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Abstract

In this paper we describe a stochastic local search (SLS) procedure for finding models
of satisfiable propositional formulae. This new algorithm, gNovelty+, draws on the fea-
tures of two other WalkSAT family algorithms: AdaptNovelty+ and G2WSAT, while also
successfully employing a hybrid clause weighting heuristic based on the features of two
dynamic local search (DLS) algorithms: PAWS and (R)SAPS.

gNovelty+ was a Gold Medal winner in the random category of the 2007 SAT competi-
tion. In this paper we present a detailed description of the algorithm and extend the SAT
competition results via an empirical study of the effects of problem structure, parameter
tuning and resolution preprocessors on the performance of gNovelty+. The study compares
gNovelty+ with three of the most representative WalkSAT-based solvers: AdaptG2WSAT0,
G2WSAT and AdaptNovelty+, and two of the most representative DLS solvers: RSAPS and
PAWS. Our new results augment the SAT competition results and show that gNovelty+

is also highly competitive in the domain of solving structured satisfiability problems in
comparison with other SLS techniques.
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1. Introduction

The satisfiability (SAT) problem is one of the best known and well-studied problems in com-
puter science, with many practical applications in domains such as theorem proving, hard-
ware verification and planning. The techniques used to solve SAT problems can be divided
into two main areas: complete search techniques based on the well-known Davis-Putnam-
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Logemann-Loveland (DPLL) algorithm [3] and stochastic local search (SLS) techniques
evolving out of Selman and Kautz’s 1992 GSAT algorithm [18]. As for SLS techniques,
there have been two successful but distinct avenues of development: the WalkSAT family
of algorithms [14] and the various dynamic local search (DLS) clause weighting approaches
(e.g. [15]).

Since the early 1990s, the state-of-the-art in SAT solving has moved forward from only
being able to solve problems containing hundreds of variables to the routine solution of
problems with millions of variables. One of the key reasons for this success has been the
keen competition between researchers and the public availability of the source code of the
best techniques. Nowadays the SAT community organises regular competitions on large sets
of benchmark problems and awards prizes to the best performing algorithms in different
problem categories. In this paper we introduce the current 2007 SAT competition1. Gold
Medal winner in the satisfiable random problem category: gNovelty+.

gNovelty+ evolved from a careful analysis of the SLS solvers that participated in the
2005 SAT competition and was initially designed only to compete on random SAT problems.
It draws on the strengths of two WalkSAT variants which respectively came first and second
in the random category of the 2005 SAT competition: R+AdaptNovelty+ [1] and G2WSAT
[12]. In addition, gNovelty+ connects the two branches of SLS (WalkSAT and DLS) by
effectively exploiting a hybrid clause weighting heuristic based on ideas taken from the two
main approaches to clause weighting DLS algorithms: additive weighting (e.g. PAWS [21])
and multiplicative weighting (e.g. (R)SAPS [11]).

In the remainder of the paper we describe in more detail the techniques used in G2WSAT,
R+AdaptNovelty+, PAWS and (R)SAPS before discussing the strengths and weaknesses
of these solvers based on the results from the 2005 SAT competition and our own study.
We then provide a full explanation of the execution of gNovelty+ followed by an experi-
mental evaluation on a range of random and structured problems. As the performance of
gNovelty+ on random problems is now a matter of public record,2. this evaluation examines
the performance of gNovelty+ on a broad benchmark set of structured problems, testing
the effects of parameter tuning and resolution preprocessing in comparison with a range of
state-of-the-art SLS solvers. Finally, we present our conclusions and outline some directions
for future research.

2. Preliminaries

In this section, we briefly describe and summarise the key techniques used in four SLS
solvers that represent the state-of-the-art in the two main streams of SLS development: the
WalkSAT family and clause weighting DLS solvers.

2.1 AdaptNovelty+

During the mid-1990s, Novelty [14] was considered to be one of the most competitive tech-
niques in the WalkSAT family. Starting from a random truth assignment to the problem
variables, Novelty repeatedly changes single variable assignments (i.e. it makes a flip move)

1. http://www.satcompetition.org
2. More detailed results from the competition are available at http://www.satcompetition.org/

150

http://www.satcompetition.org
http://www.satcompetition.org/


Combining Adaptive and Dynamic Local Search for Satisfiability

until a solution is found. The cost of flipping a variable (i.e. flipping the assignment of that
variable) is defined as the number of unsatisfied clauses after x is flipped. In more detail,
at each search step Novelty greedily selects the best variable x from a random unsatisfied
clause c such that flipping x leads to the minimal number of unsatisfied clauses. If there
is more than one variable with the same flip cost, the least recently flipped variable will
be selected. In addition, if x is the most recently flipped variable, then the second best
variable from clause c will be selected with a fixed noise probability p. This flip selection
procedure is outlined in lines 10-13 of Algorithm 1.

Although Novelty generally achieves better results than other WalkSAT variants intro-
duced during its time [14], due to its deterministic variable selection3. it may loop indefinitely
and fail to return a solution even where one exists [7, 12]. We refer the reader to [7] for
an example instance that is satisfiable but for which Novelty is unable to find a solution
regardless of the noise parameter setting. Hoos [7] solved this problem by adding a ran-
dom walk behaviour (lines 7-9 in Algorithm 1) to the Novelty procedure. The resulting
Novelty+ algorithm randomly flips a variable from a randomised unsatisfied clause c with
a walk probability wp and behaves exactly as Novelty otherwise.

Algorithm 1 AdaptNovelty+(F, wp=0.01)
1: randomly generate an assignment A;
2: while not timeout do

3: if A satisfies F then

4: return A as the solution;
5: else

6: randomly select an unsatisfied clause c;
7: if within a walking probability wp then

8: randomly select a variable x in c;
9: else

10: greedily select the best variable x in c, breaking ties by selecting the least recently flipped
promising variable;

11: if x is the most recently flipped variable in c AND within a noise probability p then

12: re-select x as the second best variable;
13: end if

14: end if

15: update A with the flipped value of x;
16: adaptively adjust the noise probability p;
17: end if

18: end while

19: return ‘no solution found’;

It was shown that the performance of every WalkSAT variant (including Novelty and
Novelty+) critically depends on the setting of the noise parameter p which, in turn, controls
the level of greediness of the search [8, 14]. This means that without extensive empirical
tuning, the average case performance of a WalkSAT algorithm is quite poor. Hoos [8] ad-
dressed this problem by proposing an adaptive version of WalkSAT that dynamically adjusts
the noise value based on the automatic detection of search stagnation. This AdaptNovelty+

version of Novelty+ (outlined in Algorithm 1) starts with p = 0 (i.e. the solver is completely
greedy in selecting the next move). If the search enters a stagnation stage (i.e. it encounters

3. Novelty only selects the next move from the two best variables of a randomly selected unsatisfied clause.
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a local minimum where none of the considered moves yields fewer unsatisfied clauses than
the current assignment), then the noise value is gradually increased to allow the selection
of non-greedy moves that will allow the search to overcome its stagnation. Once the local
minimum is escaped, the noise value is reduced to again make the search more greedy. Hoos
[8] demonstrated experimentally that this adaptive noise mechanism is effective both with
Novelty+ and the other WalkSAT variants.

2.2 G2WSAT

More recently Li and Huang [12] proposed a new heuristic to solve the problem of deter-
minism in Novelty (discussed in the previous section). Rather than using a Novelty+-type
random walk [7], they opted for a solution based on the timestamping of variables to make
the selection process more diversified. The resulting Novelty++ heuristic (lines 9-14 in Al-
gorithm 2) selects the least recently flipped variable from a randomly selected clause c for
the next move with a diversification probability dp, otherwise it performs as Novelty. Li
and Huang [12] further improved Novelty++ by combining the greedy heuristic in GSAT
[18] with a variant of tabu search [6] as follows: during the search, all variables that, if
flipped, do not strictly minimise the objective function are considered tabu (i.e. they can-
not be selected for flipping during the greedy phase). Once a variable x is flipped, only
those variables that become promising as a consequence of flipping x (i.e. that will strictly
improve the objective function if flipped) will lose their tabu status and become available for
greedy variable selection. The resulting G2WSAT solver (outlined in Algorithm 2) always
selects the most promising non-tabu variable for the next move, if such variable is available.
If there is more than one variable with the best score, G2WSAT selects the least recently
flipped one, and if the search hits a local minimum, G2WSAT disregards the tabu list and
performs as Novelty++ until it escapes.

Algorithm 2 G2WSAT(F, dp, p)
1: randomly generate an assignment A;
2: while not timeout do

3: if A satisfies F then

4: return A as the solution;
5: else

6: if there exist promising variables then

7: greedily select the most non-tabu promising variable x, breaking ties by selecting the least
recently flipped promising variable;

8: else

9: randomly select an unsatisfied clause c;
10: if within a diversification probability dp then

11: select the least recently flipped variable x in c;
12: else

13: select a variable x in c according to the Novelty heuristic;
14: end if

15: end if

16: update A with the flipped value of x;
17: update the tabu list;
18: end if

19: end while

20: return ‘no solution found’;
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2.3 (R)SAPS

As opposed to the previously discussed SLS algorithms (that use a count of unsatisfied
clauses as the search objective function) DLS algorithms associate weights with clauses of a
given formula and use the sum of weights of unsatisfied clauses as the objective function for
the selection of the next move. Typically, clause weights are initialised to 1 and are dynam-
ically adjusted during the search to help in avoiding or escaping local minima. Depending
on how clause weights are updated, DLS solvers can be divided into two main categories:
multiplicative weighting and additive weighting. Algorithm 3 sketches out the basics of the
Scaling and Probabilistic Smoothing (SAPS) algorithm [11], which is arguably the current
best DLS solver in the multiplicative category. At each search step, SAPS greedily attempts
to flip the most promising variable that strictly improves the weighted objective function.
If no promising variable exists, SAPS randomly selects a variable for the next move with
walk probability wp. Otherwise, with probability (1−wp), SAPS multiplies the weights of
all unsatisfied clauses by a factor α > 1 and consequently directs future search to traverse
an assignment that will satisfy currently unsatisfied clauses. After updating weights, with
smooth probability sp clause weights are probabilistically smoothed and reduced to the av-
erage clause weight by a factor ρ. This smoothing phase helps the search forget the earlier
weighting decisions, as these past effects are generally no longer helpful to escape future
local minima.

