
Journal on Satisfiability, Boolean Modeling and Computation 4 (2008) 75-97

PicoSAT Essentials

Armin Biere biere@jku.at

Johannes Kepler University,
Linz,
Austria

Abstract

In this article we describe and evaluate optimized compact data structures for watching
literals. Experiments with our SAT solver PicoSAT show that this low-level optimization
not only saves memory, but also turns out to speed up the SAT solver considerably. We
also discuss how to store proof traces compactly in memory and further unique features of
PicoSAT including an aggressive restart schedule.

Keywords: SAT solver, watched literals, occurrence lists, proof traces, restarts

Submitted October 2007; revised December 2007; published May 2008

1. Introduction

Recent improvements in SAT solvers are fueled by industrial applications and the SAT
Competition. They have their origin in new algorithms and heuristics but also in low-level
optimization techniques. In the first part of this paper we present a careful evaluation of
one low-level optimization that was implemented in the original mChaff SAT solver [28] but
was abandoned in more recent solvers, starting with zChaff and including even the latest
versions of MiniSAT [11]. To the best of our knowledge, this optimization has not been
described nor evaluated in the literature.1. A careful experimental analysis conducted with
our SAT solver PicoSAT [4] shows that this optimized representation of occurrence lists
gives considerable performance gains. It could have made the difference between winning
SAT Race’06 [35] and taking 4th place, if these new version of PicoSAT would have taken
part in the race. In the second part of the article we discuss additional features of PicoSAT,
including decision heuristics, restart schedule, the generation of proof traces, and how proof
traces can be stored compactly in memory.

2. Occurrence Lists

The first optimization we discuss, implemented in mChaff and independently in PicoSAT,
is based on a real list representation of occurrence lists resp. watch lists. The list imple-
mentation is intrusive since new link fields are embedded into the linked clauses. In past
state-of-the-art solvers, starting with zChaff, watch lists, despite their name, have actu-
ally been implemented with arrays, more precisely stacks on which references to clauses

1. The author of this article actually independently developed the same idea without being aware of its
implementation in the original mChaff source code.

c©2008 Delft University of Technology and the authors.

A. Biere

resp. watched literals are pushed. The operations on these stacks have similar semantics
and complexity as those of vectors of the standard template library of C++: vectors are
ordered, with constant time access operation, and their size can be changed dynamically,
for instance by adding an element at the end. In the following we will use the term “stack”
to denote a container with exactly these characteristics.

Our approach is similar to the idea of using specialized data structures for binary [30] or
ternary clauses [33]. Carefully implementing this optimization does not influence heuristics.
Identical search trees can be obtained, which makes experimental evaluation much easier
and more robust. It avoids common statistical problems in benchmarking SAT solvers.

SAT solvers maintain an occurrence list for each literal. An occurrence list contains
references to clauses in which a literal occurs. Recent solvers based on DPLL [9] learn
many derived clauses [25]. For efficiency it is crucial to put only watched clauses on to the
occurrence lists [38, 28], also called watch lists in this case. Since only two literals of each
clause have to be watched, the average length of occurrence lists is reduced considerably
compared to full occurrence lists, which contain all occurrences. Accordingly the number
of clauses that have to be visited during boolean constraint propagation (BCP) decreases.
The techniques discussed in this article are applicable to watch lists and full occurrence lists
and we will use the more general term “occurrence lists”.

In the experiments we ran PicoSAT in the version submitted to the SAT’07 SAT Solver
competition, as if it would have entered the SAT-Race’06. More details are found in the
experimental section. In the following we will make statements about various statistics ob-
tained during these runs. Since these extended statistics are not available in the default fully
optimized version of PicoSAT, we had to use the slightly slower version of PicoSAT, which
generates statistical data. We could only take those benchmarks into account, which were
solved by the slower version (2 less), since PicoSAT only dumps statistics if it successfully
solves2. an instance.

2.1 zChaff Occurrence Lists

Most of the current state-of-the-art SAT solvers follow zChaff [28] in implementing occur-
rence lists as stacks.3. These stacks are in turn implemented as arrays of pointers. This
design decision makes sense for zChaff, which actually does not store pointers to the clauses
in the occurrence list, but more precisely pointers to those literal fields within the clause,
which contain watched literals. Using singly linked lists in zChaff is therefore prohibitive,
since it requires one additional link field for each single literal field of a clause, and thus
doubles memory usage.

An example for the stack based implementation of occurrence lists as implemented in
zChaff is shown in Fig. 1. For each literal, a stack is maintained that contains a pointer to
the occurrence of this literal in those clauses in which it is watched. As in the DIMACS
format we denote literals by integer variables. The literal −2 is watched in three clauses,
first in the upper most clause of the figure, where it is watched together with −8, and in
one ternary and one binary clause. Typically, for instance in the vector container of C++

2. Solving means proving satisfiability or unsatisfiability.
3. Note that the results reported in [28] are based on mChaff, though the source code of zChaff became

available earlier and thus became the quasi standard until MiniSAT.

76

PicoSAT Essentials

1

−3

−2

2

start
top
end

end
top
start

end
top
start

end
top

1

start

Literals

Stack

Clauses

−8

−87−2

−2 3 −5

3

−21

1

Figure 1. Occurrence lists implemented with stacks as in zChaff.

STL, the stack is implemented as an array, with a start, top and end pointer. The latter is
used for efficient resizing of the array if top reaches end.

During BCP, if a literal is assigned, the occurrence list of its negation and the watches
referenced in this list have to be updated. We count the process of updating the occurrence
list of one literal as one propagation. If for instance 2 is assigned to true, and still 7 and
5 are unassigned, then 7 becomes watched in the upper clause and −5 in the lower clause.
Then the first two watches in the stack have to be removed. The watches are removed while
traversing the stack. Thus the removal does not incur any time penalty unless the average
ratio of conflicts per propagation is high.4. Note, that if a conflict occurs while traversing
the stack the rest of the stack still has to be copied if during the traversal of this stack a
watch has been removed earlier.

The number of propagations during the run of a SAT solver can be smaller than the
number of assignments, if, as most SAT solvers do, variables are assigned eagerly [6]. The
number of clauses visited during this process, or just short the number of visits, is also a
good indication of the amount of work performed by the SAT solver. The average number
of visits per propagation is usually small, 4.16 with 2.93 as median in our experiments.

An important statistic accounts for the amount of time spent in searching for a new
watch while visiting a clause during BCP. The number of literals which the inner most loop
of the BCP procedure has to read from the clause during a visit is called the number of
traversals. Surprisingly, this number is even smaller, 1.67 on average with 1.56 as median.
This is in contrast to the large average length of learned clauses which is 31.75 literals on
average with 27.80 literals as median. Note that these numbers are calculated after clause

4. In our experiments the maximum ratio was less than 0.7 percent, and most of the time, the number of
conflicts is three orders of magnitude less than the number of propagations

77

A. Biere

−2

3

start
top
end

Watcher of A

Watcher of B

−2 3 −5 B

−87−21

−8

A

Figure 2. Stack based occurrence lists of watchers as in Limmat and FunEx.

minimization [1], as implemented in MiniSAT [11]. Clause minimization is able to remove
32% literals on average, which means that average clause length increases by almost 50% if
clause minimization is disabled.

