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Abstract

We study a new approach to the satisfiability problem, which we call the Support
Paradigm. Given a CNF formula F' and an assignment 1 to its variables we say that a
literal x supports a clause C' in F w.r.t. ¢ if x is the only literal that evaluates to true in C.
Our focus in this work will be on heuristics that obey the following general template: start
at some assignment to the variables, then iteratively, using some predefined (greedy) rule,
try to minimize the number of unsatisfied clauses (or the distance from some satisfying
assignment) until a satisfying assignment is reached. We say that such a heuristic is part
of the Support Paradigm if the greedy rule uses the support as its main criterion. We
present a new algorithm in the Support Paradigm and rigorously prove its effectiveness for
a certain distribution over satisfiable k-CNF formulas known as the planted distribution.
One motivation for this work is recent experimental results showing that some simple
variants of the RWalkSAT algorithm, which base their greedy rule on the support, seem to
remain effective for random 3CNF formulas in the “hard” near-threshold regime, while for
example RWalkSAT, which disregards the support, is already inefficient in a much earlier
stage.
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1. Introduction and Results

Given a computational problem it is desirable to have algorithms that produce optimal
results, are efficient (polynomial time), and work on every input instance. For many com-
binatorial problems, amongst which is k-SAT, this goal is too ambitious as shown by the
theory of NP-completeness. In this work we shall be interested in the heuristical approach
which relaxes the universality requirement. Here we define a heuristic to be a polynomial
time algorithm that produces optimal results on typical inputs. The notion of a typical
input, however, is rather fuzzy. One possibility to define typical instances is the use of
random models. One such popular model is the following, which we denote by P, ,: fix
k,c,m > 0 (¢ may depend on n, k), choose m = cn clauses uniformly at random out of
2k (Z) possible ones. Despite its simplicity, many essential properties of this model are yet
to be understood (for k£ > 3). In particular, the hardness of deciding if a random formula is
satisfiable, and finding a satisfying assignment for a random formula, are both major open
problems [13, 23].
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Remarkable phenomena occurring in the random model P, ,, are phase transitions.
With respect to the property of being satisfiable such a phase transition takes place too [18].
More precisely, there exists a threshold d = d(k,n) such that a k-CNF formula with clause-
variable ratio greater than d is not satisfiable whp while one with ratio smaller than d is
(when writing whp we mean with probability tending to 1 as n goes to infinity). For k = 3
the threshold is known to be at least 3.42 [20] and at most 4.506 [12].

One way of evaluating and comparing heuristics is by running them on a collection of
input instances (”"benchmarks”), and checking which heuristic usually gives better results.
Empirical results are sometimes informative, but we also seek more rigorous measures of
evaluating heuristics. In this paper we rigorously study a new heuristical approach to the
satisfiability problem, which we call the Support Paradigm.

Definition 1. (support) Given a k-CNF formula F and some assignment 1) to its variables,
we say that a variable x supports a clause C' (in which it appears) w.r.t. 1 if the literal
corresponding to x is the only one that evaluates to true in C under .

Our focus in this work will be on heuristics that obey the following general template:
start at some assignment to the variables, then iteratively, using some predefined (greedy)
rule, try to minimize the number of unsatisfied clauses (or the distance from some satisfy-
ing assignment) until a satisfying assignment is reached (or failure due to exceeding some
maximal number of allowed steps). We say that such a heuristic is part of the Support
Paradigm if the greedy rule uses the support as its main criterion. In this work we present
a new algorithm in the Support Paradigm and rigorously prove its effectiveness for a certain
distribution over satisfiable k-CNF formulas known as the planted distribution.

Part of the motivation for this work comes from recent experimental results [27, 5]
showing that some simple variants of the well known RWalkSAT algorithm [25], which base
their greedy rule on the support (although the notion of support is not referred to explicitly
in any of these works), seem to be effective for solving random 3SAT formulas in the “hard”
near-threshold regime. Specifically, the experimental results suggest that these algorithms
may be efficient in finding satisfying assignments for random 3SAT instances in Py, ,, with
m/n as large as 4.21 (the conjectured satisfiability threshold for 3SAT is roughly 4.26). In
contrast, the “original” RWalkSAT heuristic, which is not part of the Support Paradigm,
seems to consume super-polynomial already for m/n = 2.65 [26].

