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Abstract

The Ternary Tree Solver (tts) is a complete solver for propositional satisfiability which
was designed to have good performance on the most difficult small instances. It uses a
static ternary tree data structure to represent the simplified proposition under all permis-
sible partial assignments and maintains a database of derived propositions known to be
unsatisfiable. In the SAT2007 competition version 4.0 won the silver medal for the cate-
gory handmade, speciality UNSAT solvers and was the top qualifier for the second stage
for handmade benchmarks, solving 11 benchmarks which were not solved by any other
entrant. We describe the methods used by the solver and analyse the competition Phase 1
results on small benchmarks. We propose a first version of a comprehensive suite of small
difficult satisfiability benchmarks (sdsb) and compare the worst-case performance of the
competition medallists on these benchmarks.
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1. Introduction

The Ternary Tree Solver (tts) is a complete, deterministic solver for CNF satisfiability. tts
cannot compete with state-of-the-art solvers of large industrial and random benchmarks but
appears to have good performance on hand-crafted benchmarks (such as hgen8, pigeon-hole,
xor-chain etc.) that others find difficult. An extended version (ttsp) can generate proofs
that benchmarks are not satisfiable.

This article describes the operation of version 4.0. The solver is based on the well-
known Davis-Putnam-Logemann-Loveland (DPLL) algorithm[5] and has three main phases:
Preliminary stages, Tree building, and Tree walking.

During the preliminary stages unit clause propagation is first carried out. Also, if all
occurrences of a particular variable are of the same sign it is safe to assign the corresponding
value to the variable and delete any clauses containing it (the pure literal [4] rule). Any
clause containing both a variable and its negation is a tautology and is deleted.

Then, if possible, the problem is partitioned into disjoint sub-problems such that no
clause spans more than one sub-problem. The rest of the algorithm processes each sub-
problem separately, and there is a final stage to merge the separate solutions. For most
benchmarks of interest no such partitioning is possible.
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The variable ordering stage consists of constructing a linear arrangement of the vari-
ables in which, so far as possible, variables which occur in the same clause are close in the
arrangement. This is analogous to the Minimum Linear Arrangement problem for hyper-
graphs [12].

The core of the algorithm then consists of applying partial assignments in an attempt
to reduce the proposition to True or False. This is analogous to DPLL as used in other
solvers, except that there the efficiency comes from the good choice of which variable to
assign next, whereas in tts the efficiency comes from

• the use of a pre-built ternary tree to encapsulate the subsequent partial assignments;
and

• the way in which previous goals which were found to be unsatisfiable are remembered
so that early pruning of the search tree can be achieved. This has the same aim
as clause learning[3], but here each goal is represented as a fragment of the original
proposition rather than as a newly generated clause.

In Section 2 we describe the DPLL algorithm. Section 3 describes the preliminary stages
for tts and in Section 4 the main parts of the algorithm are explained, namely tree building
and walking, and clause memoisation. Section 5 shows how the algorithm can be modified
to generate resolution-based proofs of unsatisfiability. In Section 6 tts is compared with the
other medallists from the SAT2007 competition. The comparisons are based firstly on the
published results from the competition and then on an extended set of small but difficult
benchmarks. Using the worst-case measure described in the results sections, tts gives the
best results in both cases, although using average-case measures of time or space it is not
competitive in the random or industrial categories of the competition. Section 7 presents
the conclusions.

2. The DPLL Algorithm

We include a brief discussion of DPLL[5] because it provides a good starting point for
understanding tts. Given that there are n variables, the sets U (variables), L (literals), C

(clauses) and P (propositions) are defined in Conjunctive Normal Form (CNF) by

U = {ui · i ∈ {1..n}}
L = {u · u ∈ U} ∪ {u · u ∈ U}
C = P(L) i.e. power set of L, so a clause is a set of literals
P = P(C) and a proposition is a set of clauses

We shall use u and u to denote positive and negative literals, and l to denote a literal whose
sign is unspecified. ˜ complements a literal, so that ˜u = u and ˜u = u.