The cache behavior of modern microprocessors has a non negligible impact on the per-
formance of SAT solvers [39]. In an earlier version of PicoSAT, low-level profiling revealed,
that most of the time is spent in one assembler instruction, which corresponds to reading
the head of a clause for the first time while it is visited during BCP. This is explained by
the random access to clauses during SAT solving and the large amount of learned clauses.
Thus the access to clauses can not be localized and the CPU spends a considerable amount
of time waiting for clause data to arrive from caches and main memory.

2.2 Separate Watcher Data Structures

While visiting a clause in the original zChaff scheme the position in the clause of the other
watched literal can be far away from the position of the propagated literal. However, it
seems to be a good heuristic to check, whether the other watched literal already satisfies
the clause. In this case the traversal can stop and the watch does not have to be updated.

In order to implement this optimization the clause or at least each element on the
occurrence lists, e.g. a “watcher”, needs to either know both watched literals or their position
within the clause as shown in Fig. 2. This is how occurrence lists in our earlier SAT solvers
Limmat and FunEx [6] were implemented. More recently a similar technique has been used
to separate watch lists of different threads in the multi-threaded SAT solver MiraXT [24].

The drawback of separate watcher data structures is the additional pointer dereference
needed to actually access the literals of the clause, even if the watcher is embedded in the
clause. If the two watched literals are far away, another potentially non local memory access
is needed to apply the optimization of the first paragraph.

78

PicoSAT Essentials

start
top
end

−21

1

3 −5−2

−8 7−2 1

−8

3

−2

Figure 3. Keeping watched literals at the beginning of clauses as in CompSAT and MiniSAT.

Even though the watchers are small and probably their access can be localized, the
additional pointer dereference, precisely at the bottle neck of modern SAT solvers, seems
to be too much of an overhead.5.

2.3 Keeping Watched Literals as First and Second Literal

The costs of separate watchers can be avoided by following the suggestion made in [15],
which is inspired by the implementation of the original mChaff [28], and implemented in
CompSAT [6] and MiniSAT [11]. The idea is to move and keep the two watched literals at
the beginning of the clause, by exchanging literals instead of moving watches. In contrast
to the implementation of occurrence lists in zChaff, keeping the watched literals at the
beginning of the clause, allows to put pointers to clauses instead of pointers to literal
occurrences within clauses into the watch lists as shown in Fig. 3.

This arrangement avoids additional bits6. in the literal fields for marking watched literals
and also makes it very efficient to find the “other” watched literal in a clause if a clause is
visited during BCP of an assigned literal. The “other” literal can be tested in constant time
whether it already satisfies the clause, which actually happens fairly frequently in practice,
and avoids updating the watches. In our experiments the “other” literal was true in on
average 61% of the visited clauses during BCP.

Furthermore, in most SAT solvers the clause memory contains nothing more than the
literals or at least the literals are embedded directly into the clause structure, right after
a short clause header. Fetching the clause header from memory will also fetch some of its
literals, which can then be cheaply accessed by the CPU.

2.4 Real Occurrence Lists in mChaff and PicoSAT

This leads us to the main observation of the first part of the paper. Keeping the two watched
literals at the beginning of the clause as described in [15] allows to cheaply add two link

5. It is an open question whether this cost can be avoided for a multi-threaded SAT solver.
6. Put into the literal word by bit stuffing techniques – the dots in Fig. 1. Otherwise the search for a new

unwatched literal in updating a watch would not know the other watched literal.

79

A. Biere

−2 head

1 −2

1

−8 −2 7 1

−53−2

Figure 4. Real Occurrence Lists as in mChaff and PicoSAT.

fields to the clause, one for each watched literal.7. These link fields contain pointers to the
next watched clause of the two watched literals in the clause and thus connect the clause to
two singly linked lists, one for each watched literal. The anchor of such an occurrence list
for a literal is just a pointer to the first clause in which this literal is watched. Figure 4 is
an example.

The other clauses can be reached recursively following the link fields. This arrangement
saves heap memory for the stacks in the old scheme. It also avoids an additional pointer
lookup while visiting a clause during BCP. The link fields are put in front of the literals in
the header of the clause. The header of a clause contains beside the two link fields various
other flags and includes the size of the clause.

At first sight it seems to be unclear which link field to use in the traversal of occurrence
lists. In the original mChaff implementation, the position of the literal was encoded in the
pointer to the clause by encoding the position as the least significant bit of the pointer.
Similar bit stuffing techniques were used in Limmat.

Another simple solution, as implemented in PicoSAT, is to order the pointers stored
in the link fields in the same way as the two-watched-literals: the link for the occurrence
list of the first watched literal in the clause is stored in the first link field and the link for
the second literal in the second field. While traversing the occurrence list of a literal l, and
visiting a clause, in which l is watched, we compare l with the first two literals in the clause.
If l matches the first literal, then the pointer to the next clause in which l is watched is
stored in the first link field, if the second matches, then in the second link field.

2.5 Special Treatment of Binary Clauses

It has been observed in [30] that for binary clauses the concept of two watched literals does
not make sense. The position of the watches will never change. Furthermore, if the negation
of a literal in a binary clause is propagated, then the other literal in this clause will need

7. This idea was also implemented in mChaff, but never described in the literature before. Apparently,
in contrast to Allen Van Gelder [15], the author of PicoSAT was not aware of this particular difference
between mChaff and zChaff, and developed the same idea independently.

80

PicoSAT Essentials

−2 start
top
end

1

−3

−2 1

−2−3

Figure 5. Special watches for binary clauses.

to be assigned to true in any case. Dereferencing the clause is just overhead that can be
avoided by saving the other literals in the occurrence lists instead of a pointer to the binary
clause. This saves one pointer dereference for every visit to a binary clause.

The basic idea is shown in Fig. 5. Here a stack is much more cache efficient. Mixing
binary clause watches with ordinary watches requires bit stuffing as in MiniSAT. In PicoSAT
we have separate stacks of watches for binary clauses and for larger clauses. This separation
avoids bit stuffing and also allows to visit binary clauses first. Actually, binary clauses of
all assigned variables are visited before any larger clause in PicoSAT.

In the Siege SAT solver [33], this concept is extended to ternary clauses, which is a good
idea to pursue, but has not been implemented in PicoSAT yet. Also note that handling
ternary clauses this way, requires three watches for each ternary clause. It also increases
memory usage slightly, and more severely will result in more ternary clauses being visited.

Note, clauses for which watches are “inlined” as just described, do not have to be stored
unless we need them for core or proof trace generation. If PicoSAT is compiled with support
for proof tracing, then this technique is not used.

3. PicoSAT

Our SAT solver PicoSAT [4] is an attempt to further optimize low-level performance com-
pared to BooleForce [3], which in turn shares many of its key features with MiniSAT 1.14
[11]. The latter is the back end of SATeLiteGTI, the winner in the industrial category of
the SAT Competition’05. It uses SATeLite [10] as preprocessor. As it has been shown
in [10], most state-of-the-art solvers can benefit from such preprocessing and therefore we
focus in this paper on low-level optimizations of the back end. The latest available version
2.0 of MiniSAT, which is also the one that entered the SAT’07 SAT solver competition and
performed well in the industrial category, is a reimplementation of SATeLiteGTI, which
integrates the algorithms of SATeLite directly into MiniSAT. Therefore, it is probably more
instructive to compare PicoSAT with MiniSAT 1.14.