2. Our Contribution

Motivated by a search of a unifying rule that may contribute to the understanding of
this phenomenon we define the Support Paradigm. We present a new algorithm which is
part of the Support Paradigm and rigorously show its effectiveness for the Planted k-SAT
distribution with clause-variable ratio greater than some constant (an exact definition of
the Planted k-SAT distribution is given in Section 2.1). Our results are thus in line with
the experimentally-observed advantage of the algorithms in [27, 5] over RWalkSAT.

To keep the presentation simple we shall confine ourselves to the “canonical” case k = 3,
and just point out that our result extends to any fixed k.

One disclaimer is due before we proceed. We do not claim that our result provides a
direct explanation as to why certain algorithms seem to perform well in the below-threshold
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regime. For one, we deal with higher densities in which the instances are typically (by
typically we mean whp over formulas from the concerned distribution) more structured.
Nevertheless, in a recent work [1] concerning the below-threshold regime of Py, ,, (for k
some sufficiently large constant) a structure quite similar in spirit to our notion of core
(Section 5.1) is proved to typically exist for such sparse formulas and is responsible for the
existence of frozen variables in that regime. In fact, this structure is also defined using the
notion of support (although this notion is not referred to explicitly in [1]).

The notion of support also has a constructive interpretation when considering things
from the statistical-mechanics point of view. In this discipline, the combinatorial object
3CNF is a diluted 3-spin spin glass system. Every assignment to the variables corresponds
to an energy level of the system, where the free energy of the system in a certain state is the
number of clauses not satisfied by the given assignment. Thus, the question of whether the
3CNF is satisfiable or not is equivalent to the question whether the ground state energy of
this diluted 3-spin spin glass system is zero. One of the main theoretical bases, at least from
a physical point of view, underlying Survey Propagation [8] is the structure of the energy
states of near-threshold random 3CNF formulas.

Having said that, one immediately notices that the notion of support is tightly connected
to the notion of free energy. For example, flipping the assignment of the variable with the
lowest (maybe zero) support corresponds to making a move which incurs the least increase
in the free energy of the system; or, lowering the energy of the system (by flipping the
assignment of a variable which appears in at least one unsatisfied clause) corresponds to
increasing the number of clauses that belong to the support of some variable, and so forth.

Another exciting area where the notion of support plays a role is the following. Using
partially non-rigorous analytical tools from statistical mechanics the following structure
of the solution space of random k-CNF formulas with clause-variable ratio just below the
satisfiability threshold was suggested [24]. Typically such formulas have an exponential
number of clusters of satisfying assignments. Any two assignments in distinct clusters
disagree on a fair number of variables and any two assignments within one cluster coincide
on many variables. Furthermore, each cluster has a linear number of frozen variables whose
assignments coincide in all satisfying assignments within that cluster. Part of this picture
was recently rigorously proved in [1] for k-SAT with k£ > 8.

We prove that the notion of support plays a crucial role in explaining the existence
of frozen variables, at least for the Planted 3SAT distribution with clause-variable ratio
greater than some constant. For example, if a variable has zero-support with respect to
some satisfying assignment then it cannot be frozen — flip its assignment and the new
assignment, which lies in the same cluster, remains satisfying. The other direction is less
obvious (that is what happens when a variable has a large support w.r.t. some satisfying
assignment) — and the argument is more involved.

2.1 The Planted Model

In this work we consider the regime of satisfiable 3CNF formulas with clause-variable ratio
some sufficiently large constant above the satisfiability threshold. In this regime almost all
formulas are not satisfiable, and therefore P,, ,, is not suitable for the study of satisfiability
heuristics. We choose to consider the Planted 3SAT distribution which we shall denote

Jsam] 127



D. VILENCHIK

by P}f,lf)nt. A formula in the planted distribution is chosen by first fixing an assignment, and
then including every one of 7(@) clauses that are satisfied by it with probability p = p(n).
This of course guarantees that non-zero probability is assigned only to satisfiable 3CNF
formulas.