We use T to denote True and F to denote False. An assignment a is then a mapping
from L to {T, F} such that a(l) = a(̃ l). A clause c is interpreted to have a value T (written
c[a]) under an assignment a iff at least one literal in the clause is mapped to T . We write

c[a] , ∃l ∈ c · a(l)

which means that the empty clause has the value F under every assignment. Similarly, a
proposition p is interpreted to have a value T under an assignment a (written p[a]) iff every
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clause in p interprets to T . Thus

p[a] , ∀c ∈ p · c[a]

and the proposition with no clauses has the value T under every assignment.
The assignment of T or F to a single variable u can be represented by the corresponding

literal (u or u) and the DPLL method is built around reducing a proposition by making a
series of such assignments. Any clause containing the literal is satisfied and so deleted, and
any clause containing the negation of the literal cannot be satisfied by this variable so it is
simplified by deleting that occurrence. Setting u to T simplifies p to p|u and setting u to F

simplifies p to p|u where
p|l = {c\{̃ l} · c ∈ p ∧ l 6∈ c}

The algorithm to determine whether there is an assignment a for which p[a] = T is given
in Figure 1.

boolean DPLL (Proposition p)

{
if p = ∅

return T;

else if ∅ ∈ p

return F;

else

u = a currently unassigned variable;(see below)

return DPLL (p|u) or DPLL(p|u);
}

Figure 1. The DPLL algorithm

This corresponds to a binary tree of calls to DPLL, where each leaf node n is either
n = ∅ or ∅ ∈ n. If there is a node n = ∅ the algorithm return T , otherwise it returns F .

Consider Figure 2 which represents potential traces of the algorithm when applied to
the proposition (A ∨ B ∨ C) ∧ (A ∨ B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C) ∧ (B ∨ C). The path
representing the assignment {A, B, C} is highlighted using solid lines. This assignment
satisfies the proposition and it can be seen that the corresponding path reaches a T leaf.
The number of levels in the tree is 1 + n and so the algorithm at first sight seems O(2n).
The way to obtain good execution times in practice is through good choices of the next
variable to assign, so that either a satisfying assignment is found as early as possible or
branches are pruned as early as possible.

We now describe the tts solver.

3. Preliminary stages

A number of known simplifications are carried out before the main algorithm. For the
small, difficult benchmarks described in the Section 6 these are not usually of any benefit
and so they are not of particular interest for this paper, but for some larger benchmarks in
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Figure 2. DPLL Binary Tree

other categories they can bring improvements and so we describe them briefly. The final
preliminary stage is a static ordering of the variables which is very important to reduce the
width of the ternary tree.

3.1 Standard techniques

Unit clause propagation, the pure literal rule and the elimination of tautologies are applied
to the initial proposition. However as the main algorithm executes and tentative assignments
are made to variables, new unit clauses and pure literals will arise. Unit clause propagation
and the pure literal rule are not applied at that stage.

It is sometimes possible for the clauses of a proposition to be partitioned into disjoint
subsets, where no variable appears in the clauses of more than one partition. If this can be
done then it is possible to solve each of the independent subsets as a separate proposition. If
these sub-problems are all satisfiable the union of their respective satisfying assignments will
be a satisfying assignment for the original proposition, whereas if any of the sub-problems
is unsatisfiable then the original proposition must have been unsatisfiable. A simple depth-
first search starting with an arbitrary variable is used to determine the largest connected
subset of the proposition. If this does not cover the input, then a sub-problem has been
extracted. This process is repeated until the proposition is covered.

3.2 Variable ordering

An essential characteristic of the tts algorithm is that the variables are processed in a static
order, determined during the initial phase, and the ternary tree structure (described below)
encapsulates this ordering. The performance of tts depends critically on this variable
ordering. The number of nodes at each level in the ternary tree (which affects the number
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and size of the sets of nodes which have to be considered) is effectively the number of active
clauses, where a clause is active whilst at least one of its variables has been selected, but
not all. The number of active clauses can be reduced by ensuring that variables that occur
in the same clause are processed near to each other in the ordering.

If the variables are regarded as nodes and the clauses as hyperedges, the number of
active clauses is given by the cut-width of a hypergraph [11]. The variable ordering problem
therefore corresponds to the minimum linear arrangement (MLA) problem for hypergraphs
and is related to the min-cut problem. A perfect solution to this problem is known to
be NP-hard, and so an approximation algorithm is used. The fact that the best ordering
may not have been found affects the performance but not the correctness of tts. The
survey by Petit [12] contains a comprehensive analysis of the MLA problem and a range of
experimental results are presented which suggest that the best approach to use, when the
hypergraph is sufficiently small, is Simulated Annealing[9]. For small benchmarks therefore,
( currently < 200 variables and < 350 clauses), tts uses a combination of:

1. simulated annealing to provide a good approximations for MLA, but with a significant
execution time;

2. a local search to see whether the simulated annealing result can be improved.

