
Journal on Satisfiability, Boolean Modeling and Computation 5 (2008) 57-82

Dependence Graph Based Verification and Synthesis of
Hardware/Software Co-Designs with SAT Related

Formulation

Masahiro Fujita fujita@ee.t.u-tokyo.ac.jp

Kenshu Seto seto@cad.t.u-tokyo.ac.jp

Thanyapat Sakunkonchak thong@cad.t.u-tokyo.ac.jp

VLSI Design and Education Center,

The University of Tokyo,

Japan

Abstract

Program slicing is a software-analysis technique that generates System Dependence
Graphs (SDGs) by which dependencies among program statements can be identified through
their traversal. We have developed a program slicing tool for SpecC, a C-based system level
design language for hardware/software co-designs, on top of a program slicer for C/C++.
This program slicing tool can generate SDGs from any combined descriptions in C, C++,
and SpecC, and can be used to analyze design descriptions for hardware/software co-designs
uniformly and smoothly in all the combined descriptions. In this paper, after reviewing
our program slicer that generates SDGs, we present verification and synthesis techniques
for hardware/software co-designs through various analyses on SDGs and generations of
SAT/ILP problems from them. For analysis and verification of the combined descriptions,
we examine SDGs statically by traversing them with SAT/ILP solvers as verification en-
gines. With this method, many static checks can be efficiently realized even if the target
design descriptions are fairly large. We first present techniques for checking synchroniza-
tion among concurrent processes described in SpecC through symbolic analysis on SDGs.
The techniques could verify the synchronization of MPEG4 descriptions with about 48,000
lines within 10 seconds. The techniques can be applied to automatic conversions between
sequential and parallel computations. One such application to automatic program serial-
ization is presented. By using the technique for automatic program serialization, we could
serialize Vocoder descriptions with about 10,000 lines in around 1 minute. As for synthesis
from the combined descriptions, we present an optimal code generation method based on
SAT formulation. It can generate codes for reconfigurable processors with minimum code
lengths. The sizes of problems as SAT formulation range from 10,000 to 100,000 variables
and 100,000 to 500,000 clauses for the largest configurations. With appropriate uses of
the state-of-the-art SAT solvers and related tools, we show that fairly practical sizes of
verification and synthesis problems can be solved by analyzing SDGs generated from the
combined descriptions.

Keywords: SAT-solver, lookahead, equivalence reasoning, local learning

Submitted February 2007; revised May 2008; published June 2008

c©2008 Delft University of Technology and the authors.

M. Fujita et al.

C/C++/SpecC
System Dependence

Graph (SDG)
Program slicer

Analyzer

Symbolic simulator

CVC

SAT solver

Translator to FSM

Model checker

SDG traversal

ILP solver

SAT solver

C/C++/SpecC
System Dependence

Graph (SDG)
Program slicer

Analyzer

Symbolic simulator

CVC

SAT solver

Translator to FSM

Model checker

SDG traversal

ILP solver

SAT solver

Figure 1. Overall synthesis and verification flow

1. Introduction

In system-level designs of electronics systems, both hardware and software must be taken
into account. Since the standard ANSI-C language cannot effectively describe hardware
parts, the SpecC language [1] has been proposed as an extension over the ANSI-C language
for system-level design descriptions. SpecC, which is syntactically a super-set of ANSI-C,
provides functions to describe system-level designs effectively and efficiently. For smooth
and uniform hardware/software co-designs, it is very important to support descriptions in
any of C, C++ and SpecC languages, and we are developing a uniform representation for
those language descriptions. It is based on System Dependence Graphs (SDGs) that have
been used in program slicing technology in the program analysis field [2]. Our verification
and synthesis techniques work on extended SDGs [3] and other related data structures.

Figure 1 shows an overview of our verification and synthesis frameworks for combined
design descriptions in C/C++/SpecC. The input to our flow is any design description in
C, C++ and SpecC. We use program slicer [3] to generate System Dependence Graph
(SDG). Our flow includes three types of analyses of SDGs for synthesis and verification of
the design description: SDG traversal, symbolic simulation and translator of SDGs to finite
state machines. Each analysis uses verification engines such as ILP solver and SAT solver.

In this paper, we describe the methods for the verification and synthesis for system-
level designs that were published by the authors [3][13][15][11]. The first method is based
on traversals of SDGs and mainly checks static aspects of the design descriptions. In
this case, the static checking problems are converted into SAT formulae or integer linear
programming problems. The second method is to check various partially dynamic behaviors
of the design descriptions by symbolically simulating SDGs. An example of such partially
dynamic behavior analysis is to check synchronization of concurrent processes. In SpecC,
“wait event” and “notify event” statements are used for such synchronization, and we
present a method to check if they are consistently synchronizing with each other or not.
The method could verify the synchronization of MPEG4 descriptions with about 48,000 lines
within 10 seconds. A method for automatic program serialization using the second method
is also presented, and we could serialize Vocoder descriptions with about 10,000 lines in
around 1 minute. The last method is to automatically generate optimum program codes

58

Dependence graph based verification and synthesis

for reconfigurable architectures from SDGs. The last method first generates finite state
machine models from SDGs and then uses them to synthesize optimum program codes by
using a SAT-based formulation. The last method can handle DFGs with up to around
20 operations. The sizes of problems as SAT formulation range from 10,000 to 100,000
variables and 100,000 to 500,000 clauses for the largest configurations.

This paper is organized as follows. In the next section we briefly review our program
slicer for C/C++/SpecC combined descriptions. Then we present the three methods shown
in Figure 1 in Sections 3 and 4. The last section gives concluding remarks including future
directions.

2. Background

2.1 The SpecC Language

The SpecC language [1] has been proposed as a standard system-level design language for
adoption both in industry and academia. It has been promoted for standardization by
the SpecC Technology Open Consortium (STOC, http://www.SpecC.org). The SpecC
language was specifically developed to address the issues involved with system design, in-
cluding both hardware and software. Built on top of C, the de-facto standard for soft-
ware development, SpecC supports additional concepts needed in hardware design and
allows IP-centric modeling. Unlike other system-level languages, the SpecC language pre-
cisely covers the unique requirements for embedded systems design in an orthogonal man-
ner. In SpecC, the par construct allows parallel behaviors to be expressed. For example,
par{a.main(); b.main(); } in Figure 6 indicates that threads a and b are running concur-
rently (in parallel). Within each thread, statements run in the sequential manner just as in
the C programming language.

2.1.1 Behaviors, Channels, and Interfaces

A SpecC behavior is a class consisting of a set of ports, a set of component instantiations
and a set of private variables and functions. In order to communicate, a behavior can
be connected to other behaviors or channels through its ports or interfaces. A channel in
SpecC is a class consisting of a set of private variables and functions and is used to define
a communication protocol. The structural hierarchy of such a behavior is shown in Figure
2(a). The sequential and parallel constructs of SpecC, which will be described next, are
shown in Figure 2(b) and 2(c), respectively.

Figure 2(a) illustrates the basic features of the SpecC language. In the figure, behavior
B hierarchically contains two child behaviors b1 and b2 that run in parallel. b1 and b2
communicate using the shared variable (or wire) v1 and the channel c1. The channel
c1 provides two interfaces, and the interfaces are connected to the ports of b1 and b2.
Other ports of b1 and b2 are connected to the ports of B. Figure 2(b) shows a sequential
description in SpecC, and the child behaviors b1, b2 and b3 of the behavior B seq are
executed sequentially. Figure 2(c) shows a parallel description in SpecC, and the child
behaviors b1, b2 and b3 of the behavior B par are executed in parallel. The difference
between the sequential and parallel SpecC descriptions is the par{} construct.