Algorithm 3 (R)SAPS(F, wp=0.01, sp, α=1.3, ρ=0.8)
1: initialise the weight of each clause to 1;
2: randomly generate an assignment A;
3: while not timeout do

4: if A satisfies F then

5: return A as the solution;
6: else

7: if there exist promising variables then

8: greedily select a promising variable x that occurs in an unsatisfied clauses, breaking ties by
randomly selecting;

9: else if within a walk probability wp then

10: randomly select a variable x;
11: end if

12: if x has been selected then

13: update A with the flipped value of x;
14: else

15: scale the weights of unsatisfied clauses by a factor α;
16: with probability sp smooth the weights of all clauses by a factor ρ;
17: end if

18: if in reactive mode then

19: adaptively adjust the smooth probability sp;
20: end if

21: end if

22: end while

23: return ‘no solution found’;

SAPS has four parameters and its performance critically depends on finding the right
settings for these parameters. Hutter, Tompkins & Hoos [11] attempted to dynamically
adjust the value of the smooth probability sp using the same approach as AdaptNovelty+

153



D.N. Pham et al.

[7], while holding the other three parameters (wp, α and ρ) fixed. Their experimental study
showed that the new RSAPS solver can achieve similar and sometimes better results in
comparison to SAPS [11]. However, the other parameters in RSAPS, especially ρ, still need
to be manually tuned in order to achieve optimal performance [9, 20].

2.4 PAWS

Recently, Thornton et al. [21] were the first to closely investigate the performance difference
between additive and multiplicative weighting DLS solvers. Part of this study included the
development of the Pure Additive Weighting Scheme (PAWS), which is now one of the
best DLS algorithms in the additive weighting category. The basics of PAWS are outlined
in Algorithm 4. Instead of performing a random walk when no promising variable exists
as SAPS does, PAWS randomly selects and flips a flat-move variable with a fixed flat-
move probability fp = 0.15.4. Otherwise, with probability (1 − fp), the weights of all
unsatisfied clauses are increased by 1. After a fixed number winc of weight increases, PAWS
deterministically reduces the weights of all weighted clauses by 1. The experimental results
conducted in [21, 20] demonstrated the overall superiority of PAWS over SAPS for solving
large and difficult problems.

Algorithm 4 PAWS(F, fp=0.15, winc)
1: initialise the weight of each clause to 1;
2: randomly generate an assignment A;
3: while not timeout do

4: if A satisfies F then

5: return A as the solution;
6: else

7: if there exist promising variables then

8: greedily select a promising variable x, breaking ties by randomly selecting;
9: else if there exist flat-move variables AND within a flat-move probability fp then

10: randomly select a flat-move variable x;
11: end if

12: if x has been selected then

13: update A with the flipped value of x;
14: else

15: increase the weights of unsatisfied clauses by 1;
16: if has updated weights for winc times then

17: reduce the weights of all weighted clauses by 1;
18: end if

19: end if

20: end if

21: end while

22: return ‘no solution found’;

4. A flat-move variable is one that, if flipped, will cause no change to the objective function.
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3. gNovelty+: An ‘Overall’ Solver for Random Problems

3.1 Observations from the 2005 SAT Competition

The initial development of gNovelty+ focussed on preparing for the 2007 SAT competi-
tion. This meant concentrating on the random problem category, where SLS solvers have
traditionally outperformed complete solvers. Consequently we paid considerable atten-
tion to the best performing techniques from this category in the 2005 SAT competition:
R+AdaptNovelty+, G2WSAT and R+PAWS.5. Table 1 summarises the performance of
these solvers on random SAT instances in the first phase of the 2005 SAT competition.
Note that R+AdaptNovelty+ and R+PAWS are variants of AdaptNovelty+ and PAWS, re-
spectively, where resolution is used to preprocess the input problem before the main solver
is called.

Table 1. The number of random instances solved by R+AdaptNovelty+, G2WSAT and R+PAWS

in the first phase of the 2005 SAT competition.

Large Size Problems Medium Size Problems

Solvers 3-sat 5-sat 7-sat 3-sat 5-sat 7-sat

R+AdaptNovelty+ 22 32 19 35 35 35

G2WSAT 37 2 14 35 35 35

R+PAWS 33 1 12 35 35 35

From Table 1, it is clear that R+AdaptNovelty+ was able to win the 2005 competition
because of its superior performance on the large 5-sat and 7-sat instances. As the res-
olution preprocessor employed by R+AdaptNovelty+ (and also R+PAWS) only operates
on clauses of length ≤ 3 in the input and only adds resolvent clauses of length ≤ 3 to the
problem, this competition winning performance must be credited to the AdaptNovelty+

heuristic rather than to the effects of resolution.
The large 3-sat instance results in Table 1 clearly show that R+AdaptNovelty+ was

outperformed by G2WSAT and R+PAWS. As AdaptNovelty+ limits its variable selection
to a single randomly selected unsatisfied clause while G2WSAT and PAWS pick the most
promising variable from all unsatisfied clauses, we conjectured that the superior perfor-
mance of G2WSAT and R+PAWS on 3-sat was due to this more aggressive greediness.

However, when considering the SAT competition results we should bear in mind that
each solver was only run once on each instance. This means that the random effects of
different starting positions could have distorted the underlying average performance of each
algorithm. In order to verify our observations, we therefore conducted our own experiments
in which each solver was run 100 times per instance to minimise any starting position effects.
We used the original AdaptNovelty+ and PAWS algorithms6. to eliminate any advantage
these solvers may have obtained from the resolution preprocessor on the 3-sat instances.
Figure 1 plots the head-to-head comparisons of these solvers on 12 3-sat instances, 12 5-sat

instances and 10 7-sat instances randomly selected from the large benchmark set used in

5. R+PAWS was ranked third in the first phase of the 2005 SAT competition. However, due to the compe-
tition rule that authors can have only one solver competing in the final phase, R+PAWS was withdrawn
from the final phase of the competition as it was submitted by the same authors of R+AdaptNovelty+.

6. The winc parameter of PAWS in this experiment was set to 10 as it was in the competition.

155



D.N. Pham et al.

10
−2

10
0

10
2

10
−2

10
0

10
2

3−SAT

AdaptNovelty+

G
2 W

S
A

T

10
−2

10
0

10
2

10
−2

10
0

10
2

3−SAT

AdaptNovelty+

P
A

W
S

10
−2

10
0

10
2

10
−2

10
0

10
2

3−SAT

G2WSAT

P
A

W
S

10
−2

10
0

10
2

10
−2

10
0

10
2

5−SAT

AdaptNovelty+

G
2 W

S
A

T

10
−2

10
0

10
2

10
−2

10
0

10
2

5−SAT

AdaptNovelty+

P
A

W
S

10
−2

10
0

10
2

10
−2

10
0

10
2

5−SAT

G2WSAT

P
A

W
S

10
−2

10
0

10
2

10
−2

10
0

10
2

7−SAT

AdaptNovelty+

G
2 W

S
A

T

10
−2

10
0

10
2

10
−2

10
0

10
2

7−SAT

AdaptNovelty+

P
A

W
S

10
−2

10
0

10
2

10
−2

10
0

10
2

7−SAT

G2WSAT

P
A

W
S

Figure 1. Head-up comparison between AdaptNovelty+, G2WSAT and PAWS on selected ran-

dom 3-SAT, 5-SAT and 7-SAT instances from the 2005 SAT competition.

the 2005 competition. All experiments (including those presented in subsequent sections)
were performed on cluster of 16 computers, each with a single AMD Opteron 252 2.6GHz
processor with 2GB of RAM, and each run was timed out at 600 seconds. More detailed
results are reported in Table 2.

These results confirm our conjectures that a more greedy heuristic (e.g. G2WSAT or
PAWS) performs better on random 3-sat instances while a less greedy approach such as
AdaptNovelty+ is better on random 5-sat and 7-sat instances. The results also show that
PAWS without resolution preprocessing outperforms G2WSAT on 3-sat instances. This
result is consistent with the findings in [1] where resolution preprocessing was shown to harm
the performance of local search solvers on random problems. The outstanding performance
of PAWS further suggests that clause weighting provides useful guidance for random 3-SAT

instances.
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3.2 The Design of gNovelty+

Algorithm 5 gNovelty+(F, wp=0.01, sp, p)
1: initialise the weight of each clause to 1;
2: randomly generate an assignment A;
3: while not timeout do

4: if A satisfies F then

5: return A as the solution;
6: else

7: if within a walking probability wp then

8: randomly select a variable x that appears in an unsatisfied clause;
9: else if there exist promising variables then

10: greedily select a non-tabu promising variable x, breaking ties by selecting the least recently
flipped promising variable;

11: else

12: greedily select the most promising variable x from a random unsatisfied clause c, breaking ties
by selecting the least recently flipped promising variable;

13: if x is the most recently flipped variable in c AND within a noise probability p then

14: re-select x as the second most promising variable;
15: end if

16: update the weights of unsatisfied clauses;
17: with probability sp smooth the weights of all weighted clauses;
18: end if

19: update A with the flipped value of x;
20: update the tabu list;
21: adaptively adjust the noise probability p;
22: end if

23: end while

24: return ‘no solution found’;

On the basis of the preceding observations, we developed a new overall solver for ran-
dom problems, called gNovelty+. We based this solver on G2WSAT as it provides a
good framework for combining the strengths of the three solvers. We first replaced the
Novelty++ heuristic in G2WSAT with the AdaptNovelty+ heuristic to enhance performance
on the 5-sat and 7-sat instances. We then moved the random walk step inherited from
AdaptNovelty+ to the top of the solver to provide a better balance between diversification
and greediness. Finally, we integrated the additive clause weighting scheme from PAWS into
gNovelty+. We selected the additive scheme as it is computationally cheaper and provides
better guidance than its multiplicative counterpart. As shown in Table 2, RSAPS (which
implements multiplicative weighting) performs significantly worse on random instances.
However, we replaced the deterministic weight smoothing phase from PAWS with a linear
version of the probabilistic weight smoothing phase from SAPS. This gave us more flexibil-
ity in controlling the greediness of gNovelty+ which proved to be useful in our experimental
study.