These are the ordering methods used when solving all the benchmarks described in
Section 6. For larger benchmarks simulated annealing takes too long to produce good
arrangements and a faster greedy ordering method is used instead. This enables tts to
solve some larger benchmarks, but the SAT2007 competition results show clearly that it is
not competitive in the random and industrial categories.

4. The main tts Algorithm

Once the variable ordering has been determined the tree building and walking can begin.
Calls to the core function represent the traversal of a binary tree in the same way as DPLL
but the efficiency arises in a different way. As the partial assignments are made and then
analysed, groups of reduced clauses which are found to be unsatisfiable are remembered [2],
and if they arise again do not have to be reprocessed.

In DPLL partial assignments are used to simplify the proposition, the process being
represented by the operator |u. In tts a pre-calculated data structure is used to represent
similar simplifications. A ternary tree is created, each node of which represents a proposi-
tion. The root represents the complete proposition to be solved, and at each level a variable
is eliminated. The children of each node do not however directly correspond to assigning T

or F to the current variable. Rather the clauses of the proposition are partitioned into three
groups, and the whole proposition is then represented by a set of nodes. The data structure
is similar to that of SATO, as described by Zhang and Stickel [15], but in tts the tree is
static once built, overcoming the maintenance overhead criticised by Zhang and Malik [16].
In particular, the fact that the variable ordering is static means that the tree can implicitly
represent all permissible partial assignments (i.e. those respecting the ordering) and once
it has been constructed no further reference to propositions, clauses or literals is required.
The algorithm can proceed purely on the basis of the structure of the tree.
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The search process involves carrying forward sets of nodes from one level of the tree to
the next, searching for one of the following:

• an empty set of nodes which would represent an empty proposition, i.e. a satisfying
assignment has been found;

• a set of nodes containing F which indicates a partial assignment which cannot be
extended to a satisfying one, in which case backtracking is required; or

• a set of nodes containing a subset which has previously been found to be unsatisfiable,
in which case the search is pruned and again backtracking is required.

4.1 Ternary Tree Building

At the core of tts therefore is the ternary tree which represents the proposition. This
is an explicit data structure rather than a representation of execution traces. The tree is
constructed as follows:

• the root of the tree corresponds to the proposition to be solved.

• each node of the tree has three children, left, middle and right (which are called
respectively +, DC (don’t care) and - by Zhang).

The left child represents those clauses from the current proposition that contain the
literal u except that the u is removed (where u is the current variable). The right
child consists of clauses that contain u except that the u is removed. The middle child
consists of those clauses that contain neither u nor u. Note that a clause containing
both u and u would be a tautology and would have been eliminated at an earlier
stage.

• As before, when the removal of a u or u leaves a clause empty this generates a node
corresponding to F . When there are no clauses to be included in a child this generates
a node corresponding to T which is not included in subsequent sets of nodes.

This means that, given a node representing a proposition, the partial assignment of the
current variable to F can be obtained by combining the left and middle children; the partial
assignment to T can be obtained by combining the middle and right children.

We introduce the operators
u
←−,

u
−→ and

u
↓ as follows:

p
u
←− , {c\{u} · c ∈ p ∧ u ∈ c} (left)

p
u
−→ , {c\{u} · c ∈ p ∧ u ∈ c} (right)

p
u
↓ , {c · c ∈ p ∧ u 6∈ c ∧ u 6∈ c} (middle)

Figure 3 gives the ternary tree for the same proposition as Figure 2. The open-headed
arrows represent clauses which have been satisfied and don’t need to be followed.
Again, the trace for the assignment {A, B, C} has been highlighted using solid lines. Each
node has been numbered for later reference.

Unlike the DPLL binary tree, this ternary tree is sufficiently small that it can be built
explicitly. The number of levels is, as before, 1 + n but the number of F leaves is the same
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Figure 3. Basic Ternary Tree

as the number of clauses in p. In fact there is a direct correspondence between the F leaves
and clauses. The total number of leaves is at most three times the number of F nodes. The
tree encodes the

u
←−,

u
−→ and

u
↓ operators, meaning that during the tree walking evaluation

of these operators is achieved by following tree links.