59

M. Fujita et al.

b1 b2

v1

c1
B

p1 p2

Variable

(Wire) Child Behaviors

Channel Interface Ports Behavior
B_seq

b1

b2

b3

behavior B_seq {
 B b1, b2, b3;
 void main() {
 b1.main();
 b2.main();
 b3.main();
 }
};

B_par

b1

b2

b3

behavior B_par {
 B b1, b2, b3;
 void main() {
 par{
 b1.main();
 b2.main();
 b3.main();
 }
 }
};

(a) (b) (c)

Figure 2. (a) Basic structure of a SpecC model, (b) sequential description in SpecC, (c) parallel

description in SpecC

2.1.2 Concurrency and Synchronization Semantics

Concurrency and synchronization among behaviors is handled in SpecC by the par{} and
notify/wait constructs, as seen in Figures 6 and 7. In a single behavior running in isolation,
correctness of the result is usually independent of the timing of its execution, and determined
solely by the logical correctness of its functions. However, when several behaviors run in
parallel, execution timing may have a great effect on the results’ correctness: results can
vary depending on how the multiple behaviors are interleaved. Therefore, synchronization
between behaviors is an important issue for a system-level design language.

The notify/wait statements of SpecC are used for synchronization. A wait statement
suspends its current behavior from execution and keeps waiting until one of the specified
events is notified.

2.1.3 SpecC and SystemC

Where SpecC can be viewed as a super-set of C, SystemC is a C++ library extension.
SpecC and SystemC share many features, e.g., behaviors (known as Modules in SystemC),
ports, channels, interfaces, concurrency and synchronization1..

In the next sub-section we will briefly describe our C/C++/SpecC program slicer. In
addition, we are developing a new tool that can also support SystemC and RTL descriptions.
Our preliminary results in this direction were published in [20].

1. The detail comparisons between SpecC and SystemC is presented in [19].

60

Dependence graph based verification and synthesis

 Int sub(int x, int y){
if(x > y){

return x - y;
}else{

return 0;
}

}
int main(){

int a = 3;
int b = 2;
int sum;
sum = sub(a, b);
sum = sub(sum, a);

}

F_Out
recv$return

FT

if(x > y) return

recv$return
= x - y

recv$return
= 0

A_In
y

A_In
x

A_Out
sub$result1

call
sub

main

sum =
sub$result1

sub

int
sum

A_Out
sub$result0

int
a

a = 3

sum =

sub$result0b = 2

call
sub

int
b

A_In
x

A_In
y

F_In
y

F_In
x

Control

Call

Data
Parameter I/O
Declare

Summary

Procedure entry

Declaration

Assignment

Control point

Procedure call

Actual in/out

Formal in/out

Return

(p, v) : (sum = sub(a, b), sum)Int sub(int x, int y){
if(x > y){

return x - y;
}else{

return 0;
}

}
int main(){

int a = 3;
int b = 2;
int sum;
sum = sub(a, b);
sum = sub(sum, a);

}

F_Out
recv$return

FT

if(x > y) return

recv$return
= x - y

recv$return
= 0

A_In
y

A_In
x

A_Out
sub$result1

call
sub

main

sum =
sub$result1

sub

int
sum

A_Out
sub$result0

int
a

a = 3

sum =

sub$result0b = 2

call
sub

int
b

A_In
x

A_In
y

F_In
y

F_In
x

Control

Call

Data
Parameter I/O
Declare

Summary

Procedure entry

Declaration

Assignment

Control point

Procedure call

Actual in/out

Formal in/out

Return

(p, v) : (sum = sub(a, b), sum)

Figure 3. An example program of ANSI-C and its System Dependence Graph (SDG)

2.2 Program Slicing for C/C++/SpecC Descriptions

Program slicing is a technique to extract portions of the original programs which are relevant
to the variables in some statements specified by the user of the program slicing tool.

As originally proposed by Weiser [7], slicing is computed given two parameters, program
point p and the set of variables v which appear in p. Later, Ottenstein and Ottenstein
[6] proposed a new method based on dependence graphs. In dependence graphs, a node
represents a statement or an expression and an edge represents data or control dependence
between statements. The control dependence represents conditions under which a statement
is executed. The data dependence shows flow of data between statements. They constructed
a dependence graph from a given program and identified the sliced codes from the variable
v which is given by the user, by tracing data and control dependence edges in the graph.
In this algorithm, the computation time of slicing increases linearly with the number of
nodes in the dependence graph. In addition, Horwitz [2] et al. defined System Dependence
Graphs (SDGs), which contain multiple Procedure Dependence Graphs (PDGs) and express
dependencies between procedures. A PDG is a dependence graph that is created for each
procedure. To model the dependences between procedures, SDGs use nodes related to
procedure parameters, such as Actual in/out nodes and Formal in/out nodes, and edges
related to the dependences between the parameters such as Parameter I/O edge. A formal in

61

M. Fujita et al.

Table 1. SpecC SDG’s nodes and edges.

Elements(Additional element)

Nodes Entry Function Entry, Interface Entry, Channel Entry, Behavior Entry
Assignment Assignment
Control Point Control Point (if, while, for, par, wait)
Call Site Function Call, Instance Call
parameter in Actual In, Formal In, Member Actual In, Member Formal In
parameter out Actual Out, Formal Out, Member Actual Out, Member Formal Out
Return Return
Declaration Declaration

Edges Control Control, Call, Instance Call, Class Member
Data Data, Parameter In, Parameter Out
Declaration Declaration

Note: Non-italic fonts represent the traditional ANSI-C nodes and edges in SDG.
Italic fonts represent the extra nodes and edges for representing SpecC in SDG.

node corresponds to a formal parameter of a procedure, and a formal out node corresponds
to a formal parameter that may be modified. An actual in node corresponds to an actual
parameter of a procedure at a call site, and an actual out node corresponds to an actual
parameter that may be modified by the called procedure. SDGs also include summary
edges to explicitly represent data dependences across procedure calls. A summary edge is
connected from an actual in node N1 to an actual out node N2 when the value corresponding
to N2 may depend on the value corresponding to N1. Based on the work that uses SDGs,
several program slicing methods have been proposed including slicing for object oriented
programs [5] and programs in JAVA with multiple threads. As an example, for the ANSI-C
and C++ language, a commercial tool CodeSurfer [4] is provided by GrammaTech Inc.

Figure 3 shows an example of SDGs for the C program with the two functions: sub()
and main(). The nodes represent the constructs of the C language and the edges show the
dependences between the constructs.

As for slicing of programs that include concurrent executions, Clarke et al. developed a
slicing tool for simulation-oriented hardware descriptions in VHDL [8]. They constructed a
Control Flow Graph (CFG) from an original description in VHDL and generated an SDG
of the program by analyzing dependencies on the CFG. The CFG consists of a set of nodes
that represent statements in a program, and a set of arcs that represent flows of control.
Our SpecC slicing [3] is also based on SDGs. The major difference between their work [8]
and our work is the target language. Since the target of their work are RTL descriptions,
their method cannot handle system-level design descriptions which are our target. In order
to realize the SpecC program slicing, the most critical task is to represent programs as
their SDGs. In the SpecC language, there are hierarchical structures such as the behavior,
channel and interface, concurrent parallel execution syntax as par, and synchronization
syntax as wait and notify. To address these SpecC language’s features, we developed an
SDG for SpecC with new nodes and edges such as the Behavior Entry node, as shown in
Table 1.