Planted models are of interest in computational complexity [13] and are favored by many
researchers in the context of SAT [17, 6, 21], and also for other optimization problems such
as max clique, min bisection, and coloring [3, 4, 7, 19, 14] to mention just a few. Another
nice feature of planted-solution distributions is the fact that they are efficiently sampleable.
Planted distributions may also provide a good model for statistical problems where the
constraints are correlated in such a way as to be consistent (or statistically correlated) with
a pre-specified assignment of the variables.

Furthermore, as recent results in [10, 11] imply our results can be reproved in the uniform
setting as well (to be specific, the uniform distribution over satisfiable 3CNF formulas with
m = cn clauses, ¢ greater than some sufficiently large constant).

We now formally state our result. We state it for 3SAT though it generalizes to k-SAT
for any fixed k.

Theorem 1. Let F' be a random formula distributed according to Prp;}gnt with n?p > Cy,
Co a sufficiently large constant. Then whp the algorithm SupportSAT(F') finds a satisfying
assignment of F' using polynomial time.

The algorithm SupportSAT (F'), which belongs to the Support Paradigm, is described
in Figure 2 in Section 4. The proof of Theorem 1 also reveals an interesting connection
between the notion of support and the notion of frozen variables. Details in Section 5.1.

Combining our result with the work in [2] draws the following interesting picture. We
show that SupportSAT, which can be viewed as a variation on the classical RWalkSAT,
succeeds whp in finding a satisfying assignment for sufficiently dense Pﬁ};nt formulas. For
the same clause-density regime it is shown in [2] that RWalkSAT, which disregards the
support, fails'* whp to find a satisfying assignment, and not even an assignment which is
closer than say n/3 to the planted one. This mirrors nicely the near-threshold picture:
experiments predict that RWalkSAT fails to find a satisfying assignment for random 3SAT
instances with clause-variable ratio greater than 2.65 [26], while variants of RWalkSAT which
take the support into account succeed as far as 4.21 [27, 5].

2.2 Paper’s Structure

We proceed with some more background and related work, Section 3. In Section 4 we
present our algorithm and analyze its performance in Sections 5—7, which contain all the
technical details. Concluding remarks are given in Section 8.

3. Related Work

The first to address planted instances in the constant average degree regime (some suf-
ficiently large constant) were Alon and Kahale in the context of k-colorable graphs [3].

1. Throughout when we say that a heuristic fails to produce an optimal solution we always mean that it
fails when spending polynomial time (and similarly for success).
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Building upon their techniques Flaxman [17] presents an efficient algorithm for PE};M (the
same regime that we study). The algorithm in [17] also proceeds in steps, starting with a
spectral step which typically obtains a fair approximation of the planted assignment, and
ending with an exhaustive search. In addition some other algorithms were analyzed when
the input is sampled according to PS};M [16, 15, 22].

In [9] the uniform distribution over satisfiable 3CNF formulas with a linear number of
clauses is studied (again, the average degree is some sufficiently large constant). [9] describe
an exponential time algorithm which whp solves such instances (in fact this algorithm is also
part of the Support Paradigm, and in some parts our algorithm is inspired by [9]). [9] leave
as an open question whether one can find a polynomial time algorithm that solves whp such
instances. This question was recently answered, positively, in [11] (though the algorithm
described in [11] is not “purely” part of the Support Paradigm). The analysis in [11] actually
implies that Theorem 1 can be restated and reproved for the uniform distribution as well.

4. The Algorithm

We start with a high-level description of our algorithm. Given a formula I’ and an assign-
ment 1 to its variables, we say that the assignment of x is suspicious in 1 if it supports
very few clauses w.r.t. . The main part of the algorithm is a simple greedy procedure in
which iteratively the assignment of suspicious variables is flipped. From a physical point of
view this part can be viewed as a fast cool-down process. When reaching low temperature,
a large portion of the formula is already satisfied; if the remaining part is “simple”, one can
find a satisfying assignment using some of-the-shelf heuristic.

The fast cool-down process is implemented via a procedure that we call a Directed
Walk (inspired by the work of [9]), and then another procedure with a more refined flip-
ping criterion. This corresponds to Steps 1 and 2 in the description of SupportSAT below
(Figure 2). Step 2 typically ends up with an assignment which is very close to a satisfying
one. Step 3 completes the job using a simple exhaustive search. As typically the unsatisfied
part left at the end of Step 2 is “simple” the exhaustive search takes polynomial time.