4.2 Tree Walking

It must be emphasised that although the tree walk is driven by the “small” ternary tree,
it nevertheless follows a normal DPLL binary tree pattern with T or F being assigned to a
variable at each node.

The traversal does not visit individual nodes but rather sets of nodes from the ternary
tree at a time - this set can be interpreted as corresponding to a reduced proposition but
following links within the tree is all that is required by the tree walk, no further analysis of
the proposition is required. For example, the entire proposition in Figure 3 is represented
by the node set {0}. To find the set representing the partial assignment A we follow both

the links
A
←− and

A
↓ simultaneously, giving the set of nodes {1,2} which corresponds to

(B ∨ C) ∧ (B ∨ C) ∧ (B ∨ C) ∧ (B ∨ C) as required. The basic tree walking algorithm is
given in Figure 4.
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boolean tts-0.1 (set of nodes p)

{
if p = ∅

return T;

else if F ∈ p

return F;

else

u = the next variable; (no choice now)

return tts-0.1(p
u
←−∪ p

u
↓) or tts-0.1(p

u
−→∪ p

u
↓);

}

Figure 4. The basic tts algorithm

Using the node numbers on Figure 3 a trace of the sets followed by this algorithm is

{0}
A→ {1,2}

B → {4}
C → {F}
C → {F}

B → {5}
C → {F}
C → {F}

A→ {2,3}
B → {6}

C → {F}
C → ∅ Success with A, B, C

4.3 Tree Minimisation

It is apparent in Figure 3 that the sub-trees with roots labelled [4] and [5] are identical
and that the operation of the algorithm tts-0.1 would not be affected if the links pointing
to nodes 4 and 5 pointed to the same node. As the tree is constructed a hash table is
maintained which maps a set of clauses to the corresponding ternary tree node so that any
future attempt to create a node for the same set of clauses can re-use the same node. This
leads to the minimised tree in Figure 5.

In fact the data structure minimised in this way is no longer a tree but rather a Directed
Acyclic Graph (DAG). It is still referred to as a ternary tree because the difference is not ap-
parent to the tree walking algorithm. This minimisation does not improve the performance
of tts-0.1, but will be seen to be important when the main version is considered.

4.4 Memoisation

It is quite possible that the function tts-0.1 will be invoked more than once with the same
set of nodes as a parameter. The key to the efficiency of the overall algorithm lies in the
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Figure 5. Minimised Ternary Tree

fact that each time tts-0.1 returns F the input set of nodes is recorded, and if this same
set arises again it is known immediately that the required answer is F . In fact the situation
is even better than this, in that it may be that not all of the input nodes were required for
unsatisfiability.

[0] [1]

F [3] F [4] [5] [6]

[2]

Figure 6. Ternary Tree Fragment

Consider for example the ternary tree fragment Figure 6. Suppose that the proposition
p currently under consideration is represented by nodes {0,1,2} and that u is the current
variable. We have that
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p
u
←− = {F, 4}

p
u
−→ = {3, F, 6}

p
u
↓ = {5}

The next level calls to tts will have parameters p
u
←− ∪ p

u
↓ = {F, 4, 5} and p

u
−→ ∪ p

u
↓ =

{3, F, 6, 5}. In both cases F is included and so backtracking is required, with the current
set being recorded as unsatisfiable. In fact node 0 results in F when going left and node
1 results in F when going right so {0, 1} is sufficient to lead to F in both cases. {0, 1} is
recorded as being an unsatisfiable goal rather than {0, 1, 2}. If any subsequent call to tts

has {0, 1} as a subset of its parameter p then it can return F immediately.

To facilitate this memoisation an output parameter s is added to tts. If F is being
returned, then s is set to a subset of p which contains those nodes required for the answer F .
This leads to the main version algorithm of the algorithm in Figure 7. The tree minimisation
described in Section 4.3 can reduce the number of nodes at each level, thereby increasing
the number of previously stored sets which can be reused.

boolean tts (in set of nodes p, out set of nodes s)

{
if p = ∅

return T;

else if F ∈ p;

s = {F};
return F;

else if ∃s′ · s′ ⊆ p ∧ unsat(s′) (s′ already known unsatisfiable)

s = s′;

return F;

else

u = the next variable;

result = tts(p
u
←−∪ p

u
↓, s′) or tts(p

u
−→∪ p

u
↓, s′′);

if !result

s = a subset of p covering both s′ and s′′;

i.e. s
u
←−∪

u
↓ ⊇ s′ and s

u
−→∪ s

u
↓ ⊇ s′′

record that s is unsatisfiable;

return result;