The basics of gNovelty+ are sketched out in Algorithm 5. It starts with a full random
assignment of values to all variables of the input problem and initialises all clause weights
to one. At each search step, gNovelty+ performs a random walk with a walk probability wp
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fixed to 0.01.7. With probability (1 − wp), gNovelty+ selects the most promising non-tabu
variable that is also the least recently flipped, based on a weighted objective function that
aims to minimise the sum of weights of all unsatisfied clauses. If no such promising variable
exists, the next variable is selected using a heuristic based on AdaptNovelty that again
uses the weighted objective function. After an AdaptNovelty step, gNovelty+ increases
the weights of all currently unsatisfied clauses by 1. At the same time, with a smoothing
probability sp, gNovelty+ will reduce the weight of all weighted clauses by 1.8. It is also
worth noting that gNovelty+ initialises and updates its tabu list of promising variables
in the same manner as G2WSAT with the following exception: all variables that become
promising during the weight updating phase are removed from the tabu list. In addition,
gNovelty+ only uses the tabu list when doing greedy variable selection and disregards the
list when it performs a random walk or an AdaptNovelty step.

We manually tuned the parameter sp of gNovelty+ on the small random 3-sat, 5-sat

and 7-sat instances by varying its value from 0 to 1 in steps of 0.1. It should be noted
that setting sp = 0 will stop gNovelty+ from performing its probabilistic weight smoothing
phase, while setting sp = 1 will effectively turn off all gNovelty+’s clause weighting phases.
It turned out that sp = 0.4 is the best setting for gNovelty+ on the random 3-sat instances,
while sp = 1 was the best setting for the random 5-sat and 7-sat instances. We therefore
ran gNovelty+ with these two sp settings on the 34 random problems reported in Figure 1 to
evaluate its performance against its three predecessors. The detailed performance of these
two versions are reported in Table 2. The previously reported results of AdaptNovelty+,
G2WSAT and PAWS are also included for comparison purposes. To give an idea of the
relative performance of a multiplicative weighting algorithm, we included the results for
RSAPS in Table 2 as well.

Overall these random problem results show that the performance of gNovelty+ closely
reflects the relative performance of the predecessor algorithms on which it is based. Firstly,
on the 3-sat instances where PAWS dominates AdaptNovelty+ and G2WSAT, it is also the
case that gNovelty+ with weight (sp = 0.4) dominates its counterpart gNovelty+ without
weight (sp = 1.0). Conversely, on the 5-sat and 7-sat results, where AdaptNovelty+

strongly dominates G2WSAT and PAWS, the gNovelty+ version without weight (sp = 1.0)
performs significantly better than gNovelty+ with weight (sp = 0.4).

In addition, if we compare the best version of gNovelty+ against the best version
of its predecessors (i.e. gNovelty+(sp = 0.4) versus PAWS on the 3-sat instances and
gNovelty+(sp = 1.0) versus AdaptNovelty+ on the 5-sat and 7-sat instances), the results
show that gNovelty+ is at least as good and often better than its counterparts when the
problems become bigger and harder. More specifically, gNovelty+ dominates all other solvers
on the bigger 5-sat problems (k5-v600 and k5-v800 instances) and is dominant interchange-
ably with PAWS on the larger 3-sat k3-v6000 and k3-v8000 instances and AdaptNovelty+

on the 7-sat k7-v140 and k7-v160 instances. The runtime distributions (RTDs) in Figure
2 further confirm that gNovelty+ has achieved our goal of becoming the best overall solver
across the three random problem categories.

7. Hoos [7] empirically showed that setting wp to 0.01 is enough to make an SLS solver become “proba-
bilistically approximately complete”.

8. A clause is weighted if its weight is greater than 1.
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Table 2. Results on random k-SAT instances shown in the form: median
mean

. Best results are marked

with ⋆ and flip counts are reported in thousands. On problems where a solver was timed out for

some runs, we report the percentage of success of that solver instead of its CPU time and flip count.

Instances G2WSAT AdaptNovelty+ PAWS RSAPS gNovelty+ gNovelty+

(sp=0.4) (sp=1.0)

#flips #secs #flips #secs #flips #secs #flips #secs #flips #secs #flips #secs

k3-v4000-1672 450
769

0.500
0.796

8,027

9,097
5.590
6.388

296⋆

466⋆

0.430⋆

0.571⋆
0% success 693

1,012
0.865
1.247

18,498

25,357
25.700
36.303

k3-v4000-1674 982
1,641

1.035
1.655

13,769

15,525
9.780

10.988

458⋆

705⋆

0.615⋆

0.853⋆
0% success 1,316

1,816
1.560
2.161

36,988

56,273
52.190
79.284

k3-v4000-1680 560
714

0.550
0.689

8,301

11,314
5.855
7.902

326⋆

493⋆

0.455⋆

0.586⋆
0% success 859

1,152
1.025
1.362

18,835

31,849
26.105
44.762

k3-v4000-1681 1,246

3,253
1.240
2.911

20,085

24,202
14.170
17.131

667⋆

1,203⋆

0.980⋆

1.452⋆
0% success 1,953

2,388
2.445
2.937

94% success

k3-v6000-1682 1,813

5,088
2.350
5.842

34,912

35,309
27.850
28.277

755⋆

1,247⋆

1.300⋆

1.792⋆
0% success 3,059

3,661
4.720
5.513

88% success

k3-v6000-1683 90% success 59% success 96% success 0% success 29,138⋆

36,750⋆

41.770⋆

51.945⋆
2% success

k3-v6000-1684 4,675

31,960
5.875

34.043

81,385

94,014
65.530
75.126

1,550⋆

3,773⋆

2.740⋆

4.860⋆
0% success 5,997

8,966
8.380

12.423
48% success

k3-v6000-1686 44,944

92,358
46.090
92.432

98% success 99% success 0% success 13,221⋆

19,550⋆

19.545⋆

28.457⋆
7% success

k3-v8000-1693 5,813

29,910
8.195

36.031

111,619

126,067
102.240
115.953

1,645⋆

5,025⋆

3.255⋆

7.306⋆
0% success 10,029

14,937
17.915
26.749

18% success

k3-v8000-1694 62% success 24% success 93% success 0% success 62,294⋆

77,401⋆

104.160⋆

126.752⋆
0% success

k3-v8000-1698 64,578

92,255
72.910

101.316
99% success 2,391⋆

10,251⋆

4.930⋆

14.429⋆
0% success 17,239

26,729
30.220
45.820

3% success

k3-v8000-1701 83% success 54% success 98% success 0% success 47,290⋆

58,711⋆

77.040⋆

95.475⋆
1% success

k5-v500-1533 26,926

34,975
88.675

114.784

8,598

10,069
16.295

19.023⋆
6% success 0% success 2% success 3,317⋆

4,949⋆

13.115⋆

19.543

k5-v500-1537 11,899

12,922
40.920
44.209

1,608

2,883

3.005⋆

5.406⋆
35% success 1% success 17% success 1,133⋆

1,506⋆
4.295
5.757

k5-v500-1540 87% success 19,040

26,131

36.180⋆

49.562⋆
0% success 0% success 2% success 9,673⋆

13,817⋆
38.455
54.948

k5-v500-1541 11,285

12,064
38.920
41.344

1,326

1,883
2.540

3.598⋆
62% success 1% success 27% success 652⋆

995⋆

2.520⋆

3.868

k5-v600-1542 59% success 25,069

41,388
49.295
81.377

1% success 0% success 0% success 9,813⋆

13,311⋆

41.375⋆

56.013⋆

k5-v600-1544 45% success 31,190

43,091
61.120
84.402

0% success 0% success 0% success 13,561⋆

16,206⋆

56.655⋆

67.709⋆

k5-v600-1547 42% success 24,427

43,789

47.560⋆

85.215
0% success 0% success 0% success 13,894⋆

20,203⋆
58.295

84.856⋆

k5-v600-1550 77% success 22,280

32,758
43.540
64.161

0% success 0% success 0% success 8,919⋆

11,992⋆

37.255⋆

50.094⋆

k5-v700-1552 42% success 97% success 0% success 0% success 0% success 12,073⋆

17,648⋆

53.555⋆

77.710⋆

k5-v700-1557 39% success 36,796

51,272
73.570

102.555
0% success 0% success 0% success 9,350⋆

11,692⋆

40.925⋆

51.131⋆

k5-v700-1558 55% success 23,394

34,032
46.675
68.051

0% success 0% success 0% success 7,207⋆

10,130⋆

31.095⋆

43.839⋆

k5-v700-1561 5% success 59% success 0% success 0% success 0% success 79% success⋆

k7-v120-1583 99% success 3,989

6,407

20.440⋆

32.861

7,643

13,564
49.415
87.850

66% success 99% success 3,347⋆

4,560⋆
21.935

29.881⋆

k7-v120-1584 97% success 11,652

15,935
59.920
81.898

94% success 37% success 90% success 6,100⋆

10,387⋆

39.620⋆

67.414⋆

k7-v120-1587 4,013

6,204
28.340
43.656

1,935

2,709
9.925

13.932

5,851

7,779
36.055
47.738

81% success 7,515

12,752
47.995
81.470

1,391⋆

2,065⋆

8.940⋆

13.231⋆

k7-v120-1591 11,546

13,707
80.915
95.852

6,632

8,914
33.835
45.474

7,184

12,256
44.460
75.892

61% success 98% success 4,830⋆

7,085⋆

28.580⋆

41.964⋆

k7-v140-1592 97% success 4,631⋆

8,545⋆

24.495⋆

45.177⋆
88% success 28% success 71% success 6,992

9,334
48.195
64.418

k7-v140-1597 58% success 95% success 48% success 8% success 37% success 96% success⋆

k7-v140-1599 85% success 12,905⋆

18,652⋆

69.960⋆

101.019⋆
71% success 19% success 50% success 99% success

k7-v140-1601 59% success 88% success⋆ 55% success 12% success 32% success 81% success

k7-v160-1604 27% success 56% success 18% success 2% success 5% success 60% success⋆

k7-v160-1606 7% success 37% success⋆ 12% success 3% success 3% success 22% success

Given the above results, we entered gNovelty+ into the 2007 SAT competition and set
it to automatically adjust the value of its parameter sp depending on the input problem
size. If gNovelty+ detects that the input formula is a random 3-sat instance, it will run
with a smooth probability of sp = 0.4. Otherwise, it will reset sp back to 1.0. On this
basis, gNovelty+ was able to win the Gold Medal for the Random SAT category of the
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Figure 2. Runtime distribution of 4 solvers on random instances. The smooth probability of

gNovelty+ is set to 0.4 for 3-sat instances and 1.0 for 5-sat and 7-sat instances.

competition.9.