62

Dependence graph based verification and synthesis

call

b1.main

call

b2.main

M_A_In

p1

M_A_Out

p1

M_A_In

p1

M_A_Out

p1

par

par{

b1.main();

b2.main();

}

call

b1.main

call

b2.main

M_A_In

p1

M_A_Out

p1

M_A_In

p1

M_A_Out

p1

par

par{

b1.main();

b2.main();

}

Figure 4. A dependence graph of par.

recv

M_F_In

e
M_F_Out

e

send

notify(e)

M_F_In

valid

valid

= false

M_F_In

e

if(valid)

M_F_Out

valid

wait(e)

int send(){

notify(e);

}

int recv(){

wait(e);

if(valid){

valid = false;

}

}

True

True

False

False

recv

M_F_In

e
M_F_Out

e

send

notify(e)

M_F_In

valid

valid

= false

M_F_In

e

if(valid)

M_F_Out

valid

wait(e)

int send(){

notify(e);

}

int recv(){

wait(e);

if(valid){

valid = false;

}

}

True

True

False

False

Figure 5. Dependence graphs of wait and notify.

To deal with concurrent executions realized by using par statements, we define a node
for par as a control point node, similar to that of if, while and for. From par node, control
dependence edges labeled true are drawn to every node corresponding to the statements
that are executed concurrently under the semantic par. For example, in Figure 4, since
b1.main() and b2.main() are executed concurrently, there must be control edges from par
node to each of them. We also need the extra data dependence edges for representing the
shared ports and parameters. In the figure, b1 and b2 are running in parallel and there
is a shared variable p1, hence, the two data edges from M A Out p1 to M A In p1 are
constructed. call b1.main and call b2.main nodes have outgoing call edges since the nodes
are both calling function b1.main() and b2.main(). In Figures 4 and 5, the prefix M is used

63

M. Fujita et al.

to represent member variables. For example, M A Out and M F In mean Member Actual
Out and Member Formal In, respectively. Here, Actual parameters mean the parameters
that are supplied by the caller, and Formal parameters mean the parameters that are
declared in the function header.

In table 1, elements in non-italic letters define nodes and edges for ANSI-C’s SDG in
CodeSurfer [4], and we define new nodes and edges in italic letters for SpecC. For example,
entry nodes that represent procedures are created for behaviors, channels and interfaces.
In SDGs, Control Point nodes determine if a set of statements are executed or not. The
SpecC construct representing the parallelism (par) is defined as Control Point nodes. This
is because statements in par{} are executed only when the par is passed.

The Wait statement is also defined as a control point node in a dependence graph, and
control dependence edges labeled true are constructed to every node executed after it. This
is because whether wait is passed or not affects the executions of those statements, just like
if or for statements. In addition, a data dependence edge of an event variable used in the
wait statement is constructed, in order to build dependences between a Notify statement
and its corresponding wait statements. Here, an event variable is a variable used as an
argument of Wait statements or Notify statements.

Figure 5 illustrates dependence graphs of Wait and Notify. In Figure 5, there is a control
edge from the Wait node to the control point node for if(valid). The Notify statement is
defined as an assignment node to an event variable. In the figure, a data dependence edge
is constructed from notify(e) to the formal out node corresponding to the event variable
e. In designs where channels are used for communication between parallel behaviors, event
variables are communicated through channels connected to behavior’s ports, therefore we
can traverse data dependence edges from Notify node to Wait node across behaviors and
channels in the SDG.

3. Verification with Symbolic Simulation-Based Reasoning

This section describes our method to dynamically analyze concurrent behaviors or so called
synchronization verification [13]. In system-level design languages such as SpecC, extra
constructs are added to C in order to describe the characteristics of hardware. These
extra constructs support description of parallel behaviors, pipelined behaviors, finite state
machines, and operations on arbitrary-length bit-vectors. System-level models are organized
as a collection of cooperating processes running in parallel. In order to keep all processes
executing as the designer intended, proper scheduling of statement execution in all processes
(known as synchronization) is necessary.

Our verification method is based on applying the state-of-the-art model checking with
counterexample-guided abstraction refinement (CEGAR) [14] and constraints solving with
integer linear programming (ILP) techniques. While classical automata can model the tran-
sitions of a design, these transitions convey no information about the delay between two
actions. It is therefore not possible to directly model a design with timing constraints.
Alur and Dill [16] proposed timed automata as a way to incorporate quantitative informa-
tion on the passage of time in automata. Model checkers for timed automata have severe
constraints on their capacity, so our approach is to capture timing constraints with equali-
ties/inequalities that can be solved by integer linear programming (ILP) tools. In general,

64

Dependence graph based verification and synthesis

main() {
 par{ a.main();
 b.main(); }}

behavior a {
 main() { x=10; /*st1*/
 y=x+10; /*st2*/ }}

behavior b {
 main() { x=20; /*st3*/ }}

time

a.main()

b.main()

St1 St2

St3

Tas T1s T1e T2s T2e Tae

Tbs T3s T3e Tbe

Figure 6. Timing diagram of the behaviors a and b under the par{}

 main() {
 par{ a.main();
 b.main(); }}

behavior a {
 main() { x=10; /*st1*/
 y=x+10; /*st2*/
 notify e; /*New*/}}

behavior b {
 main() { wait e; /*New*/
 x=20; /*st3*/ }}

time

a.main()

b.main()

St1 St2

St3

Tas T1s T1e T2s T2e Tae

Tbs T3s T3e Tbe

Synchronization by
Notify/wait

behavior ab {
 main() { x=10; /*st1*/
 y=x+10; /*st2*/
 x=20; /*st3*/}}

time

ab.main()

St1 St2 St3

Tabs T1s T1e T2s T2e T3s T3e Tabe

(a)

(b)

Figure 7. (a) Insertion of synchronization statement notify/wait of Fig. 6, (b) sequential de-

scription which is equivalent to the description in (a)

large processes are organized as collections of processes running in parallel. Without know-
ing how each process is interacting with other processes, verification of the entire systems
may be extremely difficult and can be significantly time-consuming. Synchronization ver-
ification method as described in Section 3.1 focuses on checking whether all the processes
are synchronized as intended. Instead of considering the entire design, we target only on
the synchronization portions. Therefore, the size of verification problem can be reduced.
After guaranteed that all synchronization is behaved as intended, a sequentialization which
is a process to sequentialize concurrent processes into one single process will be explained
in Section 3.2.

3.1 Synchronization Verification

Let us describe how synchronization and constraints formulation can be done for verification.
In SpecC, the computation and communication parts are clearly separated. Computation

65

M. Fujita et al.

is encapsulated in behaviors, while communication is encapsulated in channels. Also, struc-
tural hierarchy is supported where the structure of the design can be described as a hierar-
chical network of behaviors and channels. Now let us consider concurrency in SpecC. Built
on top of C, the de-facto standard for software development, SpecC supports additional con-
cepts needed in hardware design and allows IP-centric modeling. Unlike other system-level
languages, the SpecC language precisely covers the unique requirements for embedded sys-
tems design in an orthogonal manner. In SpecC, the par construct allows parallel behaviors
to be expressed. For example, par{a.main(); b.main(); } in Figure 6 indicates that behav-
iors a and b are running concurrently (in parallel). Within each behavior, statements run in
the sequential manner just as in the C programming language. The timing constraints that
must be satisfied for the behavior a are Tas ≤ T1s < T1e ≤ T2s < T2e ≤ Tae, where Ta,
T1 and T2 stand for the timing of a, st1 and st2 respectively, and the postfix notations s
and e stand for starting and ending time. In other words, st1 and st2 execute after a starts
and before a ends, and no overlap is allowed in the execution of st1 and st2. All behaviors
under par{} are having the same starting and ending time. Hence, the timing constraints
for starting and ending time of a and b are Tas = Tbs and Tae = Tbe.