}

Figure 7. Main version of tts

There is probably scope for improvement in the method currently used for determining
s ⊆ p so that s

u
←− ∪ s

u
↓ ⊇ s′ and s

u
−→ ∪ s

u
↓ ⊇ s′′. Currently the elements of p are added

one by one to an empty set s and the coverage is checked each time until it is complete. It
is possible that choosing more carefully the order in which elements are added to s might
result in a smaller set being created and subsequent searches being pruned earlier .
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The data structure used to store and query these sets is a binary tree derived from the
unlimited branching tree (UBTree)[7].

5. Proof of Unsatisfiability

In the SAT2007 competition there was a special track in which only unsatisfiable bench-
marks were used and competitors had to give resolution-based proofs that the benchmarks
were unsatisfiable. Such a proof derives a series of clauses, starting with the clauses of the
input proposition and ending with an empty clause which clearly cannot be satisfied.

Each step eliminates a variable which occurs with opposite signs in two clauses (clashing
literals) and creates a new clause consisting of all the other literals in the two clauses. For
example, given

(A ∨B ∨ C) ∧ (A ∨ C ∨D)

we can derive (B ∨ C ∨D) by noting the clashing literals A and A. We write this as

(A ∨B ∨ C) + (A ∨ C ∨D)res A−−→(B ∨ C ∨D)

Thus to certify that

(A ∨B) ∧ (A ∨B) ∧ (A ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)

is not satisfiable a possible proof is

(A ∨B) + (A ∨B) res A−−→ (B)

(A ∨ C) + (A ∨ C) res A−−→ (C)

(B) + (B ∨ C) res B−−→ (C)

(C) + (C) res C−−→ ()

It has been found possible to extend the algorithm to generate proofs of this form. In
addition to the core algorithm, each call to the revised algorithm ttsp returns a clause
which is either a clause from the original proposition or has been derived in the permitted
manner. It is guaranteed that the clause created does not contain the current variable or
any variable which comes after it in the static ordering. This means that the clause created
by the initial call to ttsp must be empty, which is exactly what is required. Also, it is
guaranteed that any variables which do occur in the tree occur with the opposite sign to
the corresponding level of the binary tree of calls.

The following cases are used to generate these clauses when ttsp is invoked with the
node set p. They correspond to the cases within ttsp .

• F ∈ p. In this case the original proposition clause leading to this particular occurrence
of F in the ternary tree is returned. This cannot contain any variables from later in
the static ordering (otherwise the clause would not yet be empty). Also, the current
variable must be of the correct sign (or this F would not have been reached).

• One of the clauses returned by the nested calls to tts does not contain the current
variable. The same clause can be returned at this level as well.
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• Both of the clauses returned by nested calls to tts contain the current variable. In
this case the two occurrences must be of opposite sign and so resolution can be used
to create a new clause in which the current variable does not occur.

When memoisation is used, the corresponding clause is stored along with each set of
nodes. The revised algorithm ttsp is listed in Figure 8.

It should be noted that it is not possible to use the DAG minimisation of the ternary
tree prior to invoking ttsp. Tree minimisation throws away the information as to which
clause led to any particular occurrence of F , and this information is now required. ttsp

has therefore in general poorer performance than tts. It has been noted by van Gelder
[10] that ttsp produces very good proofs for the pigeon-hole problems but performs very
poorly on industrial problems, which is consistent with the performance of tts, however
(for example) tts is able to solve the urquhart benchmarks in [14] while ttsp is not.

boolean ttsp (in set of nodes p, out set of nodes s, out clause c)

{
if p = ∅

return T; /* SAT, so proof irrelevant */

if F ∈ p;

s = {F};
c = clause from which this F derives;

return F;

else if ∃s′ · s′ ⊆ p ∧ unsat(s′)
s = s′;

c = clause stored with s′;

return F;

else

u = the next variable;

result = tts (p
u
←−∪ p

u
↓, s′, c′) or tts(p

u
−→∪ p

u
↓, s′′,c′′);

if !result

if u 6∈ c′

c = c′;

else if u 6∈ c′′

c = c′′;

else

c′ + c′′res u−→c (derive c by resolution)

s = a subset of p covering both s′ and s′′;

record s,c;

return result;

}

Figure 8. Certified UNSAT version of core tts algorithm (ttsp)
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6. Results

It is well known that the performance of SAT-solvers is very difficult to predict. Solvers
which are able to solve benchmarks containing hundreds of thousands of literals can fail on
examples with just a few hundred. This is perhaps why the benchmarks in the competitions
are divided into three categories and also why a complicated scoring mechanism is used to
give some indication of “average, useful” performance.