3.1 Decision Heuristics

The decision heuristic of PicoSAT follows ideas implemented in RSAT [32]. The decision
variable is selected as in MiniSAT 1.14, which is a more dynamic and adaptive version of
the original zChaff decision heuristics. While MiniSAT 1.14 always assigns the decision

81

A. Biere

variable to false, RSAT [32] assigns the decision variable to the same value it has been
assigned before. Initially, as long a variable has not been assigned yet, PicoSAT uses the
Jeruslow-Wang heuristics [21] for selecting the phase of the decision variable.8. This seems
to be slightly better than using the plain number of occurrences of a literal.

We contribute the success of PicoSAT in the category of satisfiable industrial instances
of the SAT’07 SAT Solver Competition to the new restart and phase assignment heuristics,
beside the fast and efficient low-level data structure discussed in the previous section.

3.2 Restart Schedule

Beside the list based representation of occurrence lists, as described above, PicoSAT uses an
aggressive nested restart scheme, inspired by, but simpler than [23], in combination with a
more sophisticated strategy for picking the phase of decision variables. The restart strategies
of RSAT [32] and TiniSAT [20] are similar.

The nested restart scheme, with pseudo-code in Fig. 6, triggers fast restarts with a high
frequency. In Fig. 7 an initial prefix of its schedule is shown. The period of fast restarts
is increased by 10% after every restart until the end of the outer long period with a slow
frequency. Then the long period of the outer restart interval is also increased by 10% and
the fast restart interval is reset to its initial period of 100 conflicts.

In addition, to avoid revisiting the same search space over and over again, the last
learned clause before a restart is fixed and never deleted. Other learned clauses are garbage
collected in the reduction phase based on their activity as usual [17]. The implementation
follows MiniSAT. At the end of (in our case outer) restart interval the limit on the number
of live learned clauses is increased by 5%. If this limit is hit, half of the learned clauses are
discarded in a garbage collection phase. Our attempts to decouple restarts from increasing
the reduce limit were not successful yet.

The 10% increment resp. the restart factor of 1.1 has been determined empirically.
It produces the best results on our benchmarks. An open question is how to adapt it
dynamically.

3.3 Why are Rapid Restarts Beneficial?

Our understanding why aggressive restarts as implemented in PicoSAT can speed up SAT
solving considerably, particularly in the context of industrial benchmarks, is incomplete.
Nevertheless we try to give some reasons.

3.3.1 Heavy-Tail Behavior

Industrial or structural benchmarks are large but often either easy to satisfy or to refute.
Therefore randomizing the search should help the solver not to get lost in those parts of
the search space that do not lead to a fast solution or refutation. This kind of heavy-tail
behavior was also the motivation in the original publication on restarts [19]. Note, however
that rapid restarts combined with phase saving, except for the rare occurrence of random
decisions, only change the order in which decision variables are picked.

8. In calculating the Jeruslow-Wang heuristics only original clauses are taken into account.

82

PicoSAT Essentials

int inner = 100, outer = 100;
int restarts = 0, conflicts = 0;

for (;;)
{
... // run SAT core loop for ’inner’ conflicts

restarts++;
conflicts += inner;

if (inner >= outer)
{
outer *= 1.1;
inner = 100;

}
else
inner *= 1.1;

}

Figure 6. Pseudo-code for PicoSAT restart schedule.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350 400

Figure 7. An initial prefix of the PicoSAT restart schedule. On the horizontal axis the number
of restarts is shown, where we do not differentiate between outer an inner restarts. The vertical
axis denotes the number of conflicts of the restart interval, which more precisely is the number
of conflicts that have to occur before the next restart is triggered. The last restart in this schedule
occurs after 104408 conflicts.

83

A. Biere

3.3.2 Bad Decision and Propagation Order

Techniques for learned clause shrinking allow to produce shorter learned clauses. Shorter
learned clauses not only need less space, but also, if clause shrinking is implemented care-
fully, will reduce search. Originally, implemented in JeruSAT [29] and in the 2004 version
of zChaff [12] clause shrinking was based on unassigning the literals of a learned clause
and then reassigning them one after the other until another conflict occurs. The resulting
learned clause is often shorter than the original learned clause.

The original clause shrinking technique is expensive and partially subsumed by the new
conflict clause shrinking technique of MiniSAT 1.14, also implemented in PicoSAT. This
new technique, also referred to as clause minimization [1], essentially removes literals from
a learned clause, by resolving recursively with clauses of the implication graph.

In any case, the effectiveness of clause shrinking resp. minimization in practice shows,
that current SAT solvers are far away from picking good decisions and good propagation
paths. Restarts help the SAT solver to recover from these mistakes. After a restart the
SAT solver can choose better decision variables, even if they are just picked in a different
order, and propagate those decisions and their implied assignments more effectively. Rapid
restarts thus simulate conflict clause shrinking.

3.3.3 Locality through Phase Saving

Most state-of-the-art solvers implement a conflict-driven assignment loop [25], which after
learning a unit clause, enforces backtracking to the top-level. It was observed in [7, 31] that
not only units are learned quite frequently, but also that these units often break the top
level formula into disconnected components. If a component becomes satisfied and a new
unit is learned the satisfying assignment is erased unless either the component is detected
and the assignment explicitly saved as in CompSAT [7] or by simply always assigning a
decision variable to its previously assigned value as in RSAT [31] and PicoSAT. In [31] it
has been argued that disconnected components are also produced deeper in the search tree.
Saving and reusing the phase will also help to speed up search in these cases.

Saving phases turbo charges restarts. First the search will almost continue where it
stopped, unless a random decision is triggered. Furthermore, the same set of clauses is
visited, which increases cache efficiency. Additionally we conjecture that rapid restarts
combined with phase saving increases the likelihood that the other watched literal is true
while visiting a clause.

4. Proofs

Another important feature of modern SAT solvers is their ability to produce proof traces
[40, 18, 13, 36, 22, 16]. Earlier work on generating more verbose resolution proofs but
without experiments can be found in [14].

These proof traces are used in many applications. For instance, in declarative modeling
or product configuration [34, 37] an inconsistent specification corresponds to an unsatisfiable
problem instance. From a proof trace it is possible to extract a justification why the
specification is erroneous. In the context of model checking proofs are used for abstraction
refinement [27]. Given an abstract counter example, which can not be concretized, assume

84

PicoSAT Essentials

that the failed attempt to concretize the counter example has a refutation proof generated
by a SAT solver. Then the refinement consists of adding additional constraints that can
either be traced back to clauses that are used in a refutation, the clausal core, or to variables
contained in these clauses, the variable core. In approximative image computation, or more
general in over approximation of quantifier elimination, a resolution proof obtained from a
proof trace allows to generate interpolants [26].

Proofs are important for certification through proof checking [40, 18, 13, 16] or just
simply for testing of SAT solvers. In these two applications, a proof object does not actually
have to be generated. In principle, the proof checker can check the proof during the SAT
run, by inductively showing that each learned clause is implied by the original clauses and
all previously learned clauses. As it has been argued in [18, 16] and also independently
implemented in Limmat [6], this check just requires unit propagation as long SAT solvers
do not use more sophisticated BCP during SAT solving.