In the remainder of the paper, we focus on answering the question whether gNovelty+ (an
algorithm designed specifically for random problems) has a wider field of useful application.
To answer this, we devised an extensive experimental study to test gNovelty+ in comparison
with other state-of-the-art SLS SAT solvers and across a range of benchmark structured
problems.

4. Experimental Setup and Benchmark Sets

As the performance of gNovelty+ in the SAT random category is already a matter of pub-
lic record,10. we based our experimental study on a range of structured benchmark prob-
lems that have been used in previous SLS comparison studies.11. Our problem test set
comprises of four circuit synthesis formula problems (2bitadd 11, 2bitadd 12, 3bitadd 31
and 3bitadd 32), three all-interval series problems (ais10 to ais14), two blocksworld plan-
ning problems (bw large.c and bw large.d), four Beijing scheduling problems (enddr2-1,
enddr2-8, ewddr2-1 and ewddr2-8), two “flat” graph colouring problems (flat200-med and
flat200-har), four large DIMACS graph colouring problems (g125.17 to g250.29), two lo-
gistics planning problems (logistics.c and logistics.d), five 16-bit parity function learning
problems (par16-1-c to par16-5-c), and five hard quasi-group problems (qg1-08 to qg7-13).

As gNovelty+ combines the strengths of solvers from the WalkSAT series and DLS
algorithms, for comparison purposes we selected algorithms from each of the four possible
categories, i.e. manual WalkSAT (G2WSAT [12]), adaptive WalkSAT (AdaptNovelty+ [8]),
manual clause weighting (PAWS [20]) and adaptive clause weighting (RSAPS [11]). In
addition, we included AdaptG2WSAT0 [13], an adaptive version of G2WSAT, as it came
second in the random SAT category of the 2007 SAT competition. It should be noted that
these algorithms have consistently dominated other local search techniques in the recent

9. http://www.satcompetition.org
10. See http://www.cril.univ-artois.fr/SAT07/slides-contest07.pdf

11. See http://www.satlib.org
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SAT competitions (where the majority of modern SAT solvers developed by the research
community have competed). We therefore consider them to be a fair representation of
the state-of-the-art. While other SAT solvers have been developed that may also have
proved competitive (e.g. commercial solvers), the lack of availability of their source code
has precluded their inclusion in the current work.

For this experimental study, we manually tuned the parameters of PAWS, G2WSAT and
gNovelty+ to obtain optimal performance for each category of the problem set.12. These
settings are shown in Table 3 (note, only one parameter setting per algorithm was allowed
for each of the eight problem categories). Here we not only manipulated the gNovelty+ sp

parameter but on some categories we also manually tuned the noise parameter of its Novelty
component. For G2WSAT we used the optimal settings for the noise and dp parameters
published in [12, 13], and for PAWS we tuned the winc parameter.

Table 3. Optimal parameter settings for each problem category.

Method Parameter Problem Category

bitadd ais bw large e*ddr flat200 g logistics par16 qg

gNovelty+ p adapted adapted 0.08 adapted adapted 0.10 adapted 0.05 0.02

sp 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.10 0.00

G2WSAT p 0.50 0.20 0.20 0.40 0.50 0.30 0.20 0.50 0.40

dp 0.05 0.05 0.00 0.45 0.06 0.01 0.05 0.01 0.03

PAWS winc 9 52 4 59 74 4 100 40 10

5. Structured Problem Results

Table 4 shows the results obtained after manually tuning gNovelty+, G2WSAT and PAWS
in comparison to the default adaptive behaviour of AdaptNovelty+, AdaptG2WSAT0 and
RSAPS. Here the results for the best performing algorithm on each problem are shown in
bold, with all results reporting the mean and median of 100 runs of each algorithm on each
instance (each run was timed out after 600 seconds). In order to have a fair comparison, we
disabled the unit propagation preprocessor used in G2WSAT and AdaptG2WSAT0 in the
two studies presented in this section. The results of all solvers in association with different
preprocessors are discussed in later sections.

A brief overview shows that gNovelty+ has the best results for all bitadd, ais, bw large,
e*ddr and logistics problems. In addition, it has the best results on the three hardest
quasigroup problems (RSAPS won on two other instances) and is about equal with G2WSAT
on the flat graph colouring problems. Of the other algorithms, PAWS is the best for the
parity problems, G2WSAT is the best for the two harder large graph instances while PAWS
and RSAPS each won on one easier instance. On this basis gNovelty+ emerges as the best
algorithm both in terms of the number of problems (19) and the number of problem classes
(6) in which it dominates.

An even clearer picture emerges when we look at the overall proportion of runs that
completed within 600 seconds. Here, gNovelty+ achieves a 99.90% success rate compared

12. The other three solvers (AdaptNovelty+, RSAPS and AdaptG2WSAT0) can automatically adapt the
values of their parameters during the search.
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Table 4. Optimally tuned results on structured problems shown in the form: median
mean

. Best results

are marked with ⋆ and flip counts are reported in thousands. On problems where a solver was

timed out for some runs, we report the percentage of success of that solver instead of its CPU time

and flip count.

