability
Problems. AAAI-92, pp. 440-446.

[17] B. Selman, H. A. Kautz, and B.Cohen. Noise strategies for improving local search.
AAAI-94, Seattle, pp. 337-343.

[18] B. Selman, H. A. Kautz, and D. McAllester. Ten challenges in propositional reasoning
and search. IJCAI-97, Nagoya, Aichi, Japan.

[19] J. P. Marques-Silva and K. Sakallah. GRASP: A Search Algorithm for Propositional
Satisfiability. IEEE Transactions of Computers, 1999, vol 48, pp. 506-521.

[20] H. Zhang. SATO: An efficient propositional prover. Proceedings of the International
Conference on Automated Deduction, 1997, pp. 272-275.

[21] L. Zhang, C. Madigan, M. Moskewicz, S. Malik. Efficient Conflict Driven Learning in
a Boolean Satisfiability Solver, ICCAD-2001, San Jose, pp. 279-285.

[22] http://www.cadence.com/webforms/cbl software/index.aspx

242

http://www.cadence.com/webforms/cbl_software/index.aspx

	Introduction
	Description of FI
	Basic definitions
	Example
	Main procedure
	Decision making of FI
	BCP procedure and conflict clause generation
	Initial point generation and restarts

	Proof encryption semantics
	Resolution proofs
	Procedure SAT(T,F) 
	FI builds a point image of the proof it generates
	Extension of the set of visited points
	Extended set of points is an image of the proof built by FI 

	Using proof encryption semantics to measure quality of sets of points

	Complete assignments contain more information about the formula than partial assignments
	Identification of unsatisfiable cores
	Storing information about previous assignments when solving satisfiable formulas

	Background
	Experimental Results
	A brief description of the implementation we used in experiments
	Comparison with other SAT-solvers 
	Can FI be simulated by a random windowing of variables?
	Finding unsatisfiable subformulas

	Conclusions and future directions