In order to trace a proof we need to save learned clauses together with their lists of
antecedents that were used to derive them [40, 18] either on disk or in memory. The result
is an acyclic clause graph with original clauses as leafs and the empty clause as one root
assuming a refutation has been produced. In this case the clausal core is made of the original
clauses reachable from the root. Since this graph traversal can not be started before the
empty clause has been learned, in general, all learned clauses together with their antecedents
have to be saved.

PicoSAT’s predecessor BooleForce [3] has already been able to keep the proof trace in
memory, which greatly improves performance in applications, where clausal or variable cores
or a proof trace have to be produced frequently.9. In these applications in-memory proof
traces are an order of magnitude more efficient than writing traces to disk and reading them
back as it is necessary for proof logging versions of zChaff and MiniSAT.

4.1 Garbage Collecting Learned Clause during Proof Trace Generation

Since proof traces of SAT solvers can grow very large, we employed two techniques to reduce
space usage. First, clauses that become satisfied and never were used in deriving a conflict
can safely be deleted. In principle, one could even go further and use reference counters
for learned clauses. Clauses which are not referenced anymore can also be deleted. In our
experience, even just using such a “used” flag as an over approximation of proper reference
counting already allows to remove many clauses.

4.2 Compressing Antecedents by Delta Encoding

Another size reduction is achieved by sorting clause indices of antecedents of learned clauses,
and then compressing them by just storing the deltas, followed by a simple byte stream
encoding. In this encoding the most significant bit of a byte denotes the end of a delta, as
in the binary AIGER format [2]. In practice we obtain compression ratios close to one byte
per antecedent.

As example consider a learned clause with antecedents 100, 500, and 501. These clause
ids are already sorted, the delta which we need to save are 100, 400, and 1. The first delta

9. See for instance [8].

85

A. Biere

fits in 7 bits and is encoded as one byte with value 100. The second delta needs two bytes

244 = (500 % 128) | 128 and 3 = (500 / 128)

similarly the third delta also just needs one byte. Together with a zero sentinel, the an-
tecedents of this clause are thus encoded with the 5-byte sequence 100, 244, 3, 1, 0. Using
4 bytes for each antecedent and the sentinel would lead to 16 bytes. In practice the an-
tecedents of learned clauses tend to contain many recently learned clauses, thus improving
locality and increasing efficiency of delta encoding.

In order to use delta encoding we require clause ids, in form of a unique integer identifier
for each clause. It could be argued that clause ids are an overhead if one is only interested
in cores. These ids have to be mapped to learned clauses and vice versa. However, when
dumping proof traces such ids have to be generated anyhow. In addition, our compression
techniques save much more space than what these ids consume. Finally, PicoSAT only uses
clause ids if during initialization it is instructed to trace proofs.

4.3 Sorting Antecedents for Resolution Proof Generation

The fact that ids are reordered seems to be contra-productive to some applications that
actually need to generate a resolution proof, such as certification [14], testing of SAT solvers,
and generation of interpolants [26]. The problem is that generating an actual resolution
proof requires to order the antecedents of each learned clause in such a way that they can
be resolved in sequence to form a regular input resolution proof, called trivial proof in [1],
of the learned clause.

We developed a tool TraceCheck [5], which is now part of the BooleForce source distri-
bution, to solve this problem. It reads a proof trace, and reorders the antecedents of all
learned clauses, in order to check the trace by resolution steps, or to dump a resolution
proof. The first version produced a regular input resolution for each learned clause directly
by reverse resolution steps. The current implementation simply uses unit propagation as
described in [18] and independently implemented in Limmat [6] and recently refined in [16]
to sort the antecedents.

In details, the algorithm in TraceCheck works as follows. First, the antecedent graph
is sorted globally and checked for cycles. Then the antecedents of each individual derived
clause have to be reordered. Its antecedents are watched and the negation of the literals
in the derived clause are assumed. Then these units are propagated until an empty clause
under the current assignment is found. If no empty clause is generated, then the derived
clause can not be resolved with regular input resolution using the given antecedents as input
clauses.

We use a variable trail, on which assigned variables are stored for backtracking purposes.
It is also used to record the order in which variables are assigned. The trail is traversed in
reverse chronological order. If an assignment of a variable has been forced by an antecedent
clause then this clause is put next in the resolution order. Thus the antecedents are sorted
in reverse order how they are used as “reasons”. This order can be used to resolve the
target clause from the antecedents through regular input resolution from the clause that
became empty.

86

PicoSAT Essentials

Table 1. Overall comparison of the five versions explained in the caption of Tab. 2. The column
with the sum of the run-time for all 100 benchmarks includes 900 seconds for each benchmark on
which the time limit of 900 seconds was exceeded. The memory usage is shown in the last column
and is calculated as the sum of the maximum number of main memory over all runs.

version solved unsolved sum time sum space
(seconds) (MB)

list2 78 22 38240 5793
stack2 76 24 40334 6768
list 72 28 41345 6917
stack 67 33 43510 8677
trace 67 33 43222 16950

Regularity of the proof, which means that variables are resolved at most once, is the key
and naturally follows from the fact that during unit propagation a variable is not assigned
twice.

Unused antecedents are simply not resolved at all. This allows the proof generator to
use super-sets of those antecedents that are needed. This simplifies proof-generation in
more complex situations [36, 22] without sacrifying correctness and the ability to produce
resolution proofs out of proof traces. In principle, with a quadratic blow-up, this relaxation
also allows to simulate [18], the internal proof checker in Limmat, and the RUP format of
[16].

This is the setup we used in the certification track of the SAT’07 SAT solver competition
for the version of PicoSAT that was most successful in producing certificates for large
industrial formulas. The effectiveness of PicoSAT was of course harmed by the requirement
to generate resolutions proofs, consisting of individual resolution steps. These resolution
proofs are usually orders of magnitude larger than their proof traces, though admittedly,
checking them is much easier.

5. Experiments

In the experiments we used the same setup and the same benchmark set as in the SAT
Race’06 [35]. Our cluster has 15 identical computing nodes, with Pentium IV 3 GHz CPUs,
2 GB of main memory, running Ubuntu Linux. The set of 100 benchmarks can be considered
as typical structural industrial benchmarks. We used version 535 of PicoSAT which is the
same that entered the SAT’07 SAT Solver Competition.

PicoSAT can be compiled to either use a stack based or list based occurrence list imple-
mentation. It is also possible to use a more compact representation of binary clauses as in
[30]. These two features are independent and together with a version that generates proof
traces in memory results in five versions of PicoSAT. These versions and their acronyms are
explained in the caption of Tab. 2 and the overall results are documented in Tab. 1.

The performance gain of the list based implementations is in the same order as the
speed-up that can be obtained by treating binary clauses as in [30]. A detailed comparison

87

A. Biere

 10

 100

 1000

 10 100 1000

Figure 8. Scatter plot for the run-times of PicoSAT on the SAT-Race’06 instances. The run-times
of version stack are on the horizontal axis and of list2 on the vertical axis.

of the run-time of these five versions of PicoSAT is shown in Tab. 2 and Tab. 3. MiniSAT
version 2.0, the winner of SAT Race’06, solved 73 benchmarks. PicoSAT, even without
preprocessor, turns out to be faster.