The approach used here is based on the notion of worst-case performance on a given suite
of benchmarks. First we give a brief analysis of the results from Phase 1 of the SAT-2007
competition and use this to justify the creation of a suite of small, difficult benchmarks [14].
The worst-case performances of all the (complete) winners as applied to these benchmarks
are then compared.

In order to evaluate the worst-case performance of a solver on a suite of benchmarks, the
technique used is to consider a selection of cpu time values and, for each one, to ascertain
the smallest benchmark which required the solver to use at least that much time. Using
the published results from Stage 1 of the SAT-2007 competition and the times 75, 150, 300,
600 and 1200 seconds yields the results given in Table 1. For clarity, only those solvers
which won at least one medal in the handmade category are considered for the moment.
The solvers are listed alphabetically.

Table 1. Smallest benchmarks requiring at least stated time in SAT Competition Phase 1

Solver 75s 150s 300s 600s 1200s

March ks 492 516 540 564 588

minisat 516 540 564 588 612

MXC 516 516 540 564 612

SATzilla C 516 540 564 588 612

tts 540 540 612 660 660

The highlighted entry for example means that there was a benchmark (in fact it was
spence/hard/s97-100) of 612 literals which tts took at least 300 seconds to solve, but that
every benchmark with fewer than 612 literals was solved by tts in less time than 300
seconds.

Resolving the time to a finer grain, more detailed results are given graphically in Figure
9. Note that the x-axis, which shows time, has a logarithmic scale. For each solver, a vertex
on this graph represents a worst-case pair < t, n > where t is the time taken and n is the
number of literals, so that:

• there was a benchmark of size n which took time t to solve; and

• every benchmark of size ≤ n took time ≤ t to solve

A timeout of 1200 seconds was enforced, and so the rightmost points do not correspond
to benchmarks solved in 1200 seconds but rather indicate that at least 1200 seconds were
required. Lines are drawn between the vertices only to make the graph clearer, there is no
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suggestion that linear interpolation can be used to obtain worst-case execution times for
intermediate numbers of literals. Note that increasing in the vertical direction of this graph
denotes larger benchmarks for the same execution time and therefore better performance.
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Figure 9. Results from SAT Competition Phase 1

Unfortunately for the purposes of this analysis there were very few benchmarks in the
competition which were small enough to contribute. Therefore, a new suite of small, difficult
benchmarks (the 3608 benchmarks and the detailed results are available from [14]) has
been created by assembling examples from a range of sources, including from these sets
all benchmarks containing up to 800 literals. This limit was chosen because all the solvers
encountered a benchmark significantly smaller than this which required more than 1200
seconds to solve. In the list below there is a description of the benchmarks within each
series which meet this size limit. For the benchmark generators hgen8 and sgen the upper
limit on the number of variables was chosen so that the number of literals approached but
did not exceed 800 literals, and the total number of benchmarks was gradually increased
until the worst-case graphs became reasonably smooth. Benchmarks have been chosen from
the following sources:

• From SATLIB[8] - all series containing benchmarks up to 800 literals, that is:

– Uniform Random 3-SAT (uf and uuf series) - all instances with 20 or 50 variables.

– Flat graph colouring - all instances with 30 nodes.

– AIM (artificially generated Random 3-SAT) - the size limit includes benchmarks
with 50 and 100 variables.
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– DUBOIS (Randomly generated) - benchmarks with up to 90 variables (dubois30).

– PARITY - up to par-8-4-c.

– II (Inductive inference) - only ii8a1 falls within the size limit.

– PHOLE (Pigeon hole) - up to hole8.

– PRET (Encoded 2-colouring) - benchmarks with 60 variables.

– Bejing (From original SAT competition) - only 2bitcomp 5 falls within the size
limit.

• From the Sat-2002 competition[1]

– Exclusive-or chain - up to x1 36 and x2 36.

– Urquhart - up to urquhart3 25.bis

• Generated by Hirsch’s hgen8[6] program using number of variables in the range 100-
220 step 10 and random seed in the range 10-90 step 10.