Note that it is not determined when st3 is scheduled relative to st1 and st2: any of
“st1 → st2 → st3”, “st3 → st1 → st2”, and “st1 → st3 → st2” are allowed. In this case,
an ambiguous result or an access violation error can occur since both st1 and st3 assign a
value to the same variable x. The event manipulation statements in SpecC, notify/wait,
can be used to synchronize behaviors a and b to achieve any desired scheduling. Figure 7(a)
shows a modified version of Figure 6 with insertion of notify/wait statements. Let us focus
on the /∗New ∗/ labels in Figure 7 where the event manipulation statements are used. We
can see that wait e prevents execution of st3 until the event e is notified by notify e. Due
to sequentiality in behavior a, notify e is scheduled right after the completion of st2. The
notify/wait pair therefore introduces the additional constraint T2e < T3s. That is, it is
guaranteed that statement st3 is safely executed right after statement st2. This enforces the
scheduling “st1 → st2 → st3”. The timing constraint that describes this synchronization is
T2e < T3s.

All timing constraints from Figure 6 can be represented as follows.

• Tas <= T1s < T1e <= T2s < T2e <= Tae
(sequentiality in a)

• Tbs <= T3s < T3e <= Tbe
(sequentiality in b)

• Tas = Tbs, Tae = Tbe
(concurrency between a and b)

• T2e < T3s
(synchronization of notify and wait statement forces st3 to be after st2)

Figure 9 shows typical synchronization examples which may be found in iteration bodies
of loop-type statements in design descriptions. These synchronization problems can be
analyzed as integer linear programming problems with the timing constraints on behaviors
and statements as shown above and logical constraints derived from conditional statements

66

Dependence graph based verification and synthesis

unsigned int x, y;

 x = y + 1;

A() {

 wait e2;

 if(x >= y)

 notify e1;

B() {

 wait e1;

 notify e2;

Constraints:

C1: TA_w_e2 < TA_n_e1

C2: TB_w_e1 < TB_n_e2

C3: TA_n_e1 < TB_w_e1

C4: TB_n_e2 < TA_w_e2

Check all constraints with ILP solver:

Conflict!!!

Figure 8. A and B are running in parallel. Constraints C1 and C2 represent sequentiality in A
and B, respectively. Constraints C3 and C4 represent synchronization of notify/wait of e1 and

e2, respectively. After analyzing all constraints with ILP solver, there is a conflict due to the use of

wait e1 and wait e2 prior to notify e1 and notify e2.

in the design descriptions, such as if-statements. The conditional statements are modeled
with constraints on integer variables. Since we are concentrating only on synchronization
verification, we can abstract away portions of the design descriptions which are not related
to synchronization statements. As a result, we can deal with fairly large design descriptions
with the state-of-the-art ILP solvers. First, we can extract very small portions of the
original design descriptions which directly influence the synchronization statements, such
as “wait” and “notify”. We call this an abstraction process2. of the design descriptions.
Then by using symbolic simulations we can generate ILP formulae to be checked. If the
results of ILP solvers are negative, we proceed to the process of refinement of abstraction.
For this refinement, we need to investigate dependencies among statements where SDGs
provide very efficient mechanisms. This abstraction-refinement process may be repeated
until we get real verification results. A complete discussion of abstraction refinement for
model checking is beyond the scope of this paper. The interested reader is directed to
[14, 13] for a detailed treatment of this subject.

Figure 8 shows a simple example that illustrates the use of CEGAR and ILP solver for
synchronization verification. Both A and B are called under par and x and y are shared
global variables. Note that, in Figure 8, we consider only the synchronization statements
and omit others. Two pairs of synchronization points of events e1 and e2 where both wait e1
and wait e2 were placed prior to both notify e1 and notify e2. There is also the if(x >= y)
guarded notify e1. As mentioned earlier, synchronization verification can be conducted in
two steps. First, we use CEGAR to validate that every pair of notify/wait statements are
eventually synchronized. Particularly, we are interested in validating the guarded condition
of statement notify e1. The result from CEGAR tells that the condition if(x >= y) is

2. Counterexample-Guided Abstraction Refinement (CEGAR) [14] is a method to automate the abstraction
refinement process. More specifically, starting with a coarse level of abstraction, the given property is
verified. A counterexample is given when the property does not hold. If this counterexample turns
out to be spurious, the previous abstract programs are then refined to a finer level of abstraction. The
verification process is continued until there is no error found or there is no solution for the given property.

67

M. Fujita et al.

(a) (b)
(c) (d)

notify e1;

A;

wait e2;

B;

wait e1;

C;

notify e2;

D;

par

wait e2;

A;

notify e1;

B;

wait e1;

C;

notify e2;

D;

par

notify e1;

A;

waitfor(10);

wait e2;

B;

wait e1;

waitfor(10);

C;

notify e2;

D;

par

notify e1;

A;

wait e2;

waitfor(10);

B;

wait e1;

waitfor(10);

C;

notify e2;

D;

par

(a) (b)
(c) (d)

notify e1;

A;

wait e2;

B;

wait e1;

C;

notify e2;

D;

par

wait e2;

A;

notify e1;

B;

wait e1;

C;

notify e2;

D;

par

notify e1;

A;

waitfor(10);

wait e2;

B;

wait e1;

waitfor(10);

C;

notify e2;

D;

par

notify e1;

A;

wait e2;

waitfor(10);

B;

wait e1;

waitfor(10);

C;

notify e2;

D;

par

Figure 9. Synchronization verification with ILP solvers

always true (x = y +1 makes condition x >= y always true). The second step is to validate
all equalities/inequalities formulae. In this case there is a conflict in the formulae and a
deadlock occurs due to the wait e1 and wait e2 are executing prior to notify e1 and notify
e2, respectively. The detailed algorithm and explanation of synchronization verification can
be found in [13].

Several experiments were conducted on a Pentium4 2.8-GHz machine with 2 GB of
RAM running Linux. The results of synchronization verification are shown in Table 2. A
counterexample was generated whenever a property did not hold. This counterexample
showed a path leading to each inserted deadlock in the descriptions. The column LOC
denotes the lines of codes of the original descriptions and the descriptions after abstraction.
The column “# of Behaviors and Iterations” denotes the number of concurrent behaviors
and the number of times the CEGAR refinement loop was executed. The last column
denotes the number of deadlocks detected. Since all of these benchmarks are the real
industrial designs, We found no deadlock in all benchmarks.

According to the results in Table 2, the verification of MPEG4 descriptions considered
only a portion of the descriptions (about 800 lines) instead of the entire description (about
48,000 lines). We would like to point out that focusing on the synchronization verification
can significantly reduce the size of the model that needs to be considered. We also believe
that once the synchronization correctness is guaranteed, we can also use this framework to
verify other properties.

As a final remark in this section, we use a Cooperating Validity Checker (CVC) [18]
to compute abstraction when generating the abstract model. This is working well for the
word-level data types. However, when considering the types of data with finite precision,
some properties, e.g., overflow detection, cannot be verified using our method. This issue
can be handled by using Satisfiability Modulo Theories (SMT) [17].

3.2 Sequentialization of Concurrent Behaviors

We can use the synchronization verification method mentioned in Section 3.1 to guarantee
that all concurrent processes are running as the users intend. This section describes its usage
for sequentializing concurrent behaviors which can be extended to check the equivalence of
the two sequentialized descriptions as shown in [15].

To sequentialize the design descriptions, the following conditions must be satisfied.

68

Dependence graph based verification and synthesis

Table 2. Experimental results

LOC # of
Benchmark

Original After abs. Behaviors Iterations
Runtime Deadlock

FIFO 260 240 5 3 18.2 0

Point-to-point protocol 844 724 13 2 50.1 0

Elevator control system 2000 819 6 2 21.1 0

MPEG4 48126 781 5 1 9.7 0

• No deadlock. Every wait statement is always executed with at least one correspond-
ing notify statement being eventually executed. This can be checked by the method
explained in Section 3.1.

• No race condition. There is no possibility for any shared variable to be accessed at
the same time, i.e., have no read/write, write/read or write/write accesses.