In another set of experiments we disabled various features of PicoSAT. The results are
reported in Tab. 4 with more details in Tab. 5 and Tab. 6. Note that these runs do not have
the same search space and thus have to interpreted more carefully than those of Tab. 2 and
Tab. 3.

5.1 Discussion

Using optimized data structures for watches gives a considerable benefit. There is a large
difference between stack based occurrence lists stack and the list based implementation
list2 which in addition also uses special data structures for binary watches. This result is
confirmed by the scatter plot in Fig. 8.

To make sure that the search space of all different occurrence list implementations is
the same we checked that the number of decisions, conflicts, propagations and visits are the
same in all versions.

The experiments also reveal, that optimizing the low-level representation of occurrence
lists is not always beneficial, even though identical search trees are traversed. For highly
constrained benchmarks of a more combinatorial nature with rather few variables, the
classical stack based implementation turns out to be faster. Examples are the benchmarks
from the goldb and grieu suite.

Since we have precisely the same overall behavior with the stack and the list based
implementation it made sense to profile one run against the other. Using different seeds for
the random number generator would have made such a comparison very difficult. Profiling

88

PicoSAT Essentials

Table 2. PicoSAT on the SAT Race’06 benchmarks, with a time limit of 900 seconds, and a
space limit of 1.5 GB. Column list2 uses a list based implementation for watched literal lists
as in mChaff and treats binary clauses in a special way [30]. Also list uses lists but treats binary
clauses as ordinary clauses. Columns stack2 and stack are similar but use stacks instead of lists.
The version of PicoSAT used in column trace use the same data structures as list, but generates
a compressed proof trace in memory.

 trace stack list stack2 list2

 ibm-2002-05r-k90 35.78 38.93 32.74 30.82 27.54
 ibm-2002-07r-k100 8.53 9.79 7.45 8.56 7.31
 ibm-2002-11r1-k45 163.22 185.10 150.55 150.40 129.40
 ibm-2002-19r-k100 519.70 572.24 477.96 468.00 410.01
 ibm-2002-21r-k95 351.75 393.35 321.27 325.04 281.74
 ibm-2002-26r-k45 7.26 6.67 6.42 6.66 6.34
 ibm-2002-27r-k95 26.86 29.54 24.36 24.75 21.66
 ibm-2004-03-k70 48.69 54.32 44.74 45.18 38.43
 ibm-2004-04-k100 221.47 239.96 202.50 195.40 172.50
 ibm-2004-06-k90 95.99 106.61 89.89 87.36 74.48
 ibm-2004-19-k90 391.68 419.27 362.31 335.11 293.49
 ibm-2004-1_11-k25 14.12 15.37 13.20 12.47 10.86
 ibm-2004-1_31_2-k25 188.50 197.39 164.07 158.66 139.24
 ibm-2004-26-k25 4.00 3.77 3.62 3.72 3.54
 ibm-2004-2_02_1-k100 20.76 22.98 19.12 19.09 16.62
 ibm-2004-2_14-k45 29.74 33.46 27.31 26.84 22.73
 ibm-2004-3_02_1-k95 2.63 2.79 2.42 2.43 2.19
 ibm-2004-3_02_3-k95 8.50 9.21 7.85 7.86 6.91
 ibm-2004-3_11-k60 --- --- --- 887.29 794.18
 ibm-2004-6_02_3-k100 8.45 9.28 7.81 7.86 6.80

 manol-pipe-c10id_s 7.59 8.28 6.95 7.20 6.29
 manol-pipe-c10nidw_s 249.48 292.62 236.05 236.14 202.31
 manol-pipe-c6nidw_i --- --- 822.80 897.06 752.67
 manol-pipe-c7b 53.89 65.58 47.99 56.86 45.79
 manol-pipe-c7b_i 65.28 80.01 58.57 69.89 55.91
 manol-pipe-c7bidw_i --- --- --- --- ---
 manol-pipe-c7nidw --- --- --- --- ---
 manol-pipe-c9 7.92 9.62 7.15 8.70 6.96
 manol-pipe-c9nidw_s 137.65 161.21 130.44 128.85 110.43
 manol-pipe-f10ni --- --- --- --- ---
 manol-pipe-f6bi 5.64 6.54 5.14 5.62 4.76
 manol-pipe-f7idw 733.11 843.60 672.09 690.68 586.18
 manol-pipe-f9b --- --- --- --- ---
 manol-pipe-f9n --- --- --- --- ---
 manol-pipe-g10b 109.37 125.93 98.02 105.64 88.82
 manol-pipe-g10bidw 788.85 --- 727.39 758.79 642.67
 manol-pipe-g10id 166.08 189.55 151.60 156.87 135.33
 manol-pipe-g10nid 735.80 843.51 669.31 696.59 592.59
 manol-pipe-g6bi 2.13 2.36 1.89 2.13 1.84
 manol-pipe-g7nidw 27.37 31.67 24.89 26.92 22.71

 aloul-chnl11-13 --- --- --- --- ---
 een-pico-prop01-75 2.82 3.09 2.53 2.94 2.52
 een-pico-prop05-50 43.17 49.99 38.67 44.71 36.96
 een-tip-sat-nusmv-t5.B 17.42 19.92 16.18 17.22 14.96
 een-tip-sat-nusmv-tt5.B 17.84 20.44 16.51 17.66 15.40
 een-tip-uns-nusmv-t5.B 8.46 9.84 7.75 8.44 7.18

89

A. Biere

Table 3. PicoSAT on the SAT Race’06 instances cont. from Tab. 2.

 trace stack list stack2 list2

 goldb-heqc-alu4mul --- 840.46 807.84 795.29 800.56
 goldb-heqc-dalumul --- --- --- --- ---
 goldb-heqc-desmul 74.93 85.04 70.44 77.55 67.27
 goldb-heqc-frg2mul 193.82 204.57 168.86 188.78 164.30
 goldb-heqc-i10mul --- 850.51 781.94 784.76 753.49
 goldb-heqc-i8mul --- --- --- --- ---
 goldb-heqc-term1mul 267.26 240.57 218.11 226.77 213.41
 grieu-vmpc-s05-25 17.99 13.97 14.85 12.25 12.38
 grieu-vmpc-s05-27 68.38 52.10 57.79 46.26 48.10
 grieu-vmpc-s05-28 435.21 316.88 373.18 288.98 329.56
 grieu-vmpc-s05-34 --- --- --- --- ---
 hoons-vbmc-lucky7 9.51 10.28 7.95 9.48 8.02
 maris-s03-gripper11 51.76 51.61 46.89 47.26 43.85
 narain-vpn-clauses-6 --- --- --- 854.12 753.68
 schup-l2s-guid-1-k56 881.58 --- 774.41 814.37 699.22
 schup-l2s-motst-2-k315 --- --- --- --- 885.23
 simon-s02-w08-18 617.17 646.22 584.89 496.08 448.21
 simon-s02b-dp11u10 --- --- --- --- ---
 simon-s02b-k2f-gr-rcs-w8 --- --- --- --- ---
 simon-s02b-r4b1k1.1 29.09 27.03 23.71 23.17 21.11
 simon-s03-fifo8-300 307.96 330.42 291.54 271.20 247.99
 simon-s03-fifo8-400 508.96 543.01 483.26 446.35 409.51
 vange-col-abb313GPIA-9-c --- --- --- --- ---
vange-col-inithx.i.1-cn-54 18.27 20.32 17.22 20.01 17.08