Instances gNovelty+ AdaptG2WSAT0 G2WSAT AdaptNovelty+ RSAPS PAWS

#flips #secs #flips #secs #flips #secs #flips #secs #flips #secs #flips #secs

2bitadd 11 0.928
0.947

0.000⋆

0.001⋆
2.458
2.348

0.000
0.003

0.510⋆

0.677⋆
0.000
0.002

1.592
1.693

0.000
0.001

374
577

0.230
0.368

86% success

2bitadd 12 0.576
0.625⋆

0.000⋆

0.001⋆
1.716
1.882

0.000
0.003

0.394⋆

200
0.000
0.136

1.521
1.554

0.000
0.001

59
111

0.040
0.071

50,062

127,135
30.105
75.140

3bitadd 31 18⋆

20⋆

0.060⋆

0.068⋆
549
817

1.120
1.625

0% success 151
163

0.440
0.467

0% success 0% success

3bitadd 32 15⋆

16⋆

0.060⋆

0.058⋆
262
318

0.535
0.652

0% success 131
135

0.450
0.466

0% success 0% success

ais10 8.116⋆

12⋆

0.010⋆

0.012⋆
135
200

0.120
0.174

66
88

0.065
0.086

1,291

1,937
1.135
1.671

13
18

0.020
0.020

13
20

0.015
0.022

ais12 48⋆

64⋆

0.060⋆

0.080⋆

3,127

4,320
3.445
4.754

879
1,428

1.045
1.698

24,315

35,292
28.140
40.833

103
151

0.135
0.202

104
192

0.150
0.262

ais14 334⋆

414⋆

0.435⋆

0.537⋆

13,455

23,628
15.850
27.803

3,008

10,800
3.870

13.667
81% success 629

892
0.885
1.265

1,267

1,677
1.825
2.455

bw large.c 800⋆

1,277⋆

1.440⋆

2.222⋆

3,317

4,930
3.990
5.902

1,991

3,297
2.025
3.261

6,350

9,355
6.550
9.699

3,606

5,361
10.720
15.921

991
1,604

1.460
2.268

bw large.d 937⋆

1,131⋆

2.645⋆

3.098⋆

10,600

15,714
21.550
30.726

2,891

4,296
4.700
6.763

21,462

30,616
37.055
55.237

70% success 1,029

1,371
2.770
3.508

enddr2-1 39⋆

44⋆

0.190⋆

0.196⋆

2,404

2,510
3.980
4.110

223
322

0.915
1.187

5,785

7,040
9.075

11.187
61
72

0.505
0.534

47
58

0.500
0.519

enddr2-8 30⋆

34⋆

0.170⋆

0.180⋆

2,088

2,164
3.655
3.715

134
158

0.585
0.643

4,287

5,173
6.905
8.284

49
54

0.495
0.509

41
44

0.500
0.505

ewddr2-1 32⋆

34⋆

0.190⋆

0.192⋆

1,939

2,079
3.435
3.686

114
134

0.570
0.613

4,660

6,193
7.970

10.352
48
54

0.550
0.550

45
47

0.550
0.549

ewddr2-8 30⋆

32⋆

0.200⋆

0.198⋆

1,757

1,828
3.365
3.454

90
103

0.535
0.564

4,959

6,515
8.690

10.959
48
50

0.600
0.602

43
44

0.580
0.584

flat200-med 164
241

0.070
0.099

182
242

0.065
0.087

133⋆

169⋆

0.050⋆

0.065⋆
260
392

0.085
0.131

287
377

0.150
0.196

248
348

0.135
0.185

flat200-har 2,576

4,037

1.040⋆

1.638⋆

3,418

5,476
1.210
1.950

4,050

16,903
1.475
5.967

17,879

22,572
6.055
7.580

3,143

4,200
1.595
2.149

2,403⋆

3,344⋆
1.280
1.761

g125.17 687
1,066

3.065
4.792

804
1,161

3.175
4.546

528
747

2.230⋆

2.978⋆
981

1,264
4.110
5.408

2% success 492⋆

694⋆
2.310
3.415

g125.18 13
15

0.090
0.098

52
51

0.170
0.169

7.718⋆

9.872⋆
0.090
0.100

35
36

0.100
0.100

1,057

1,787
4.995
8.379

11
13

0.080⋆

0.084⋆

g250.15 2.585
2.668

0.110
0.112

2.889
2.909

0.210
0.208

2.381
2.410

0.545
0.545

3.311
4.033

0.110
0.118

2.208⋆

2.219⋆

0.080⋆

0.082⋆
2.239
2.247

0.090
0.086

g250.29 638
704

12.725
14.956

716
765

8.235
9.147

247⋆

297⋆

5.455⋆

6.259⋆
755
895

9.960
11.979

0% success 263
320

8.070
9.237

logistics.c 6.332⋆

6.873⋆

0.010⋆

0.007⋆

2,550

3,631
1.385
1.996

52
65

0.040
0.045

122
152

0.070
0.091

6.811
7.814

0.010
0.008

10
12

0.010
0.012

logistics.d 27
32⋆

0.040⋆

0.042⋆
111
137

0.090
0.109

86
107

0.090
0.102

170
196

0.100
0.114

23⋆

33
0.040
0.051

30
42

0.050
0.063

par16-1-c 6,943

9,621
2.920
4.064

13,759

18,975
5.300
7.402

5,689

118,873
2.370

48.676

17,186

32,062
5.870

10.978
73% success 1,557⋆

2,470⋆

0.860⋆

1.368⋆

par16-2-c 28,291

38,826
11.975
16.493

129,544

190,040
51.655
75.896

96% success 159,405

260,240
53.415
87.516

39% success 3,675⋆

4,805⋆

2.020⋆

2.668⋆

par16-3-c 18,136

27,626
7.750
11.787

40,233

53,219
16.285
21.554

46,134

57,719
19.330
24.175

66,942

102,783
23.075
35.486

42% success 2,613⋆

4,106⋆

1.455⋆

2.313⋆

par16-4-c 11,146

16,938
4.810
7.216

23,984

39,982
9.445

15.905

55,693

156,597
23.060
64.789

80,419

112,780
27.905
38.674

69% success 1,035⋆

2,183⋆

0.570⋆

1.211⋆

par16-5-c 11,830

17,545
5.020
7.436

23,480

37,596
9.505

15.329
69% success 90,820

126,329
31.225
43.841

41% success 3,169⋆

4,092⋆

1.740⋆

2.239⋆

qg1-08 647⋆

920⋆

15.645⋆

22.476⋆
99% success 30% success 99% success 59% success 80% success

qg2-08 2,545⋆

3,295⋆

51.120⋆

69.991⋆
52% success 3% success 43% success 36% success 20% success

qg5-11 99% success 0% success 0% success 1% success 2,287⋆

3,288⋆

24.575⋆

35.405⋆
22% success

qg6-09 726
3,090

2.235
9.322

5% success 1% success 14% success 29⋆

44⋆

0.110⋆

0.173⋆
833

1,263
3.285
4.995

qg7-13 98% success⋆ 0% success 0% success 0% success 3% success 0% success

with 88.90% for AdaptG2WSAT0, 88.32% for AdaptNovelty+, 84.13% for PAWS, 77.39%
for G2WSAT and 72.06% for RSAPS. This observation is reinforced in the RTDs on the
left-hand of Figure 3 where the gNovelty+ curve dominates over the entire time range.

Overall, gNovelty+ not only outperforms the other techniques in the greatest number
of problem classes, it is within an order of magnitude of the best performing algorithms
in all remaining cases. It is this robust average case performance (that gNovelty+ also
demonstrated in the SAT competition) that argues strongly for its usefulness as a general
purpose solver.

162



Combining Adaptive and Dynamic Local Search for Satisfiability

0 100 200 300 400 500 600
 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
Optimally tuned

CPU seconds

S
ol

ve
d 

in
st

an
ce

s 
(%

)

 

 

gNovelty+

AdaptG2WSAT0

G2WSAT

AdaptNovelty+

PAWS
RSAPS

0 100 200 300 400 500 600
 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
Default setting

CPU seconds

S
ol

ve
d 

in
st

an
ce

s 
(%

)

Figure 3. Run-time distributions over the complete data set.

However, if such robust behaviour depends critically on manually tuned parameter set-
tings then the case for gNovelty+ must weaken. To evaluate this we tested gNovelty+ on
the same problem set with a default sp value of 0 (meaning clause weights are increased in
each local minimum but never decreased) and with the noise parameter p adaptively ad-
justed during the search.13. These results and the results of the default parameter values for
G2WSAT (dp = 0.05 and p = 0.5) and PAWS (winc = 10) are shown in Table 5. To give an
idea of the relative performance of these default setting algorithms against the other three
adaptive ones, the results of AdaptNovelty+, AdaptG2WSAT0 and RSAPS from Table 4
are also reported again in Table 5.

In this second comparison, gNovelty+ remains the champion both in terms of the num-
ber of problem classes (bitadd, ais, bw large, e*ddr, logistics and qg) and the number
of instances (19). Table 5 also shows that the performance of gNovelty+, G2WSAT and
PAWS (especially the later two) is substantially reduced without parameter tuning, with
AdaptG2WSAT0 taking over from PAWS as the winner on all parity problems and beating
G2WSAT on the two harder large graph instances. AdaptNovelty+ further dominates on the
other large graph instances previously won by PAWS. Consequently, AdaptG2WSAT0 now
has the best overall success rate of 88.90% followed by AdaptNovelty+ at 88.32%, the de-
fault valued gNovelty+ at 82.23%, RSAPS at (72.06%), with G2WSAT (70.68%) and PAWS
(52.32%) coming last (this is also illustrated in the RTDs in Figure 3). Looking in more de-
tail, we can see that the main negative impact of a fixed parameter on gNovelty+ has come
from its failure on the parity problems. Similarly, AdaptG2WSAT0 and AdaptNovelty+ fail
mainly on the quasi-group problems. If we put these two data sets aside, then the default
gNovelty+ shows a clear advantage over AdaptG2WSAT0 and AdaptNovelty+, dominating
on five of the remaining seven problem classes.

13. Although gNovelty+’s noise parameter was also adjusted in Table 3, performance was not greatly im-
proved, with the main benefits coming from adjusting sp.
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Table 5. Default parameter setting results on structured problems shown in the form: median
mean

.

Best results are marked with ⋆ and flip counts are reported in thousands. On problems where a

solver was timed out for some runs, we report the percentage of success of that solver instead of its

CPU time and flip count.