Remark 1. The reader may wonder at this point if one can extend the greedy part of
the algorithm (Steps 1 and 2) to find a satisfying assignment (and let go of step 3)? The
answer is probably no, at least not in our planted setting. Fvery variable is expected to
appear in 7(Z)p = O(n?p) clauses (which we think of as constant in our analysis). Further,
the number of clauses in which a variables appears is binomially distributed. Thus, with
constant probability some appear very scarcely (say once or twice). Therefore in some sense
such variables don’t show enough structure to allow a greedy procedure of the sort we use to
set them correctly. On the other hand, these variables induce a “simple” formula for which
exhaustive search is efficient for example.

4.1 The Directed Walk

We now introduce the sub-procedure Directed Walk which is possibly of its own interest.
The input to Directed Walk is a 3CNF formula F' and a number € € [0, 1].
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Directed Walk(F,¢)

1. o+ an arbitrary assignment to the variables.

2. fori=1 to 3/¢
¥; < ;1 with the assignment of the en variables with the lowest
support in F w.r.t. ;_1 — flipped.

3. return ¢j3/..

Figure 1. Directed Walk

While RWalkSat (‘R’ stands for Random) uses randomness when deciding which variable
to flip, the “Directed Walk” employs a deterministic directing rule. Directed Walk can be
used with other measurements — e.g. flip the assignment of the en variables whose flipping
will gain the maximal number of satisfied clauses, and so forth. In fact, using the last rule
with € = 1/n is exactly the algorithm in [21]. Actually, one can generalize Directed Walk to
receive the “directing rule” as an argument, and then have a general template (and analysis)
for such algorithms. More details in Section 6.

We are now ready to present our main algorithm (the notations we use are clarified right
after the following figure).

SupportSAT (F)

Step 1: Directed Walk

1. 1 < Directed Walk(F,107°).

Step 2: refining the assignment

2. fori=1tologn

3 forallz eV

4. if Supportp(z,;) < n’p/10 then ;1 « 101(1)
5

6

7

end for.

. end for.

. let 7 be the final assignment.
Step 3: the exhaustive search
8. setmy=171,7=1.
9. while 3z s.t. Supportr(z,7;) < n’p/10
10. set 741 < 7; with x unassigned.
11. j«—j+1.
12. end while.
13. let & be the final partial assignment.
14. let U be the set of unassigned variables in .
15. exhaustively search F|[U|, separately in every connected component.

Figure 2. SupportSAT
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Notations. Supportp(z,) is the support of a variable x in F' w.r.t. an assignment v; @)
is the assignment ¢ with the assignment of x flipped. For a formula F' and a subset U of
the variables we denote by F[U] the subformula containing all clauses with some variable in
U. By partial assignment we mean an assignment where some variables may take the value
UNASSIGNED. For a partial assignment v, Supportp(x,1) counts only clauses where all
variables are assigned.

The last step of SupportSAT (Step 3) is an exhaustive search. The variables that we want
to exhaustively search are those which are still suspicious after the greedy step ends (Steps
1 and 2). To separate the suspicious variables form the reliable ones we employ a careful
unassignment step (lines 8-12) which leaves assigned only variables with large support.

5. Properties of a Random Instance from P}i}gm

In this section we analyze the structure of a typical formula in P}f}gm. These properties will

come handy when analyzing the algorithm SupportSAT in Section 7. One consequence of
the discussion in this section is showing how the notion of support plays a crucial role in
the existence of frozen variables (Section 5.1). All propositions in this section appear also
in [3, 17] for example (maybe stated differently); therefore we only state the propositions
and give an outline of the proof (which can be easily reconstructed into a full proof).

The following is a discrepancy property which excludes the existence of a small subfor-
mula of F' in which variables appear too many times (much more than expected).

Proposition 1. Let F' be a random formula distributed according to P,SL?IE, with n’p > Cy,

Cy some sufficiently large constant. Then whp there exists no nonempty subset of variables
U s.t.

o |U| <n/10%,
e There are n*p|U|/500 clauses in F that contain two variables from U.