 mizh-md5-47-3 --- --- --- --- ---
 mizh-md5-47-4 861.74 --- 734.97 849.87 703.03
 mizh-md5-47-5 --- --- 785.55 --- 747.32
 mizh-md5-48-2 --- --- --- --- ---
 mizh-md5-48-5 --- --- --- --- ---
 mizh-sha0-35-2 250.12 299.80 225.70 272.94 221.90
 mizh-sha0-35-3 391.71 447.09 348.67 406.48 339.62
 mizh-sha0-35-4 212.33 253.97 191.24 230.44 187.10
 mizh-sha0-35-5 321.00 371.02 287.28 339.75 280.16
 mizh-sha0-36-2 447.82 509.72 398.25 463.50 388.62

 velev-engi-uns-1.0-4nd 225.03 195.81 183.93 143.33 127.01
 velev-engi-uns-1.0-5c1 14.49 13.04 12.74 9.04 7.84
 velev-fvp-sat-3.0-b18 136.44 135.24 126.94 112.67 102.62
 velev-live-uns-2.0-ebuf --- 708.71 734.76 539.14 518.45
 velev-npe-1.0-9dlx-b71 --- --- --- 526.42 510.05
 velev-pipe-o-uns-1.0-7 --- --- --- --- ---
 velev-pipe-o-uns-1.1-6 --- --- --- --- ---
 velev-pipe-sat-1.0-b10 737.52 585.93 669.79 337.18 319.61
 velev-pipe-sat-1.0-b7 488.09 378.05 440.44 230.08 218.38
 velev-pipe-sat-1.0-b9 72.97 65.55 65.67 56.62 55.59
 velev-pipe-sat-1.1-b7 43.34 39.13 39.05 35.81 34.41
 velev-pipe-uns-1.0-8 --- --- --- --- ---
 velev-pipe-uns-1.0-9 --- --- --- --- ---
 velev-pipe-uns-1.1-7 --- --- --- --- ---
 velev-vliw-sat-2.0-b6 356.51 326.62 329.90 260.00 246.47
 velev-vliw-sat-4.0-b1 --- --- --- 764.64 730.80
 velev-vliw-sat-4.0-b3 153.81 133.14 139.36 117.92 112.91
 velev-vliw-sat-4.0-b4 --- --- --- 893.40 867.02
 velev-vliw-uns-2.0-iq4 --- --- --- --- ---
 velev-vliw-uns-4.0-9C1 --- --- --- --- ---

90

PicoSAT Essentials

Table 4. Overall results for disabling various features of PicoSAT. See Tab. 5 for more details.

version solved unsolved sum time sum space
(seconds) (MB)

list2 78 22 38240 5793
norandom 73 27 40717 6036
restart2 60 40 49154 7687
norestart 49 51 56250 7012

 10

 100

 1000

 10 100 1000

Figure 9. Run-times without restarts are shown on the horizontal axis and are compared to the
run-times for the base case list2 on the vertical axis.

revealed that in these instances the largest amount of time is still spent in BCP. But a non
negligible portion of the run time is spent disconnecting satisfied or less active clauses.

Another observation can be made with respect to disabling various features of PicoSAT.
As Fig. 9 shows the performance of PicoSAT degrades considerably with less restarts or
no restarts at all. Restarts really seems to be a must. This conclusion only applies to
industrial, highly structured instances. Our experience with combinatorial instances is the
opposite and suggests to adapt the restart schedule dynamically.

However, as a comparison of Fig. 8 with Fig. 9 shows, the results of these experiments
have to be interpreted very carefully, because these versions of PicoSAT traverse different
parts of the search space and SAT solvers show chaotic behavior if heuristics are only
changed slightly. In addition, as explained before, restarts are closely related to the limit
on the number of live clauses. If for instance restarts are disabled, then the limit on the
number of live learned clauses is kept constant to the initial reduce limit, which in PicoSAT
535 is chosen as one fourth of the number of original clauses of at least length 3.

91

A. Biere

Table 5. In further experiments we disabled various features of PicoSAT to measure their impact
on performance. The setup is the same as in Tab 2. In the base case, the fastest version of the
previous experiments, which is list2, we target 1% random decisions but always stick to the
phase selection heuristics discussed above. The time point, when to pick a random decision, is
randomized and also which variable to choose. Picking the phase randomly, even just once in a
while, seems to degrade performance. In a second experiment (norandom) we did not use any
random decisions. In the third experiment (restart2) we increased the inner and outer restart
interval less aggressively by a factor of 2 as in [20]. Finally restarts are disabled (norestart).

 list2 norandom restart2 norestart

 ibm-2002-05r-k90 27.54 22.84 23.84 18.49
 ibm-2002-07r-k100 7.31 7.48 29.96 ---
 ibm-2002-11r1-k45 129.40 104.76 32.89 273.50
 ibm-2002-19r-k100 410.01 626.19 533.57 306.16
 ibm-2002-21r-k95 281.74 459.57 388.09 145.10
 ibm-2002-26r-k45 6.34 6.11 7.16 6.23
 ibm-2002-27r-k95 21.66 14.71 19.58 10.60
 ibm-2004-03-k70 38.43 24.19 15.01 44.99
 ibm-2004-04-k100 172.50 288.87 262.02 591.18
 ibm-2004-06-k90 74.48 31.27 15.32 23.86
 ibm-2004-19-k90 293.49 369.22 217.64 127.28
 ibm-2004-1_11-k25 10.86 7.70 8.34 7.33
 ibm-2004-1_31_2-k25 139.24 172.37 --- ---
 ibm-2004-26-k25 3.54 3.34 3.94 3.52
 ibm-2004-2_02_1-k100 16.62 13.22 11.57 15.75
 ibm-2004-2_14-k45 22.73 29.62 34.82 38.91
 ibm-2004-3_02_1-k95 2.19 8.47 4.55 12.45
 ibm-2004-3_02_3-k95 6.91 8.38 5.52 4.37
 ibm-2004-3_11-k60 794.18 724.47 --- ---
 ibm-2004-6_02_3-k100 6.80 9.67 4.90 5.20

 manol-pipe-c10id_s 6.29 5.76 7.98 6.04
 manol-pipe-c10nidw_s 202.31 155.20 214.33 ---
 manol-pipe-c6nidw_i 752.67 673.55 --- ---
 manol-pipe-c7b 45.79 63.51 433.62 267.24
 manol-pipe-c7b_i 55.91 60.58 369.65 326.76
 manol-pipe-c7bidw_i --- --- --- ---
 manol-pipe-c7nidw --- --- --- ---
 manol-pipe-c9 6.96 7.96 14.28 23.83
 manol-pipe-c9nidw_s 110.43 95.27 223.71 93.63
 manol-pipe-f10ni --- --- --- ---
 manol-pipe-f6bi 4.76 5.70 6.71 9.22
 manol-pipe-f7idw 586.18 351.63 --- ---
 manol-pipe-f9b --- --- --- ---
 manol-pipe-f9n --- --- --- ---
 manol-pipe-g10b 88.82 104.70 --- ---
 manol-pipe-g10bidw 642.67 718.07 --- ---
 manol-pipe-g10id 135.33 101.71 --- ---
 manol-pipe-g10nid 592.59 779.63 --- ---
 manol-pipe-g6bi 1.84 1.96 2.83 2.27
 manol-pipe-g7nidw 22.71 25.62 187.74 ---

 aloul-chnl11-13 --- --- --- ---
 een-pico-prop01-75 2.52 2.05 2.67 2.80
 een-pico-prop05-50 36.96 45.97 114.64 171.62
 een-tip-sat-nusmv-t5.B 14.96 17.79 13.10 12.95
 een-tip-sat-nusmv-tt5.B 15.40 13.83 13.28 14.89
 een-tip-uns-nusmv-t5.B 7.18 11.28 10.14 7.17