Instances gNovelty+ AdaptG2WSAT0 G2WSAT AdaptNovelty+ RSAPS PAWS

#flips #secs #flips #secs #flips #secs #flips #secs #flips #secs #flips #secs

2bitadd 11 0.928
0.947

0.000⋆

0.001⋆
2.458
2.348

0.000
0.003

0.510⋆

0.677⋆
0.000
0.002

1.592
1.693

0.000
0.001

374
577

0.230
0.368

86% success

2bitadd 12 0.576
0.625⋆

0.000⋆

0.001⋆
1.716
1.882

0.000
0.003

0.394⋆

200
0.000
0.136

1.521
1.554

0.000
0.001

59
111

0.040
0.071

50,062

127,135
30.105
75.140

3bitadd 31 18⋆

20⋆

0.060⋆

0.068⋆
549
817

1.120
1.625

0% success 151
163

0.440
0.467

0% success 0% success

3bitadd 32 15⋆

16⋆

0.060⋆

0.058⋆
262
318

0.535
0.652

0% success 131
135

0.450
0.466

0% success 0% success

ais10 8.116⋆

12⋆

0.010⋆

0.012⋆
135
200

0.120
0.174

140
187

0.140
0.184

1,291

1,937
1.135
1.671

13
18

0.020
0.020

68
95

0.080
0.110

ais12 48⋆

64⋆

0.060⋆

0.080⋆

3,127

4,320
3.445
4.754

5,128

8,732
6.245
10.673

24,315

35,292
28.140
40.833

103
151

0.135
0.202

917
1,424

1.410
2.166

ais14 334⋆

414⋆

0.435⋆

0.537⋆

13,455

23,628
15.850
27.803

95% success 81% success 629
892

0.885
1.265

4,205

7,108
6.795
11.530

bw large.c 832⋆

1,131⋆

1.485⋆

2.044⋆

3,317

4,930
3.990
5.902

49% success 6,350

9,355
6.550
9.699

3,606

5,361
10.720
15.921

7,238

9,440
17.310
22.493

bw large.d 4,802⋆

5,499⋆

14.515⋆

16.738⋆

10,600

15,714
21.550
30.726

0% success 21,462

30,616
37.055
55.237

70% success 39% success

enddr2-1 39⋆

44⋆

0.190⋆

0.196⋆

2,404

2,510
3.980
4.110

1,552

1,805
4.020
4.565

5,785

7,040
9.075

11.187
61
72

0.505
0.534

20% success

enddr2-8 30⋆

34⋆

0.170⋆

0.180⋆

2,088

2,164
3.655
3.715

1,315

1,383
3.460
3.530

4,287

5,173
6.905
8.284

49
54

0.495
0.509

29% success

ewddr2-1 32⋆

34⋆

0.190⋆

0.192⋆

1,939

2,079
3.435
3.686

1,165

1,231
3.095
3.225

4,660

6,193
7.970

10.352
48
54

0.550
0.550

28% success

ewddr2-8 30⋆

32⋆

0.200⋆

0.198⋆

1,757

1,828
3.365
3.454

1,131

1,164
3.205
3.276

4,959

6,515
8.690

10.959
48
50

0.600
0.602

38% success

flat200-med 164
241

0.070
0.099

182
242

0.065
0.087

140⋆

193

0.050⋆

0.073⋆
260
392

0.085
0.131

287
377

0.150
0.196

145
181⋆

0.080
0.100

flat200-har 2,576⋆

4,037⋆

1.040⋆

1.638⋆

3,418

5,476
1.210
1.950

4,268

13,931
1.570
4.921

17,879

22,572
6.055
7.580

3,143

4,200
1.595
2.149

5,923

8,168
3.115
4.304

g125.17 3,525

4,229
15.890
18.808

804⋆

1,161⋆

3.175⋆

4.546⋆
99% success 981

1,264
4.110
5.408

2% success 6% success

g125.18 185
185

0.970
0.951

52
51

0.170
0.169

11⋆

15⋆
0.130
0.144

35
36

0.100⋆

0.100⋆

1,057

1,787
4.995
8.379

19
25

0.150
0.195

g250.15 2.253
2.283

0.080
0.084

2.889
2.909

0.210
0.208

2.473
2.488

0.410
0.407

3.311
4.033

0.110
0.118

2.208⋆

2.219⋆

0.080⋆

0.082⋆
2.211
2.236

0.110
0.113

g250.29 4,984

5,008
136.745
141.147

716⋆

765⋆

8.235⋆

9.147⋆
43% success 755

895
9.960

11.979
0% success 0% success

logistics.c 6.332⋆

6.873⋆

0.010⋆

0.007⋆

2,550

3,631
1.385
1.996

44
55

0.030
0.041

122
152

0.070
0.091

6.811
7.814

0.010
0.008

118
158

0.100
0.128

logistics.d 27
32⋆

0.040⋆

0.042⋆
111
137

0.090
0.109

1,775

2,946
1.520
2.560

170
196

0.100
0.114

23⋆

33
0.040
0.051

275
386

0.275
0.375

par16-1-c 20% success 13,759⋆

18,975⋆

5.300⋆

7.402⋆
99% success 17,186

32,062
5.870
10.978

73% success 23% success

par16-2-c 10% success 129,544⋆

190,040⋆

51.655⋆

75.896⋆
98% success 159,405

260,240
53.415
87.516

39% success 1% success

par16-3-c 5% success 40,233⋆

53,219⋆

16.285⋆

21.554⋆

62,745

97,922
26.600
41.142

66,942

102,783
23.075
35.486

42% success 5% success

par16-4-c 9% success 23,984⋆

39,982⋆

9.445⋆

15.905⋆

99,333

158,001
41.290
65.417

80,419

112,780
27.905
38.674

69% success 16% success

par16-5-c 5% success 23,480⋆

37,596⋆

9.505⋆

15.329⋆
73% success 90,820

126,329
31.225
43.841

41% success 3% success

qg1-08 853⋆

1,134⋆

18.900⋆

24.939⋆
99% success 14% success 99% success 59% success 83% success

qg2-08 3,155⋆

4,093⋆

68.675⋆

91.038⋆
52% success 4% success 43% success 36% success 23% success

qg5-11 5,012

6,863
39.115
50.497

0% success 0% success 1% success 2,287⋆

3,288⋆

24.575⋆

35.405⋆
22% success

qg6-09 343
2,281

1.155
7.319

5% success 17% success 14% success 29⋆

44⋆

0.110⋆

0.173⋆
968

1,229
4.035
5.102

qg7-13 74% success⋆ 0% success 0% success 0% success 3% success 0% success

6. Results with Pre-processing Enhancement

Although preprocessing has a generally negative effect on SLS solvers when solving random
problems, it is now well understood that it can produce significant benefits on structured
problems [16]. For this reason we decided to test the effects of the two most promising tech-
niques, HyPre [2] and SatELite [5], on the performance of gNovelty+ and its competitors.
We also included a simple UnitProp preprocessor as it is cheaper to compute and has been
used by G2WSAT and AdaptG2WSAT0. In detail, these preprocessors simplify an input
formula before passing the reduced formula to a particular solver as follows:
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UnitProp simply applies the well-known unit propagation procedure [17] to the input
formula until saturation.

HyPre [2] focuses on reasoning with binary clauses by implementing the HypBinRes pro-
cedure, a restricted version of hyper-resolution [17] that only runs on binary clauses.
It also uses the implication graph concept and the HypBinRes rule to infer new binary
clauses and avoid the space explosion of computing a full transitive closure. In addi-
tion, HyPre incrementally applies unit and equality reductions to infer more binary
clauses and hence improve its performance.

SatELite [5] uses the (self-)subsumption rule and information about functionally depen-
dent variables to further improve the simplification power of the Variable Elimination
Resolution (VER) procedure [4] (a process to eliminate a variable x by replacing all
clauses containing x and x̄ with their resolvents). Like its predecessor, NiVER [19],
SatELite implements the VER process only if there is no increase in the number of
literals after variable elimination.

We combined the three preprocessors with each of the default-valued algorithms reported
in the previous section, and tested these combinations on all problems that were able to
be simplified by a particular preprocessor. These results are summarised in the following
sections. Each combination was run 100 times on each instance and each run was timed
out after 600 seconds.

6.1 Results on UnitProp-simplified Problems

Table 6. Default parameter setting results on structured problems preprocessed with UnitProp-

agation preprocessor: median
mean

. Best results are marked with ⋆ and flip counts are reported in

thousands. On problems where a solver was timed out for some runs, we report the percentage

of success of that solver instead of its CPU time and flip count. The time taken to preprocess a

problem instance is included in the CPU time of each solver. Results on the problems where the

preprocessor makes no change to the CNF formulae are omitted.

Instances gNovelty+ AdaptG2WSAT0 G2WSAT AdaptNovelty+ RSAPS PAWS

#flips #secs #flips #secs #flips #secs #flips #secs #flips #secs #flips #secs

enddr2-1 22⋆

26⋆

0.120⋆

0.127⋆
206
428

0.465
0.776

555
676

1.135
1.386

346
546

0.665
1.012

31
41

0.255
0.277

27% success

enddr2-8 18⋆

20⋆

0.100⋆

0.103⋆
142
165

0.365
0.398

183
203

0.490
0.531

307
365

0.590
0.688

26
32

0.240
0.245

24% success

ewddr2-1 19⋆

19⋆

0.100⋆

0.103⋆
134
190

0.350
0.428

202
261

0.520
0.617

217
268

0.430
0.517

24
28

0.240
0.244

44% success

ewddr2-8 14⋆

15⋆

0.090⋆

0.089⋆
118
123

0.310
0.318

81
98

0.300
0.326

205
225

0.390
0.422

21
23

0.220
0.223

40% success

qg1-08 597
757

2.865
3.661

307⋆

445⋆

1.045⋆

1.517⋆

1,244

1,553
5.470
6.867

467
675

1.280
1.861

2,280

3,285
9.240

13.302
583
873

2.160
3.213

qg2-08 1,278⋆

1,679⋆
6.515
8.658

1,436

2,026

5.095⋆

7.180⋆

8,126

9,988
36.605
44.804

2,288

3,019
6.420
8.488

6,370

8,453
26.235
34.857

2,436

3,109
9.725

12.848

qg5-11 65
89⋆

0.350
0.470⋆

52% success 1,076

3,332
4.800

12.053

4,189

12,531
10.305
28.065

62⋆

102

0.320⋆

0.518
75

115
0.395
0.612

qg6-09 3.343
4.335

0.010
0.009

1,146

2,664
1.370
3.143

8.285
16

0.020
0.029

416
630

0.565
0.870

2.955
3.282

0.010
0.007

2.277⋆

3.105⋆

0.010⋆

0.007⋆

qg7-13 580⋆

741⋆

4.835⋆

5.789⋆
22% success 41% success 73% success 4,155

5,318
36.455
46.256

5,200

7,557
45.170
66.118

The results in Table 6 show that UnitProp only had an effect on the e*ddr and qg
problems and that gNovelty+ remains the dominant algorithm on these simplified instances.
Specifically, gNovelty+ had the best time performance on all 4 of the e*ddr problems and
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2 of the 5 qg problems, with AdaptG2WSAT0 and PAWS dominating on the remaining qg
problems.

UnitProp had a beneficial effect for all algorithms on these problems (compared to
the non-preprocessed results of Table 5 and graphed in Figure 4), producing significant
improvements for AdaptNovelty+ and the G2WSAT algorithms on the e*ddr problems and
across the board improvements on the qg problems. Overall, the benefits of UnitProp for
gNovelty+ are less dramatic than for other techniques. However, this can be explained by
the fact that gNovelty+ was already doing well on these problems (without preprocessing),
and that margin for improvement was consequently smaller.

6.2 Results on HyPre-simplified Problems

Table 7 shows that HyPre was able to simplify all the problems in our test set with the
exception of the two flat graph colouring problems. Again gNovelty+ remains dominant,
having the best performance on all the bitadd, ais, bw large, e*ddr and logistics problems
and 2 of the 5 qg problems. Of the other algorithms, AdaptG2WSAT0 remained dominant
on all the parity and 2 of the 4 large graph colouring problems, while improving over its
non-preprocessed performance to win on 2 of the qg problems. Finally, AdaptNovelty+ also
improved over its non-preprocessed performance to win on 2 large graph colouring problems
and PAWS improved to win on qg5-11.

As with UnitProp, the HyPre simplified formulae have been generally easier to solve
than the original problems. However, the overhead of HyPre has outweighed these benefits
on those problems that can already be solved relatively quickly without preprocessing. For
example, the small improvements in the number of flips for gNovelty+ on the e*ddr problems
has been obtained at the cost of a more than 10 times increase in execution time (see Table
5 and the comparative graphs in Figure 4).