Proof. The proof uses the union bound technique. For a fixed set U of k variables, the
number of clauses containing two variables from U is at most

<§> (n—2)(2% — 1) < 4k*n.

Each of these clauses is included independently w.p. p. Thus, the probability that n?pk /500
of them are included is at most

4k%n prEPR/500 2000 - ¢ - k™ PE/500
n?pk /500 - n '

Summing over all possible sets U of size up to n/10%, one obtains that the probability for
such a “bad” set U in F' is at most
n/10%

3 (Z) <M>n2pk/mo — = o(1).

k=1
The “...” can be easily filled using standard calculations. |

@ 131



D. VILENCHIK

5.1 The Core Variables

We describe a subset of the variables, referred to as the core variables, which plays a
crucial role in the analysis of the algorithm and in the understanding of Pﬁ}gm. Amongst
other things, the core captures the notion of frozen variables. Also observe that the main

ingredient which is used in the definition of a core is the support.

Definition 2. (core) A set of variables H is called a t-core of F w.r.t. to a satisfying
assignment 1) if the following two properties hold:

o Fuvery variable v € H supports at least t clauses in F' w.r.t. ¢, where all variables in
these clauses belong to H.

e Fvery v appears in at most t/10 clauses in F' where not all variables belong to H.

We proceed by asserting some relevant properties that such a core typically possesses.

Proposition 2. Let F' be a random formula distributed according to Pﬁ}gm with n’p > Cy,

Co some sufficiently large constant. Then whp there exits a t-core H with t = np/4 w.r.t.
the planted assignment o. Furthermore, whp [H| > (1 — e=©®*P))p,

Note that ¢ is chosen to be half of the expected support of a variable w.r.t. the planted
assignment.

Proof. Consider the following procedure which we prove defines a core.

Let B be the set of variables whose support in F w.r.t. ¢ is at most n®p/3.
1. set Hy=V \ B.
2. while there exists a variable a; € H; for which one of the following holds:

o it supports less than n’p/4 clauses where all variables belong to H;.

e it appears in more than n’p/40 clauses where not all variables belong to H;.

do deﬁne Hi+1 = Hz \ {al}

3. let an, be the last variable removed in step 2. Define H = Hp,11.

The set H which this procedure outputs is a t-core (according to Definition 2) by its
construction with t = n?p/4.

Let H =V \ H and set § = e~©(*P)  Partition the variables in H into variables that
belong to B, and variables that were removed in the iterative step, H® = Hy \ ‘H. If
|H| > 6n, then at least one of B, H* has cardinality at least dn/2. Consequently,

Pr(|H| > én] < Pr[|B| > én/2] + Pr[|H™| > én/2 | |B| < én/2].
(a) (b)

To bound (a),we use the following lemma whose proof consists of standard probabilistic
arguments; details omitted.
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Lemma 1. Let F be random formula distributed according to Prlf,lia)nt, n’p > Cy, Cy a
sufficiently large constant, and let Fsypp be a random wvariable counting the number of
variables in F whose support w.r.t. o is less than n*p/3. Then whp Fsypp < e 0?p)p

To bound (b), observe that every variable that is removed in iteration i of the iterative
step (Step 2) supports at least (n?p/3 —n?p/4) = n?p/12 clauses in which at least another
variable belongs to {ai,as,...,a;_1} U B, or appears in n?p/40 clauses each containing at
least one of the latter variables. Consider iteration dn/2; assuming |B| < dn/2, by the
end of this iteration there exists a set containing at most dn variables, and there are at
least n%p/40-6n/2-1/3 = n?p/240 - in clauses containing at least two variables from it (we
divide by 3 as every clause might have been counted 3 times). This however contradicts
Proposition 1 as § = e=0(n’p) < 1074,

|

The next two propositions are given without a proof as their proofs are quite technical
and can be found in complete in [17] and [11] respectively.

Proposition 3. Let F' be a random formula distributed according to PS}S“ with n’p > Cy,
Co some sufficiently large constant. Let H be a maximum size n*p/4-core of F, and let
F[V \ H] be the formula induced by the non-core variables. Then whp the graph induced by
F[V \ H] contains no connected component of size greater than logn.

“The graph induced by a CNF formula” means the graph whose vertices are the vari-
ables, and two variables share an edge if there exists some clause containing them both.