• Generated by the author’s sgen[13] program using number of variables in the range
41-129 step 4 and random seed in the range 10-90 step 10.

Some of these benchmarks are quite old and some minor modifications (removing extraneous
spaces, removing ”%” used as a comment, and removing a final empty clause used to mark
the end of the benchmark) were required for them to be accepted by all the solvers. All the
medallists in the competition were used in the experiment, and the computer was a 3GHz
machine with 2GB of RAM. The results are summarized in Table 2.

Table 2. Smallest benchmarks requiring at least stated time for sdsb-1-0 benchmarks

Solver 75s 150s 300s 600s 1200s

adaptg2wsat0 239 239 239 239 239

gnovelty+ 239 239 239 239 239

kcnfs-2004 516 516 540 564 588

March ks 516 516 540 564 588

minisat 492 516 540 564 588

MXC 492 492 540 564 564

picosat 420 420 444 444 468

Rsat 444 444 468 468 492

SATzilla C 492 516 540 564 588

SATzilla R 492 516 540 564 588

TiniSatELite C 396 420 420 444 468

tts 540 564 588 612 636

The solvers adaptg2wsat0 and gnovelty+ both exceed the time limit of 1200 seconds on
the first unsatisfiable benchmarks to be processed - they are listed as being complete solvers
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but it appears that their performance is much better on satisfiable rather than unsatisfiable
inputs. They are omitted from the graph below. The best six solvers are kcnfs-2004,
March ks, MXC, Satzilla C, Satzilla R and tts. As before we now resolve time to a finer
grain and the results are given graphically in Figure 10.

It can be seen that kcnfs-2004, March ks, MXC, Satzilla C and Satzilla R have re-
markably similar performances using this metric and that MXC is nearly as good, but that
tts is clearly better. It solves benchmarks with approximately 40 more literals in the same
time, or the same benchmarks approximately 2-3 times faster.
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Figure 10. Results for benchmark suite sdsb-1.0

It is interesting to note that most of the benchmarks which give rise to the worst-case
execution times were generated by sgen. This solver was written deliberately to create
benchmarks with high bandwidth which would be difficult for tts, and it was to be ex-
pected then that tts would yield its worst performance on these. Some of the generated
benchmarks were submitted to the competition and it transpired that other solvers also
found them to be very difficult. One of these benchmarks (s117-100) was the smallest to
remain unsolved at the end of the competition.

7. Conclusions

A solver (tts) using a new approach to satisfiability solving has been described and com-
pared with the other medallists from the SAT2007 competition. There are many large
benchmarks not presented here which can be solved by other competitors but not by tts.
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However on what appear to be the worst-case inputs, measuring benchmark size by number
of literals, tts out-performs the other solvers. A new suite of benchmarks which contains
the most difficult known examples has been proposed and made available and again the
performance of tts on these exceeds that of the other solvers.

It is known from other experiments that although minimising the linear arrangement
improves the performance of tts in general, it does not necessarily yield the the variable
order which gives the lowest possible execution time. At the moment no better metric
is known and further research will focus on this area and on improving the choice of an
unsatisfiable set of nodes as described in Section 4.4.

8. Acknowledgements

The author wishes to express his gratitude to the reviewers for their careful reading of and
helpful suggestions for improvements to the manuscript.

References

[1] Sat competitions. http://www.satcompetition.org/.

[2] Paul Beame, Russell Impagliazzo, Toniann Pitassi, and Nathan Segerlind. Memoization
and DPLL: Formula caching proof systems. In 18th IEEE Annual Conference on
Computational Complexity, pages 248–264, July 2003.

[3] Paul Beame, Henry Kautz, and Ashish Sabharwal. Understanding the power of clause
learning. Journal of Artificial Intelligence Research, 22.

[4] Thierry Castell. Computation of prime implicates and prime implicants by a variant of
the Davis and Putnam procedure. In ICTAI ’96: Proceedings of the 8th International
Conference on Tools with Artificial Intelligence (ICTAI ’96), page 428, Washington,
DC, USA, 1996. IEEE Computer Society.

[5] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[6] Edward A. Hirsch. Random generator hgen8 of unsatisfiable formulas in cnf.
http://logic.pdmi.ras.ru/∼hirsch/benchmarks/hgen8.

[7] Jörg Hoffmann and Jana Koehler. A new method to index and query sets. In IJCAI ’99:
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence,
pages 462–467, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.
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