6.3 Results on SatELite-simplified Problems

The SatELite results in Table 8 show a similar pattern to the HyPre results, with gNovelty+

dominating the bitadd, ais, bw large, e*ddr and logistics problems and 3 of the 5 qg prob-
lems. This time, however, AdaptNovelty+ clearly dominated the parity problems (achieving
the best results of all the methods and preprocessing combinations tried on this problem
class) and further dominated on 3 of the 4 large graph colouring problems and 1 of the flat
graph colouring problems. This made AdaptNovelty+ the second best performing SatElite-
enhanced algorithm (behind gNovelty+).

SatELite had the widest range of application of the three preprocessing techniques and
was able to simplify all 31 problem instances. However, like HyPre, despite generally
improving the flip rates of most algorithms on most problems, the overhead of using SatELite
caused a deterioration in time performance on many instances. This is shown more clearly in
Figure 4 where SatELite consistently appears as one of the worse options for any algorithm
on the bitadd and large graph (g) problems.
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Table 7. Default parameter setting results on structured problems preprocessed with HyPre

preprocessor: median
mean

. Best results are marked with ⋆ and flip counts are reported in thousands.

The time taken to preprocess a problem instance is included in the CPU time of each solver. On

problems where a solver was timed out for some runs, we report the percentage of success of that

solver instead of its CPU time and flip count. Results on the problems where the preprocessor

makes no change to the CNF formulae are omitted.

Instances gNovelty+ AdaptG2WSAT0 G2WSAT AdaptNovelty+ RSAPS PAWS

#flips #secs #flips #secs #flips #secs #flips #secs #flips #secs #flips #secs

2bitadd 11 0.260⋆

0.275⋆

0.000⋆

0.000⋆
1.867
1.960

0.000
0.004

0.466
0.603

0.000
0.003

3.679
4.415

0.000
0.002

0.273
0.286

0.000
0.000

0.462
0.948

0.000
0.001

2bitadd 12 0.228⋆

0.231⋆

0.000⋆

0.000⋆
1.514
1.692

0.000
0.004

0.392
400

0.000
0.306

2.967
3.255

0.000
0.002

0.252
0.252

0.000
0.000

0.290
0.470

0.000
0.001

3bitadd 31 12⋆

12⋆

0.430⋆

0.433⋆
35
37

0.490
0.490

16
17

0.500
0.502

369
413

0.815
0.866

18
20

0.450
0.454

0% success

3bitadd 32 9.457⋆

9.428⋆

0.440⋆

0.440⋆
30
31

0.500
0.497

13
113

0.510
0.832

255
276

0.690
0.711

13
13

0.450
0.450

7% success

ais10 11⋆

13⋆

0.010⋆

0.011⋆
92

131
0.070
0.100

85
116

0.080
0.097

1,017

1,524
0.710
1.060

13
17

0.010
0.015

28
42

0.030
0.039

ais12 64⋆

77⋆

0.080⋆

0.087⋆

1,182

1,568
1.100
1.467

1,375

1,864
1.440
1.934

12,923

18,165
11.840
16.480

98
141

0.110
0.157

320
516

0.380
0.617

ais14 372⋆

449⋆

0.445⋆

0.533⋆

15,312

21,691
16.840
24.058

94% success 85% success 669
863

0.835
1.092

3,875

6,373
5.620
9.241

bw large.c 38⋆

58

1.440⋆

1.460⋆

1,831

2,600
2.925
3.595

1,441

2,210
2.960
3.750

4,716

6,993
5.480
7.503

43
56⋆

1.450
1.466

74
103

1.490
1.529

bw large.d 508⋆

725⋆

11.890⋆

12.449⋆

22,061

25,059
57.255
61.824

53% success 96% success 2,218

3,799
19.985
26.924

1,302

1,842
16.255
18.665

enddr2-1 31⋆

35⋆

6.010⋆

6.016⋆

1,400

1,475
8.040
8.145

963
1,065

7.650
7.817

4,614

5,747
12.445
14.091

48
61

6.150
6.183

57% success

enddr2-8 21⋆

22⋆

5.820⋆

5.825⋆
450
531

6.610
6.716

416
427

6.640
6.662

571
864

6.615
6.999

33
38

5.950
5.965

48% success

ewddr2-1 21⋆

23⋆

5.440⋆

5.437⋆
635
703

6.435
6.527

458
498

6.380
6.447

1,990

3,117
8.105
9.667

31
35

5.570
5.578

52% success

ewddr2-8 15⋆

17⋆

5.020⋆

5.022⋆
300
347

5.590
5.631

180
218

5.440
5.501

364
502

5.465
5.641

26
28

5.150
5.151

56% success

g125.17 3,546

4,512
13.085
16.252

717⋆

988⋆

1.875⋆

2.520⋆

16,308

20,545
62.780
77.955

931
1,488

2.555
4.135

1% success 8% success

g125.18 160
173

1.070
1.107

48
49

0.230
0.230

9.607⋆

13⋆
0.200
0.213

37
38

0.170⋆

0.170⋆

1,306

1,911
6.420
9.370

19
23

0.205
0.226

g250.15 2.261
2.291

0.530
0.529

2.885
2.933

0.680
0.677

2.410
2.475

0.770
0.773

3.217
3.599

0.520⋆

0.526⋆

2.182⋆

2.200⋆
0.530
0.530

2.216
2.225

0.540
0.536

g250.29 4,796

4,910
73.060
74.602

748⋆

866⋆

6.400⋆

7.388⋆
67% success 778

892
8.825

10.354
0% success 0% success

logistics.c 1.347⋆

1.486

0.020⋆

0.022⋆
8.077
9.357

0.030
0.031

2.898
3.306

0.030
0.027

6.687
7.715

0.020
0.025

1.369
1.478⋆

0.020
0.022

3.242
5.152

0.020
0.025

logistics.d 3.726⋆

3.884⋆

0.850⋆

0.851⋆
27
29

0.900
0.900

6.785
7.123

0.890
0.889

34
37

0.870
0.867

3.780
3.915

0.850
0.854

4.472
7.067

0.860
0.857

par16-1-c 16% success 14,787⋆

20,756⋆

6.005⋆

8.453⋆
99% success 18,151

29,863
6.375

10.512
86% success 16% success

par16-2-c 4% success 83,478⋆

122,795⋆

33.030⋆

49.337⋆
95% success 124,928

176,082
44.130
61.248

54% success 1% success

par16-3-c 5% success 36,517⋆

42,956⋆

14.395⋆

17.183⋆

64,224

87,618
27.460
37.512

63,339

92,704
22.715
33.117

70% success 4% success

par16-4-c 6% success 18,058⋆

31,792⋆

7.480⋆

13.064⋆

76,621

147,878
32.830
62.198

32,438

55,159
11.345
19.297

79% success 7% success

par16-5-c 3% success 25,234⋆

42,119⋆

10.215⋆

17.261⋆
71% success 52,581

75,997
18.140
26.487

68% success 0% success

qg1-08 553
673

2.950
3.532

366⋆

483⋆

1.610⋆

2.019⋆

1,096

1,582
5.335
7.459

472
813

1.620
2.529

1,743

2,495
7.185

10.133
576
813

2.425
3.311

qg2-08 1,437

1,796
7.460
9.346

868⋆

1,326⋆

3.500⋆

5.121⋆

5,489

7,129
25.520
33.435

1,841

2,557
5.540
7.463

6,894

8,319
28.685
34.478

1,688

2,287
6.940
9.336

qg5-11 20
28

0.320
0.352

1,559

2,913
3.745
6.807

51
88

0.480
0.645

570
1,558

1.615
3.923

20
27

0.335
0.359

15⋆

22⋆

0.315⋆

0.351⋆

qg6-09 0.001⋆

0.001⋆

0.050⋆

0.050⋆
0.001
0.001

0.050
0.052

0.001
0.001

0.050
0.051

0.001
0.009

0.050
0.050

0.001
0.002

0.050
0.050

0.001
0.002

0.050
0.050

qg7-13 250⋆

355⋆

2.310⋆

3.178⋆
95% success 975

1,299
5.960
8.057

99% success 404
688

3.700
5.858

407
589

3.650
5.166

6.4 Evaluation of Preprocessing

Overall it is not immediately clear whether preprocessing is a useful general purpose addition
for our algorithms. Of the three techniques, only UnitProp has a consistently positive effect,
even though this is limited to two problem classes (e*ddr and qg). Although both SatELite
and HyPre have positive effects on certain problems for certain algorithms, neither of them
is able to provide an overall improvement for all tested solvers across the whole benchmark
set. For instance, HyPre is generally helpful on the qg problems and SatELite is helpful on
the flat graph colouring problems. But arrayed against these gains are the unpredictable

167



D.N. Pham et al.

Table 8. Default parameter setting results on structured problems preprocessed with SatELite

preprocessor: median
mean

. Best results are marked with ⋆ and flip counts are reported in thousands.

The time taken to preprocess a problem instance is included in the CPU time of each solver. On

problems where a solver was timed out for some runs, we report the percentage of success of that

solver instead of its CPU time and flip count.