92

PicoSAT Essentials

Table 6. Disabling certain features of PicoSAT on the SAT Race’06 instances cont. from Tab. 5.

 list2 norandom restart2 norestart

 goldb-heqc-alu4mul 800.56 --- 775.36 592.21
 goldb-heqc-dalumul --- --- --- ---
 goldb-heqc-desmul 67.27 72.01 67.51 80.13
 goldb-heqc-frg2mul 164.30 183.24 658.05 ---
 goldb-heqc-i10mul 753.49 789.31 --- ---
 goldb-heqc-i8mul --- --- --- ---
 goldb-heqc-term1mul 213.41 428.72 337.34 311.29
 grieu-vmpc-s05-25 12.38 1.81 86.69 121.49
 grieu-vmpc-s05-27 48.10 184.25 164.34 1.52
 grieu-vmpc-s05-28 329.56 --- 381.22 521.70
 grieu-vmpc-s05-34 --- --- --- ---
 hoons-vbmc-lucky7 8.02 7.40 37.20 21.73
 maris-s03-gripper11 43.85 31.39 150.35 ---
 narain-vpn-clauses-6 753.68 457.96 --- ---
 schup-l2s-guid-1-k56 699.22 749.08 --- ---
 schup-l2s-motst-2-k315 885.23 871.97 --- 804.53
 simon-s02-w08-18 448.21 377.50 760.76 636.65
 simon-s02b-dp11u10 --- 572.63 --- ---
 simon-s02b-k2f-gr-rcs-w8 --- --- --- ---
 simon-s02b-r4b1k1.1 21.11 --- --- ---
 simon-s03-fifo8-300 247.99 233.94 --- 805.22
 simon-s03-fifo8-400 409.51 495.64 --- ---
 vange-col-abb313GPIA-9-c --- --- 400.73 ---
vange-col-inithx.i.1-cn-54 17.08 26.76 26.44 676.64

 mizh-md5-47-3 --- --- 659.18 ---
 mizh-md5-47-4 703.03 578.73 --- 748.90
 mizh-md5-47-5 747.32 --- --- ---
 mizh-md5-48-2 --- --- --- 658.26
 mizh-md5-48-5 --- 812.82 830.36 393.35
 mizh-sha0-35-2 221.90 363.07 435.82 ---
 mizh-sha0-35-3 339.62 229.42 404.71 686.43
 mizh-sha0-35-4 187.10 524.00 665.07 ---
 mizh-sha0-35-5 280.16 --- 518.25 ---
 mizh-sha0-36-2 388.62 --- --- ---

 velev-engi-uns-1.0-4nd 127.01 120.32 99.91 40.78
 velev-engi-uns-1.0-5c1 7.84 7.75 8.80 9.11
 velev-fvp-sat-3.0-b18 102.62 70.47 44.81 ---
 velev-live-uns-2.0-ebuf 518.45 204.90 669.57 ---
 velev-npe-1.0-9dlx-b71 510.05 --- 505.82 ---
 velev-pipe-o-uns-1.0-7 --- --- --- ---
 velev-pipe-o-uns-1.1-6 --- --- --- ---
 velev-pipe-sat-1.0-b10 319.61 56.45 --- ---
 velev-pipe-sat-1.0-b7 218.38 50.53 --- ---
 velev-pipe-sat-1.0-b9 55.59 60.51 198.76 49.76
 velev-pipe-sat-1.1-b7 34.41 58.01 --- ---
 velev-pipe-uns-1.0-8 --- --- --- ---
 velev-pipe-uns-1.0-9 --- --- --- ---
 velev-pipe-uns-1.1-7 --- --- --- ---
 velev-vliw-sat-2.0-b6 246.47 298.95 96.94 ---
 velev-vliw-sat-4.0-b1 730.80 741.75 365.25 520.21
 velev-vliw-sat-4.0-b3 112.91 125.96 134.05 97.16
 velev-vliw-sat-4.0-b4 867.02 455.97 436.87 ---
 velev-vliw-uns-2.0-iq4 --- --- --- ---
 velev-vliw-uns-4.0-9C1 --- --- --- ---

93

A. Biere

 1

 10

 100

 1000

 1 10 100 1000

Figure 10. Space usage in MB, if PicoSAT generates an in-memory proof trace, is shown on the
horizontal axis (trace). The vertical axis lists the space usage without generating and keeping the
proof trace, but otherwise having identical data structures for watchers (list).

In figure Fig. 10 we show the overhead in memory usage for generating and keeping
proof traces in memory. The overhead is on average a factor of 5 with a median of 2.6.

5.2 Deterministic Behavior

In order to measure the impact of low-level optimizations of a SAT solver precisely, it is
necessary to enforce deterministic behavior, unless a huge number of experiments can be
afforded. More specifically, we instrumented PicoSAT to dump statistics including the
number of generated conflicts, decisions and propagations to a log file and checked with a
script automatically, that all five versions (stack, list, stack2, list2, and trace) produce
the same numbers.

Making PicoSAT deterministic with respect to enabling or disabling low-level optimiza-
tions turned out to be rather difficult. On one hand we already implemented our own
simple floating point code for handling activity scores before. Using native C floating point
numbers, as in MiniSAT, produces different decision trees for different compilers, compiler
versions and different levels of optimizations, even on the same machine.

Producing deterministic behavior when switching between stacks and lists was not hard
to achieve. Initially, disabling or enabling special treatment of binary clauses, produced
quite different search trees. The first necessary adjustment was to base the reduction
schedule for garbage collection of learned clauses on the number of large clauses alone and
to ignore binary clauses. For instance, delaying reduction by one conflict alone can already
change the search tree dramatically. We also had to make sure that during the analysis
phase in backtracking the implication graph is traversed in precisely the same order.

94

PicoSAT Essentials

Since PicoSAT picks a random decision once in a while, another alternative would have
been to repeat the experiments with different seeds for the random number generator. We
decided against this alternative, in order to precisely measure the impact of the optimiza-
tions by just comparing two runs.

5.3 Simplification: Removing Satisfied Clauses

Originally, we implemented the same algorithm as MiniSAT [11] for disconnecting watched
clauses which became satisfied or garbage during a reduction process. This algorithm is a
linear search through the whole stack respectively list of clauses for a certain literal and
removes individual clauses. It obviously has a quadratic accumulated worst case complexity
in the number of clauses to be disconnected.