The above two conditions are the necessary conditions required to generate the sequential
design that is equivalent to the original one. If a given design has a deadlock, its execution
can halt somewhere in the design, while the execution of the sequential design should never
halt. In this case, behaviors of the two designs are not equivalent for any sequentialization.
For ‘no race condition’, if there exists any global variable which is local to parallel behaviors,
accesses to this variable (known as read/write, write/read or write/write accesses) at the
same time can cause the design to perform different functionalities.

Race Condition Check Before introducing the race condition check, we define basic
block and synchronization point.

• Basic block (BB): A series of statements that do not include conditional branches
nor synchronization points.

• Synchronization point (SP): A pair of notify and wait statements of the same
event is considered as a synchronization point.

Now, assume that there are two basic blocks, BB1 and BB2, where T (BB1starttime) <
T (BB1endtime) and T (BB2starttime) < T (BB2endtime) are the timing constraints for each
block. Together with these constraints, we can check the race condition between BB1 and
BB2 by checking the following pair of properties.

Prop1 : T (BB1starttime) < T (BB2endtime)
Prop2 : T (BB1endtime) > T (BB2starttime)

We will not consider the condition when both Prop1 and Prop2 are unsatisfied at the same
time, since it is obvious that this condition cannot occur. If Prop1 is satisfied and Prop2
is not, BB1 is proved to be executed prior to BB2 (BB1 → BB2). In contrast, if Prop1
is not satisfied and Prop2 is, we can say that BB1 is proved to be executed after BB2
(BB2 → BB1). If both of the properties are satisfied, BB1 and BB2 can be interleaved and
it is possible for a race condition to occur. All variables in BB1 and BB2 must be checked

69

M. Fujita et al.

Algorithm 1 Sequentialization(SC)

declare
1: SC: SpecC descriptions
2: error: a Boolean variable
3: Sync: a set of synchronization point
4: SETpar: a set contains heuristic depth of par

begin
5: /* Heuristically search for par */
6: SETpar := HeuristicSearch(SC)
7: foreach par in SETpar (start from the deepest one) do
8: /* Check if there is any deadlock */
9: (error, Sync) := SynchronizationVerification(SC)

10: if error then
11: exit (“There is a deadlock”)
12: end if
13: foreach synchronization point in Sync do
14: /* Check if there is any race condition */
15: error := RaceConditionDetect(SC)
16: if error then
17: exit (“There is a race condition”)
18: end if
19: end for
20: end for
21: return (SequentialGen(SC))

end

for data dependency. If, for any variable, there is data dependence (read/write, write/read
or write/write) between BB1 and BB2, then there is a race condition. Otherwise, BB1
and BB2 are race condition free, and we can sequentialize in either (BB1 → BB2) or
(BB2 → BB1) order.

Algorithm 1 can be explained briefly as follows. Variables are declared in line 1-4. In line
6, we heuristically search the entire descriptions to find all behaviors that were called under
par{} and store in variable SETpar. The outer loop (line 7-20) is the core sequentialization
process. We check for synchronization error as shown in line 9. If there is any error, then
terminating the process with error report. Otherwise, all the synchronization points are
stored in variable Sync. The inner loop (line 13-19) checks whether each synchronization
point can cause race condition. Once we exit from outer loop without any error, the process
returns with the sequentialized descriptions as shown in line 21.

According to Algorithm 1, the detailed sequentialization process is described as follows.

• Since SpecC supports design hierarchy and concurrency, we store all par statements
in a set SETpar and, for each par, we mark its depth as we explore the design to lower
hierarchy. The depth of a par statement is the depth from the top par statement of
the hierarchy. If a par statement is not nested, the depth is 0.

70

Dependence graph based verification and synthesis

• For each par statement, the deepest depth of SETpar is taken from the set and se-
quentialized by the following procedure. Let Bhvr1 and Bhvr2, for example, denote
the two behaviors under the par statement to be sequentialized.

– With the method for race condition check as described above, find all pairs of
basic blocks BB1 in Bhvr1 and BB2 in Bhvr2 and put them into a set BBpair.

– For each pair in BBpair, check Prop1 and Prop2. If Prop1 is true and Prop2
is not, BB1 and BB2 can be sequentialized directly as BB1 before BB2, and vice
versa. However, if both properties are satisfied and there is no data dependence,
BB1 and BB2 can be sequentialized in any order. Either BB1 before BB2 or
BB2 before BB1.

– Otherwise, race condition is found and verification terminates with an error re-
port.

Examples Figure 10 and 11 show examples of sequentialization of concurrent behaviors.
Let us begin with the example in Figure 10. Behaviors A and B are called under par. There
are two pairs of events e1 and e2 used for synchronization. Since d2 is computed by dividing
(c2 − c1) by d1, the value of d1 should never be equal to zero. This is a fatal error and
we cannot allow it to occur. Therefore, the ERROR statement was asserted to catch this
error whenever it occurs. Hence, the condition (d1 != 0) must always be true, and therefore
both synchronization points always exist. According to these synchronization points, we can
divide portions of code into four basic blocks (BB1, . . . , BB4). Synchronization point of no-
tify e1 and wait e1 makes BB1 executed before BB3. In contrast, with the synchronization
point of notify e2 and wait e2, both BB2 and BB4 are executed after this point. It is not
certain whether one will be executed before another, i.e., BB2 and BB4 can be interleaved
with each other. Therefore, two possible execution orders of these basic blocks are shown
in Figure 10(b), BB1 → BB3 → BB2 → BB4 or BB1 → BB3 → BB4 → BB2. There is
no race condition, since data dependency (no read/write or write/write condition) between
BB2 and BB4 does not exist. This is because there is no shared variable in BB2 and BB4.
Both of the execution orders are functionally equivalent, hence generation of either of them
is the sequentialization of Figure 10(a). Sequentialization of BB1 → BB3 → BB2 → BB4
is shown in Figure 10(c).

On the other hand, let us consider the similar example shown in Figure 11. Both behav-
iors A and B of Figure 11(a) are slightly different from those of Figure 10(a). By using the
same approach, both BB1 and BB3 are executed before synchronization point of event e1
and both BB2 and BB4 are executed after synchronization point of event e2. The possible
execution orders are (BB1 interleaved with BB3) → (BB2 interleaved with BB4) as
shown in Figure 11(b). Both BB2 and BB4 are exactly the same as in Figure 10. How-
ever, interleaving of statements between BB1 and BB3 has data dependencies that caused
different behaviors and the read/write access violation of variables c1 and c2. Therefore, in
this case, we terminate the sequentialization process and report that this design contains a
race condition error.

We tested our tool on several designs written in SpecC. Different levels of implementa-
tion, e.g., specification level, architecture level before scheduling and architecture level after
scheduling, of the Inverse Discrete Cosine Transform (IDCT) and the Vocoder, provided by

71

M. Fujita et al.

 void main() {

 int a1, b1, c1, d1;

 int a2, b2, c2, d2;

c1 = a1 + b1;

 c2 = a2 + b2;

 d1 = c1 * c2;

 if(d1 != 0)

 d2 = (c2 – c1)/d1;

 else

 ERROR;

 }

 behavior A()

 { void main() {

c1 = a1 + b1;

 c2 = a2 + b2;

 notify e1;

 wait e2;

 d2 = (c2 – c1)/d1;

 }

 };

behavior B()

 { void main() {

 wait e1;

d1 = c1 * c2;

 if(d1 != 0)

 notify e2;

 else

 ERROR;

 }

 }

 behavior Main()

 { int a1, a2 ,b1, b2, c1, c2, d1, d2;

 event e1, e2;

 void main() {

 par{A.main(); B.main()};

 }

};

(a) Two parallel behaviors with synchronization

(c) Sequentialized version of (a)

BB1

BB2

BB3

BB4

BB1

BB2

BB4

BB3

BB3

BB1

BB4

BB2

(b) Possible execution orders.

No dependence between BB2 and BB4,

so execution order is OK

for sequentialization.