Instances gNovelty+ AdaptG2WSAT0 G2WSAT AdaptNovelty+ RSAPS PAWS

#flips #secs #flips #secs #flips #secs #flips #secs #flips #secs #flips #secs

2bitadd 11 1.116
1.330

0.042⋆

0.043⋆
7.848

16
0.052
0.051

0.679⋆

0.993⋆
0.042
0.044

1.853
3.950

0.042
0.044

20
32

0.062
0.066

5,332

8,425
3.802
6.075

2bitadd 12 0.686
0.772⋆

0.049⋆

0.050⋆
4.646

10
0.059
0.056

0.421⋆

500
0.049
0.389

1.511
1.569

0.049
0.050

5.179
11

0.049
0.057

950
2,864

0.724
2.069

3bitadd 31 32⋆

41⋆

2.228⋆

2.257⋆
0% success 0% success 249

298
2.803
2.887

0% success 0% success

3bitadd 32 17⋆

18⋆

2.351⋆

2.359⋆
1% success 0% success 147

149
2.811
2.811

0% success 0% success

ais10 8.504⋆

10⋆

0.044⋆

0.050⋆
12
15

0.054
0.059

10
13

0.054
0.056

18
27

0.064
0.077

11
14

0.054
0.061

23
37

0.084
0.117

ais12 62⋆

73⋆

0.168⋆

0.191⋆
78

127
0.203
0.292

108
138

0.268
0.331

138
187

0.348
0.451

77
96

0.253
0.299

324
381

1.013
1.199

ais14 447
572⋆

1.010⋆

1.272⋆

3,104

4,795
5.925
9.119

1,267

1,832
2.675
3.858

689
1,008

1.510
2.181

417⋆

696
1.290
2.098

9% success

bw large.c 960⋆

1,113⋆

2.175⋆

2.414⋆

4,100

5,697
5.220
7.218

39% success 5,475

8,335
6.975

10.557

4,431

6,050
11.685
16.166

5,428

9,368
13.975
24.912

bw large.d 4,479⋆

5,690⋆
13.510

16.524⋆

5,604

8,965

11.405⋆

17.520
0% success 21,199

25,734
40.260
48.444

61% success 36% success

enddr2-1 12
16⋆

1.043⋆

1.049⋆
104
120

1.198
1.213

41
51

1.173
1.186

36,885

55,561
44.478
66.173

12⋆

18
1.053
1.066

53% success

enddr2-8 10⋆

12⋆

1.071⋆

1.071⋆
101
107

1.191
1.201

31
38

1.181
1.192

19,861

26,945
23.706
31.876

10
13

1.081
1.090

53% success

ewddr2-1 6.833
8.426

1.108⋆

1.112⋆
56
58

1.198
1.198

12
15

1.198
1.203

3,773

8,515
5.288

10.578

6.041⋆

7.381⋆
1.118
1.122

75% success

ewddr2-8 5.734⋆

6.554⋆

1.149⋆

1.146⋆
55
57

1.239
1.241

10
12

1.229
1.232

1,410

4,468
2.719
6.056

5.973
6.713

1.159
1.157

69% success

flat200-med 106⋆

147⋆
0.114
0.135

195
298

0.149
0.193

266
416

0.189
0.269

125
163

0.109⋆

0.126⋆
398
621

0.329
0.489

114
160

0.129
0.168

flat200-har 1,180⋆

1,822⋆

0.729⋆

1.105⋆

2,306

3,881
1.154
1.891

2,886

4,399
1.544
2.329

1,674

2,347
0.809
1.117

3,408

4,695
2.409
3.309

1,465

2,014
1.124
1.516

g125.17 89% success 0% success 0% success 1,190⋆

1,759⋆

16.811⋆

23.931⋆
0% success 9% success

g125.18 277
284

8.409
8.511

1,103

1,590
19.384
27.250

56
81

3.674
4.391

35⋆

36⋆

2.389⋆

2.403⋆

1,545

2,249
29.744
44.530

91% success

g250.15 2.806
2.935

8.928
8.934

357
375

23.833
24.305

3.465
3.551

9.518
9.521

4.032
4.181

8.938
8.945

2.631⋆

2.676⋆

8.888⋆

8.892⋆
98% success

g250.29 66% success 0% success 0% success 827⋆

958⋆

68.974⋆

75.745⋆
0% success 0% success

logistics.c 2.910
3.293

0.273⋆

0.276⋆
72
93

0.323
0.332

9.260
11

0.283
0.285

22
28

0.293
0.291

2.538⋆

2.982⋆
0.273
0.276

7.479
11

0.283
0.283

logistics.d 14
16

0.552⋆

0.557⋆
380
513

0.857
0.973

707
942

1.292
1.535

130
172

0.637
0.669

12⋆

16⋆
0.552
0.559

31
57

0.582
0.606

par16-1-c 81% success 8,211

13,494
4.339
7.152

11,284

16,358
6.494
9.037

5,870⋆

8,113⋆

2.794⋆

3.848⋆
99% success 115,457

146,796
60.474
77.891

par16-2-c 35% success 40,270

68,949
21.563
36.520

33,095

47,439
18.468
26.128

32,693⋆

44,368⋆

15.663⋆

21.372⋆
90% success 48% success

par16-3-c 42% success 17,316⋆

23,186
9.365

12.566⋆

18,549

23,013⋆
10.820
13.027

18,588

25,850

9.240⋆

12.791
97% success 88% success

par16-4-c 47% success 14,469⋆

20,584⋆
7.581

10.873

23,399

31,199
13.131
17.307

15,549

22,520

7.566⋆

10.864⋆
99% success 69,676

105,256
38.696
57.880

par16-5-c 40% success 14,239

18,460⋆
7.715

10.017

19,506

33,987
11.025
18.486

11,341⋆

19,486

5.425⋆

9.299⋆
93% success 84% success

qg1-08 366
522

2.381
3.207

283⋆

413⋆

1.371⋆

1.806⋆

1,154

1,687
5.236
7.412

498
662

1.741
2.164

1,822

2,671
7.566

10.970
455
721

2.056
3.005

qg2-08 1,370⋆

1,738⋆
7.388
9.243

1,494

2,037

5.788⋆

7.670⋆

8,349

10,682
37.903
48.264

2,462

3,111
7.598
9.500

4,517

8,122
19.483
34.707

2,142

3,307
9.133

14.147

qg5-11 71
83⋆

0.505⋆

0.573⋆
48% success 1,092

1,991
4.645
7.081

5,488

11,791
12.475
26.332

67⋆

108
0.535
0.750

76
123

0.570
0.807

qg6-09 2.732⋆

3.856

0.062⋆

0.060⋆

1,237

2,523
1.537
3.069

8.046
15

0.072
0.079

367
720

0.567
1.048

2.870
3.546⋆

0.062
0.060

2.925
4.241

0.062
0.062

qg7-13 658⋆

823⋆

5.254⋆

6.669⋆
23% success 30% success 76% success 3,601

5,099
35.324
44.504

4,481

6,718
37.524
56.072

worsening effects of the more complex preprocessors on other problem classes. For instance,
consider the negative effect of SatELite on AdaptG2WSAT0 on the bitadd and the large
graph colouring problems.

If we take the entire picture presented in Figure 4 two observations emerge. Firstly,
gNovelty+ achieves the best overall performance regardless of the preprocessor used, and
secondly, of the preprocessors, only UnitProp is able to improve the overall performance of
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gNovelty+. Therefore, our final recommendation from the preprocessor study would be to
use gNovelty+ in conjunction with UnitProp.
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Figure 4. Comparing the performance of solvers (default settings) on the whole benchmark set

with NoPrep, UnitProp, HyPre and SatELite. Data is mean CPU time (logarithmic scale).

7. Discussion and Conclusions

The experimental evidence of this paper and the 2007 SAT competition demonstrates that
gNovelty+ is a highly competitive algorithm for random SAT problems. In addition, these
results show that gNovelty+, with parameter tuning, can dominate several of the previously
best performing SLS algorithms on a range of structured problems. If parameter tuning
is ruled out (as it would be in most real-world problem scenarios), then gNovelty+ still
performs well, and only lost to its closest rival, AdaptG2WSAT0, on one structured problem
class.

Once again, as with PAWS and SAPS, the addition of a clause weighting heuristic to
gNovelty+ has required the addition of a sensitive weight decay parameter to get competitive
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results. Nevertheless, the situation with gNovelty+’s parameter does differ from SAPS and
PAWS in that highly competitive performance can be obtained from a relatively small set
of parameter values (i.e. 0.0, 0.1, 0.4 and 1.0). In contrast, SAPS and PAWS require much
finer distinctions in parameter values to get even acceptable results [20]. This smaller set
of values means that the process of tuning the smoothing parameter sp of gNovelty+ is
considerably simpler than for other clause weight techniques. More importantly, the robust
behaviour of gNovelty+ indicates that it may be easier to devise an automatic adapting
mechanism for sp. To date, procedures for automatically adapting weight decay parameters
have not produced the fastest algorithms.14. In future work, it therefore appears promising
to try and develop a simple heuristic that will effectively adapt sp in the structured problem
domain.

Finally we examined the effects of preprocessing on the performance of the algorithms
used in the study. Here we found that two of the best known modern preprocessing tech-
niques (HyPre and SatELite) produced mixed results and had an overall negative impact
on execution time across the whole problem set. These results appear to go against other
work in [16] that found HyPre and SatELite to be generally beneficial for local search on
SAT. However, in the current study many of the problems were solved quickly relative to
the overhead of using the more complex preprocessors. If we only consider flip rates then
HyPre and SatELite did show a generally positive effect. This means that for problems
where execution times become large relative to the overhead of preprocessing, we would
expect both HyPre and SatELite to show greater improvements. Nevertheless, within the
confines of the current study, the simpler UnitProp preprocessing method (in conjunction
with gNovelty+) had the best overall results: even though UnitProp only had positive effects
on two problem classes this was balanced by the fact that its overhead on other problems
was relatively insignificant.

In conclusion, we have introduced gNovelty+, a new hybrid SLS solver that won the
random SAT category in the 2007 SAT competition. We have extended the SAT results
and shown that gNovelty+ is also effective in solving structured SAT problems. In fact,
gNovelty+ has not only outperformed five of the strongest current SLS SAT solvers, it
has also demonstrated significant robustness in solving a wide range of diverse problems.
In achieving this performance, we have highlighted gNovelty+’s partial dependence on the
setting of its sp smoothing parameter. This leads us to recommend that future work should
concentrate on the automatic adaptation of this parameter.
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14. Although machine learning techniques that are trained on test sets of existing instances and then applied
to unseen instances have proved useful for setting SAPS and Novelty parameters [10]
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