An improvement would be to use doubly linked lists. However, this only works for our
list based implementation, would require two more link fields in the clause header, and
would penalize the stack based implementation in an unfair manner in the comparison.
The alternative, which we eventually implemented, simply delays disconnecting individual
clauses as soon a clause becomes garbage. After all garbage clauses are marked the collection
phase is started, which goes through all occurrence lists respectively stacks of all literals
only once and removes references to garbage clauses.

Still, as the comparison of the profiles revealed, flushing the references to garbage clauses
as in the stack based implementation is much faster than traversing lists in our new imple-
mentation. We believe that this effect is due to the fact that in the list based implementation
touching the larger headers of the clauses with their two link fields is less cache friendly
than just traversing the stack and skipping references to clauses marked garbage. In the
latter case only one word of each clause needs to be read while in the former at least three:
one containing the garbage flag, at least one literal to determine the correct link field, and
the link field.

6. Conclusion

This article describes the SAT solver PicoSAT, including a new restart policy. A detailed
experimental analysis of different data structures for occurrence lists is presented. It is
shown, that optimizing on this low-level has a large impact on the performance of a SAT
solver. The experimental results are more robust compared to previous work since the
heuristics do not change. Identical search spaces are traversed in all versions. The usage
of real occurrence lists instead of stacks has not been evaluated in the literature before.
Another contribution is a technique for compressing proof traces, which allows the SAT
solver to keep proof traces in memory.

References

[1] P. Beame, H Kautz, and A Sabharwal. Towards understanding and harnessing the
potential of clause learning. J. Artif. Intell. Res. (JAIR), 22, 2004.

[2] A. Biere. The AIGER and-inverter graph (AIG) format. http://fmv.jku.at/aiger.

[3] A. Biere. BooleForce. http://fmv.jku.at/booleforce.

95

http://fmv.jku.at/aiger
http://fmv.jku.at/booleforce

A. Biere

[4] A. Biere. PicoSAT. http://fmv.jku.at/picosat.

[5] A. Biere. TraceCheck. http://fmv.jku.at/tracecheck.

[6] A. Biere. The evolution from Limmat to NanoSAT. Technical Report 444, Dept. of
Computer Science, ETH Zürich, 2004.

[7] A. Biere and C. Sinz. Decomposing SAT problems into connected components. Journal
on Satisfiability, Boolean Modeling and Computation, 2:191–198, 2006.

[8] R. Bryant, D. Kroening, J. Ouaknine, S. Seshia, O. Strichman, and B. Brady. Deciding
bit-vector arithmetic with abstraction. In Proc. TACAS’07.

[9] M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem-Proving.
Comm. of the ACM, 5, 1962.

[10] N. Eén and A. Biere. Effective preprocessing in SAT through variable and clause
elimination. In Proc. SAT’05.

[11] N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. SAT’03.

[12] Z. Fu, Y. Mahajan, and S. Malik. New features of the SAT’04 versions of zChaff. In
SAT Competition 2004 – Solver Descriptions.

[13] A. Van Gelder. Independently checkable proofs from decision procedures: Issues and
progress. In Proc. LPAR’05.

[14] A. Van Gelder. Extracting (easily) checkable proofs from a satisfiability solver that
employs both preorder and postorder resolution. In Proc. 7th Intl. Symp. on AI and
Mathematics, Ft. Lauderdale, FL, 2002.

[15] A. Van Gelder. Generalizations of watched literals for backtracking search. In Proc. 7th
Intl. Symp. on AI and Mathematics, Ft. Lauderdale, FL, 2002.

[16] A. Van Gelder. Verifying propositional unsatisfiability: Pitfalls to avoid. In
Proc. SAT’07, 2007.

[17] E. Goldberg and Y. Novikov. BerkMin: a Fast and Robust Sat-Solver. In
Proc. DATE’02.

[18] E. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for CNF formulas.
In Proc. DATE’03.

[19] C. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through random-
ization. In Proc. AAAI’98.

[20] J. Huang. The effect of restarts on the efficiency of clause learning. In Proc. IJCAI’07.

[21] R. Jeroslow and J. Wang. Solving propositional satisability problems. Annals of math-
ematics and AI, 1, 1990.

96

http://fmv.jku.at/picosat
http://fmv.jku.at/tracecheck

PicoSAT Essentials

[22] T. Jussila, C. Sinz, and A. Biere. Extended resolution proofs for symbolic SAT solving
with quantification. In Proc. SAT’06.

[23] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algorithms.
Information Processing Letters, 47, 1993.

[24] M. Lewis, T. Schubert and B. Becker. Multithreaded SAT solving. In Proc. ASP-
DAC’07.

[25] J. Marques-Silva and K. Sakallah. GRASP: A Search Algorithm for Propositional
Satisfiability. IEEE Trans. on Computers, 48(5), 1999.

[26] K. McMillan. Interpolation and SAT-based model checking. In Proc. CAV’03, LNCS.

[27] K. McMillan and N. Amla. Automatic abstraction without counterexamples. In Proc.
TACAS’03.

[28] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proc. DAC’01.

[29] A. Nadel. Backtrack search algorithms for propositional logic satisfiability : Review
and innovations. Master’s thesis, The Hebrew University, Tel Aviv, Israel, 2002.

[30] S. Pilarski and G. Hu. Speeding up SAT for EDA. In Proc. DATE’02.

[31] K. Pipatsrisawat and A. Darwiche. A lightweight component caching scheme for sat-
isfiability solvers. In Proc. SAT’07.

[32] K. Pipatsrisawat and A. Darwiche. RSat 2.0: SAT solver description. Technical Report
D–153, Automated Reasoning Group, Computer Science Department, UCLA, 2007.

[33] L. Ryan. Efficient algorithms for clause learning SAT solvers. Master’s thesis, Simon
Fraser University, Burnaby, Canada, 2004.

[34] I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, and M. Taghdiri. Debugging
overconstrained declarative models using unsatisfiable cores. In Proc. ASE’03.

[35] C. Sinz. SAT-Race’06. http://fmv.jku.at/sat-race-2006.

[36] C. Sinz and A. Biere. Extended resolution proofs for conjoining BDDs. In Proc. CSR’06.

[37] C. Sinz, A. Kaiser, and W. Küchlin. Formal methods for the validation of automotive
product configuration data. AI EDAM, 17(1), 2003.

[38] H. Zhang. SATO: An Efficient Propositional Prover. In Proc. CADE’97.

[39] L. Zhang and S. Malik. Cache performance of SAT solvers: a case study for efficient
implementation of algorithms. In Proc. SAT’03.

[40] L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. In Proc. DATE’03.

97

http://fmv.jku.at/sat-race-2006

	Introduction
	Occurrence Lists
	zChaff Occurrence Lists
	Separate Watcher Data Structures
	Keeping Watched Literals as First and Second Literal
	Real Occurrence Lists in mChaff and PicoSAT
	Special Treatment of Binary Clauses

	PicoSAT
	Decision Heuristics
	Restart Schedule
	Why are Rapid Restarts Beneficial?
	Heavy-Tail Behavior
	Bad Decision and Propagation Order
	Locality through Phase Saving

	Proofs
	Garbage Collecting Learned Clause during Proof Trace Generation
	Compressing Antecedents by Delta Encoding
	Sorting Antecedents for Resolution Proof Generation

	Experiments
	Discussion
	Deterministic Behavior
	Simplification: Removing Satisfied Clauses

	Conclusion