Figure 10. Sequentialization example 1

Table 3. Sequentialization results of IDCT and Vocoder benchmarks

SymSim ILP
Benchmark LOC Bhvrs Chnls D-Lock R-Cond

Time(s) Constrs Vars Time(s)

IDCT1 1 300 4 1 0 0 0.71 181 169 0

IDCT1 2 314 6 1 0 0 0.75 241 169 0

IDCT2 1 300 4 1 0 0 0.69 181 169 0

IDCT2 2 256 18 1 0 0 0.75 688 103 0

VocSpec 9165 102 4 1 0 38.97 1158606 2555 20.29

VocArch 10178 144 14 1 0 48.54 1179122 2749 19.99

VocSched 10139 144 14 1 0 41.97 1179182 2767 20.66

the University of California at Irvine (UCI), were tested. We performed the experiments
on a Pentium4 2.8-GHz PC running Linux with 2 GB of RAM. Table 3 shows the results of
sequentializing all the designs according to Algorithm 1. For each benchmark, we give the

72

Dependence graph based verification and synthesis

 behavior A()

 { void main() {

c1 = a1 + b1;

 c2 = a2 + b2;

 notify e1;

 wait e2;

 if(d1 != 0)

 d2 = (c2 – c1)/d1;

 }

 };

behavior B()

 { void main() {

d1 = c1 * c2;

 wait e1;

 notify e2;

 if(d1 == 0)

 ERROR;

 }

 }

(a) Two parallel behaviors with synchronization

BB1

BB2

BB3

BB4

BB3

BB1

BB2

BB4

BB1

BB3

BB4

BB2

(b) Possible execution orders. There is no data

dependence between BB2 and BB4, but there is

between BB1 and BB3 where race condition occurs

due to dependencies of shared variables c1 and c2.

BB3

BB1

BB4

BB2

BB1

BB3

BB2

BB4

Figure 11. Sequentialization example 2

code size in LOC (lines of code), total number of behaviors and channels utilized, reported
errors for deadlock and race condition, and the total runtime by symbolic simulation in
seconds. The last three columns present the results of the number of constraints/variables
and the total runtime solved by the ILP solver.

As the results from sequentialization, we do not find any race condition in all bench-
marks. However, we found one deadlock bug in all Vocoder designs. It was caused by a use
of core communication channel that has a corner condition that caused a deadlock (both
sender and receiver in the communication channel are waiting for the acknowledge signal
from each other). We fixed this error and continued to sequentialize the design. Note that
although the number of behaviors in the design is large, not all of them are concurrently
running. And because in synchronization verification we heuristically explore the whole
design to find only the behaviors running in parallel and focusing on behaviors that con-
tain synchronization semantics. Therefore, the design size and the verification time can be
reduced accordingly.

4. Optimum Code Generation with Translation of SDGs to Finite State
Machines

In the previous section we described an analysis and verification method for SDGs, whereas
in this section, we describe a method to synthesize optimal software from SDGs with SAT-
based formulation.

73

M. Fujita et al.

Customized embedded processors can be attractive solutions in terms of performance
and power, compared to general purpose embedded processors. In hardware/software de-
signs, adding application-specific custom instructions is a popular approach to the cus-
tomization. In the typical flow, target applications are profiled and bottleneck portions in
the applications are identified. Then custom instructions that can efficiently execute these
bottlenecks are generated and used. It is often the case that these bottlenecks are loop
kernels.

Dynamically reconfigurable architectures can serve as fabrics to implement these custom
instructions. They are more flexible than ASICs and more efficient than FPGAs for some
applications. Dynamically reconfigurable architectures are mainly comprised of arrays of
functional units (FUs), such as multipliers, ALUs, memory blocks, and registers. Connec-
tions between them are programmable. Because these connections can be changed even at
run-time and in very short time (one cycle or so), it is easy to adapt the architectures to
different bottleneck portions at run-time. To exploit dynamically reconfigurable architec-
tures, availability of efficient compilers is vital. Without them, it is hard to utilize such
architectures. Dynamically reconfigurable architectures can be viewed as special types of
VLIWs, DSPs, or FPGAs, so some of the compiler techniques developed for these archi-
tectures may be reused. However, little work has been done developing compilers for them
because this area of study is very new and the problem is challenging.

The basic flow of the compilers for dynamically reconfigurable architecture is proposed
as follows. First, an input C program (SDG in our case) to be mapped to the architecture
is parsed and translated into an intermediate representation (IR). (The automation of this
part is our future work, but will not be difficult with the help of an existing compiler front-
end.) Then, traditional compiler optimizations such as dead code elimination and loop
optimizations, such as loop unrolling are performed to the IR using the existing compiler
framework [9]. Architecture-aware optimizations are necessary to exploit the architectures.
In this work, we have implemented a compiler back-end in which the optimized IR is mapped
to a target architecture and the optimal code (configuration) is generated.

We focus on the compiler back-end for dynamically reconfigurable architectures. In
the back-end, we have to perform temporal mapping (scheduling operations to time steps),
and spatial mapping (mapping operations to functional units, assigning variables to reg-
isters or memories, mapping data transfers to connections). Here, we present a method
that generates optimal code for dynamically reconfigurable architectures. It first extracts
possible matching rules from a target architecture description. Then, code generation is
solved by using the formulation based on finite state machines (FSMs) [11]. Our method
can generate optimal code when the size of the problem is moderate. Because there are
many moderate-size kernel loops in real embedded applications, we believe that our work
is worthwhile.

Figure 12 shows the overall back-end flow of the proposed approach. The inputs to
the flow is loop kernel C code identified by profiling and the architecture description for
a target architecture. The loop kernel C code is parsed and optimized by CoSy compiler
framework [9], and optimized intermediate representation (IR) is obtained. The optimized
IR is represented as abstract syntax trees (ASTs). We construct a data-flow graph (DFG)
from the ASTs. The matching rules used in the code generation process are extracted

74

Dependence graph based verification and synthesis

Loop kernel C code Architecture description

Matching rule extraction

Matching rules

CoSy compiler framework

Optimized IR

Code (Configuration)

FSM-based code generation

Figure 12. Overall flow of optimum code generation with translation of SDGs to FSMs

PE1 PE4PE2 PE3

PE5 PE8PE6 PE7

PE9 PE12PE10 PE11

PE13 PE16PE14 PE15

(a) (b)

PE PE1 {

 OP { mirPlus mirDiff mirMult }

 IN { PE1 PE2 PE5 } }

PE PE2 {

 OP { mirContent mirAssign }

 IN { PE1 PE2 PE3 PE6 } }

PE PE3 {

 OP { mirAnd mirOr mirXor }

 IN { PE2 PE3 PE4 PE7 } }

Figure 13. (a) Net-list and (b) Architecture description

from the architecture description. By using the DFG and matching rules, FSM-based code
generation [11] is performed. Finally, software pipelined code (configuration) is generated.

The target dynamically reconfigurable architecture is comprised of arrays of functional
units (FUs), such as multipliers, ALUs, memory blocks, registers and register files, etc. Con-
nections between them can be either bus-based or multiplexer-based and are programmable.
We assume that each operation finishes execution in one cycle. In our method, a target
architecture is basically represented by a net-list of components (FUs, multiplexor’s, buses,
etc.). From the architecture description, matching rules used in code generation are ex-
tracted.

In Figure 13(a), we show a simple target architecture. In the figure, processor elements
(PEs) are connected to their nearest neighbors. Each PE has its own register file, and the
computation results of a PE are written to its register file. Each PE can read operands from
the register files owned by the nearest neighbors, as well as its own register file. Each PE

75

M. Fujita et al.

resource and storage description

Resource {

 PE1(1),PE2(1),...}

RegisterFile {

 reg1(4),reg2(4),...}

matching rules

Rule1 {

 pattern { mirMult(reg2,reg5)->reg1 }

 resource { PE1 } }

Rule2 {

 pattern { mirPlus(reg2,reg5)->reg5 }

 resource { PE1 } }

Rule3 {

 pattern { mirContent(reg1)->reg2 }

 resource { PE2 } }

Rule4 {

 pattern { mirAssign(reg3,reg6) }

 resource { PE2 } }

...

Figure 14. Code generator description

can execute some of the micro-operations such as addition, multiplication, memory read,
memory write, etc. We assume that each micro-operations can be executed in one cycle.

Figure 13(b) shows an excerpt of the architecture description for the architecture in
Figure 13(a). The simple micro-architecture information of each PE is described in the
architecture description. In the description, OP shows the types of micro-operations the
PE can perform, and IN shows input connections of the PE. For example, the first 3 lines
of Figure 13(b) describe the processing element PE1. It can perform addition (mirPlus),
subtraction (mirDiff), multiplication (mirMult), and it can take input operands from the
register files in PE1, PE2 and PE5. Although omitted in Figure 13(b), the information of
register files in each PE is also described in the architecture description. For example,
PE1 has a register file reg1 with 4 registers. From the architecture description, matching
rules are extracted automatically. For example, Rule1 is extracted, since PE1 can perform
multiplication (mirMult), and is connected to PE2 (reg2) and PE5 (reg5).

A code generator description (CGD) is a file that contains necessary information for
code generation (such as code selection, register allocation and scheduling). An example
CGD (just an excerpt) for the target architecture shown in Figure 13 is shown in Figure
14. The first part of CGD are resource and storage description. That part describes which
type of and how many resources are available in the target architecture. In the example, we
have resources PE1, PE2, etc. for processing. The parentheses represents the number of PEs
of specific type. For example, PE1(1) means one PE1. As for storage, we have register files
reg1, reg2, etc. The number written in parentheses describes the number of registers in
the register files. For example, reg1(4) means the register file reg1 of PE1 has 4 registers.

The second part of a CGD is describing matching rules. They are extracted from the
architecture description shown in Figure 13. We can extract such matching rules by enu-

76

Dependence graph based verification and synthesis

(a)

32

1

(b) (c)

reg1

reg2 reg5

reg2 reg5

reg1
1

2 3

Figure 15. (a) DFG (b) pattern graph (c) match

merating all possible register transfers in the target architecture. In each matching rule,
the pattern section shows a pattern graph that can be executed by the target architecture.
A pattern graph is a graphical representation of a micro-operation. The resource section
describes resources used when executing the pattern graph. For example, in Rule1, mul-
tiplication is possible whose source operands come from register files reg2, reg5, and the
destination is reg1. To perform the multiplication, the resource PE1 is used.

Now, we define a concept called match. It is simple and is used intensively in our
formulation. When a sub-graph g of a DFG is isomorphic to a pattern graph i in a matching
rule, we call the pair (g, i) a match. Matches can be obtained by performing graph matching
between a DFG and pattern graphs. For each match (g, i), the sub-graph g can be executed
by a micro-operation represented by the pattern graph i. We define the execution of a
match (g, i) as the execution of the micro-operation p to compute the sub-graph g. To
execute a match, proper input operands must be available.

Figures 15(a),(b),(c) show an example of a DFG, a pattern graph, and a match, respec-
tively. A sub-graph consisting of the node 1 in the DFG can be executed by the pattern
graph shown in Figure 15(b). The resulting match is depicted in Figure 15(c). To execute
the match, the results of node 2 and node 3 must be available in register files reg2 and reg5
respectively.

In [11], a formulation of code generation for DSPs based on a finite state machine
(FSM) was proposed. In the following, we present the formulation. The formulation has
been extended to be able to deal with “software pipelining” in [12]. Due to the space limit,
we skip details of the “software pipelining” formulation in this paper.

In the FSM, an input w = (w0, ..., wq) roughly corresponds to an instruction to be
executed in a cycle and a state x = (x0, ..., xp) roughly represents a machine state that
represents which (temporary) results are stored in which storage locations in a cycle. The
shortest input sequence that brings an initial state to a final state corresponds to the assem-
bly code with the minimum number of steps. In the following, we explain the state variables,
input variables, and state transition functions of the FSM, followed by the constraints that
must be satisfied by the variables.

The state variables of the FSM are defined as

{

an,l

∣

∣ n ∈ N, l ∈ L
}

∪
{

v
}

(1)

where N is the set of all nodes in a DFG, and L is the set of all storage locations in a target
processor. an,l is referred to as result availability variable and it is one when the result of
a node n is available in a storage location l, and it is zero otherwise. v is referred to as

77

M. Fujita et al.

constraint violation variable and it is one when constraints such as a resource constraint
has been violated.

The input variables of the FSM are defined as

{

em

∣

∣ m ∈ M
}

∪
{

fn,l

∣

∣ n ∈ N, l ∈ L
}

(2)

where M is the set of all matches. We refer to em as match execution variable and it is one
when a match m is executed, otherwise it is zero. We refer to fn,l as result free variable and
it is one when the result of a node n in a storage location l is being thrown away, otherwise
zero. The result free variable is necessary to accommodate the situation when register files
are full of operands, and some of them must be discarded to satisfy the register capacity
constraints.

The transition function of a result availability variable an,l is defined as follows.

an,l
′ =

1 (
∨

m∈Mn,l

em = 1)

0 (fn,l = 1)

an,l (otherwise)

(3)

an,l
′ is the next state variable of an,l, Mn,l is the set of matches that compute the result

of a node n in a storage location l and
∨

represents disjunction (OR). When the first and
the second transitions are enabled at the same time, the first transition is executed. The
first line of (3) means that the result availability variable an,l will become one in the next
cycle when any match m that computes the result of the node n in the storage location l is
executed. The second line of (3) means that the result availability variable an,l will become
zero in the next cycle, when the result free variable fn,l for the same n and l is one. The
third line of (3) means that the result availability variable an,l will keep the previous value
when the conditions of the first line and second line do not hold.

The transition function of the constraint violation variable v is defined as follows.

v′ =

{

1 (voperand ∨ vresource ∨ vregister = 1)

v (otherwise)
(4)

v′ is the next state variable of v, and ∨ represents a disjunction (OR). vresult, vresource,
vregister are temporary variables, representing operand constraints, resource constraints, and
register constraints violations. Each variable becomes one when corresponding constraints
are violated, otherwise zero.

To generate correct assembly code, certain constraints must be satisfied on the above
variables along the FSM state transitions. These constraints are represented as Boolean
formulas among FSM variables. The following three constraints are sufficient for generating
correct assembly code.

Operand Constraint Consider a match m = (g, i) whose input nodes of g are n1, ..., np.
Assume that the results of these input nodes must be available in storages l1, ..., lp to execute
the match m. We denote this constraint as voperand,m. It is formally represented as follows:

voperand,m = em → an1,l1 ∧ ... ∧ anp,lp (5)

78

Dependence graph based verification and synthesis

The operand constraint voperand is then represented as follows,

voperand =
∨

m∈M

voperand,m (6)

where M is the set of all matches.

Resource Constraint Suppose that there are n matches mr,1, ..., mr,n that use a resource
type r, and the number of available resources for the resource type r is k. Then at most k
out of n matches can be executed regarding this resource. This condition is translated into
the following expression.

vresource,r = Tn,k(emr,1
, ..., emr,n) (7)

Tn,k(x1, ..., xn) is a threshold function, and it is one when more than k input variables out of
x1, ..., xn are one, otherwise zero. The resource constraint vresource is represented as follows,

vresource =
∨

r∈R

vresource,r (8)

where R is the set of all resource types.

Register Constraint Suppose that there are n nodes in a DFG and the capacity of a
register file l is k

Then, up to k results can be stored in the register file l out of n results of all nodes in
the DFG. This condition is translated into the following expression.

vregister,l = Tn,k(a1,l, ..., an,l) (9)

The register constraint vregister is represented as follows,

vregister =
∨

l∈L

vregister,l (10)

where L is the set of all location types (register file or register).
Now, we explain the initial and final states of the FSM. In initial states, an,l = 0 for

all nodes n except input nodes of a DFG. Initial states represent the states where inputs
of the DFG are available but no operation has started yet. Final states are specified as
an,l = 1 for all output nodes n in the DFG and for user specified locations l, and v = 0.
Final states represent the states where the results of output nodes are computed correctly
in the specified locations and no constraint has been violated.

We have implemented the presented approach and performed an experiment. To analyze
the FSM, we used the pseudo-Boolean solver called PBS(v2.1)[10].

As for the target architecture, we used the same topology as shown in Figure 13(a).
However, each PE not only has nearest-neighbor connections but also the second nearest-
neighbor connections. For example, PE6 can read operands not only from nearest-neighbors
(PE2,PE5,PE6, PE7,PE10), but also the second nearest-neighbors PE8 and PE14.

Table 4 shows the experimental results. The first column represents the name of loops.
fir is an FIR filter code, n real update is another filter code, and gouraud is a shading

79

M. Fujita et al.

Table 4. Experimental results

benchmark #ops step II #vars #clauses #pb time(s)
p=1 p=2 p=3 case of p=3, II=2

fir 7 3 3 2 2 43671 117337 80 2.7

n real update 9 4 5 3 2 50679 138395 80 4.5

gouraud 13 6 6 3 2 101607 281511 80 15.5

algorithm for 3D graphics. The second column (#ops) shows the number of operations in
each loop body. The third column (step) is the length of the critical path for the DFG of
each loop body. The fourth, fifth, and sixth columns (II) shows the initiation interval results
(II) of the software pipelining when the number of replication p (i.e., the maximum number
of loop iterations whose executions are overlapped) is changed as p = 1, p = 2, p = 3,
respectively. As shown in the table, the results of II when p = 3 for all the benchmarks
happened to be 2. The columns #vars, #clauses, #pb, time(s) represent the number of
variables, the number of clauses, the number of pseudo Boolean constraints, and runtime
of PBS for each benchmark’s SAT instance in the case of p = 3 and II=2.

As shown in the table, when the number of replication p is increased, then more par-
allelism is gained, since the initiation interval (II) is decreasing. The CPU time spent for
each loop body and for each p was not more than several minutes. Because the analysis
of FSMs using Boolean satisfiability is NP-complete, the CPU time to be spent increases
rapidly as the sizes of the DFG or dynamically reconfigurable architectures increase. Ba-
sically, DFGs with up to 20 nodes could be processed by the proposed approach. These
solutions are the optimal initiation intervals for the given p. The sizes of problems as SAT
formulation range from 10,000 to 100,000 variables and 100,000 to 500,000 clauses for the
largest configurations.

5. Conclusions

We described our verification and synthesis framework based on SDGs that have been
used in program slicing technology. We also showed verification and synthesis techniques
based on the analysis of SDGs by translating the problems into SAT and ILP ones. The
experimental results indicated that the state-of-the-art SAT and ILP solvers give practical
effectiveness for reasonably large design descriptions. In order to deal with much larger
design descriptions that often appear in embedded system designs, we need to incorporate
various heuristics, which will be our future work. In addition, the framework should handle
not only C/C++/SpecC but also SystemC and RTL. We will address these needs in our
future work.

References

[1] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao, “SpecC: Specification Language
and Methodology,” Kluwer Academic Publishers, Boston, March 2000.

[2] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs.

80

Dependence graph based verification and synthesis

volume 12, pages 26–60. ACM Press, 1990.

[3] K. Tanabe, S. Sasaki and M. Fujita. Program Slicing for System Level Designs in
SpecC. In Proc. of the IASTED, International Conference on Advances in Computer
Science and Technology (ACST2004), pages 252–258, Nov. 2004.

[4] Codesurfer. http://www.grammatech.com/products/codesurfer/.

[5] L. Larsen and M. J. Harrold. Slicing object-oriented software. In Proceedings of the
18th international conference on Software engineering, pages 495–505. IEEE Computer
Society, 1996.

[6] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph in a software
development environment. In Proceedings of the first ACM SIGSOFT/SIGPLAN soft-
ware engineering symposium on Practical software development environments, pages
177–184. ACM Press, 1984.

[7] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10(4):352–
357, 1984.

[8] E. M. Clarke, M. Fujita, S. P. Rajan, T. W. Reps, S. Shankar, and T. Teitelbaum. Pro-
gram Slicing of Hardware Description Languages. In Conference on Correct Hardware
Design and Verification Methods, pages 298–312, 1999.

[9] ACE Associated Compiler Experts. CoSy compiler development system, 2004.

[10] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. Generic ILP versus spe-
cialized 0-1 ILP: an update. In Proceedings of the 2002 IEEE/ACM International
Conference on Computer-Aided Design, pages 450–457, November 2002.

[11] K. Seto, M. Fujita, and K. Asada. Retargetable Code Generation Based on Finite
State Machine and Boolean Satisfiability . In International Workshop on Logic and
Synthesis (IWLS), pages 260–265, June 2003.

[12] K. Seto and M. Fujita. Optimal Temporal Spatial Mapping for
Dynamically Reconfigurable Architectures. Internal Report, 2004.
http://www.cad.t.u-tokyo.ac.jp/∼seto/internal report.html.

[13] T. Sakunkonchak, S. Komatsu, and M. Fujita. Synchronization verification in system-
level design with ILP solvers. In Third ACM-IEEE International Confernece on Formal
Methods and Models for Codesign (MEMOCODE2005), pages 121–130, July 2005.

[14] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Proc. of the International Conference on Computer-Aided
Verification (CAV’00), ser. Volume 1855 of LNCS, E. A. Emerson and A. P. Sistla,
Eds. Springer-Verlag, 2000.

[15] T. Sakunkonchak, T. Matsumoto, H. Saito, S. Komatsu, and M. Fujita. Equivalence
Checking in C-based System-Level Design by Sequentializing Concurrent Behaviors.
In Proc. of the IASTED, International Conference on Advances in Computer Science
and Technology (ACST2007)

81

http://www.grammatech.com/products/codesurfer/
http://www.cad.t.u-tokyo.ac.jp/~seto/internal_report.html

M. Fujita et al.

[16] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2), April 1994.

[17] C. Tinelli. A DPLL-based Calculus for Ground Satisfiability Modulo Theories. In
Proc. of the 8th European Conference on Logics in Artificial Intelligence, pages 308–
319, 2002.

[18] A. Stump, C. W. Barrett, and D. L. Dill. CVC: A Cooperating Validity Checker. In
the 14th International Conference on Computer Aided Verification (CAV’02), pages
500–504, 2002.

[19] L. Cai, S. Verma, and D. D. Gajski. Comparison of SpecC and SystemC Languages for
System Design. Technical Report CECS-03-11, Center of Embedded Computer Systems,
University of California, Irvine.

[20] T. Nishihara, D. Ando, T. Matsumoto, and M. Fujita. ExSDG : Unified Dependence
Graph Representation of Hardware Design from System Level down to RTL for Formal
Analysis and Verification. In International Workshop on Logic and Synthesis (IWLS),
June 2007.

82

	Introduction
	Background
	The SpecC Language
	Behaviors, Channels, and Interfaces
	Concurrency and Synchronization Semantics
	SpecC and SystemC

	Program Slicing for C/C++/SpecC Descriptions

	Verification with Symbolic Simulation-Based Reasoning
	Synchronization Verification
	Sequentialization of Concurrent Behaviors

	Optimum Code Generation with Translation of SDGs to Finite State Machines
	Conclusions