The following fact establishes the “frozenness” of the core variables. Its proof can be
found in [11], we just note that the first property in Definition 2 (the support) plays a major
role in the proof.

Proposition 4. Let F' be a random formula distributed according to P}f};m, with n’p > Cy,
Coy some sufficiently large constant. Let H be the core promised in Proposition 2. Then whp
H is uniquely satisfiable

6. Analysis of the Directed Walk

In this section we analyze a typical execution of Directed Walk for PS}Z“, n?p greater than

some sufficiently large constant. Directed Walk, as defined in Figure 1, uses the measure of
support to determine which variables flip their assignment in every round. Nevertheless,
one can use other measures such as the number of unsatisfied clauses in which a variable
appears, the number of satisfied clauses gained by flipping the variable, and so on. Our
analysis can be easily fit to other measures that satisfy some sufficient conditions which
are implicit in Lemma 2 (and stated explicitly in Remark 3). In fact, our analysis implies
the main result in [21]. The following proposition summarizes the main quality of Directed
Walk.

Proposition 5. Let F be a random formula distributed according to P}f};m, n?p > Oy,
Co some sufficiently large constant. Then whp Directed Walk(F,107°) enjoys the following
property: after at most 3-10° rounds the output assignment differs from the planted one on
at most n/10° variables.
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Remark 2. The constant 10° is arbitrary. In fact, one can show that whp Directed
Walk(F, ¢) finds after 3/¢ rounds an assignment at distance at most en from the planted one
for £ as small as e~ ©("°P) This is (up to a constant in the exponent that does not depend on
n,p) exactly the approximation ratio of the Majority Vote [16, 6]. Therefore, if one considers
PE}ZM with n?p > Cplogn then whp Directed Walk finds the planted assignment. Indeed,
this is what’s implicitly proved in [21], though the directing measure is not the support.

Before proving the proposition we make some further observations.

Definition 3. (misleading assignments) Let F be a satisfiable SCNF formula and ¢ a
satisfying assignment of F'. We call an assignment ¢ k-misleading w.r.t. @ if there exists
a set of 2k wvariables t1, ..., tx, f1,..., fx s.t. for everyi,j=1,... k:

o p(ti) = v(t:), p(fi) # V(fi),
o Support(ti, ) < Support(f;, ).

Definition 4. (e-directable) We say that F' is e-directable w.r.t. a satisfying assignment ¢
of F if there exists no en/3-misleading assignment w.r.t. ¢ at Hamming distance greater
than en from .

Proposition 6. Let F' be a random formula distributed according to Py‘i,lﬁnt, n’p > Cp,
Co some sufficiently large constant, and let ¢ be its planted assignment. Then whp F is
10~°directable w.r.t. .

The proof of Proposition 6 is given by the following lemma.

Lemma 2. Fiz e € (0,1) and let F' be a random formula distributed according to Pﬁfﬁ,m,

n’p > Cy, Cy some sufficiently large constant with ¢ its planted assignment. Let 1) be an
assignment at distance > en from p. Then the probability that v is en/3-misleading w.r.t.
p s at most 37 ".

The union bound then guarantees that whp no misleading v exists as there are at most
2™ possible ways to choose . To prove Lemma 2 we need the following easy fact whose
proof consists of standard probabilistic arguments.

Lemma 3. Let § € (0,1). Let By = Binom(p, (g)),Bg = Binom(p, (g) - (ﬁé\[)) Then
PriB; < By] < e_g(ﬁ)p]\ﬂ, where g : (0,1) — (0,00) is a monotonically increasing function.

Proof.(Lemma 2) Consider some assignment 1 at distance fn from ¢, 3 > €. Let t, f be
two variables s.t. ¥(t) = ¢(t),¥(f) # ¢(f). t supports (;) clauses w.r.t. ¥, and every one
of them could have been included in F' (since ¢ satisfies all of them). On the other hand, f
supports (g) clauses w.r.t. 1, but clauses where both ¢ and v agree on the assignment of
the other two variables cannot be included in ¢ as they are not satisfied by ¢ — and there
are ((172[3 )") of them. Therefore we get:

Pr{Sup(t, ) < Sup(f,)] < Pr [Bm <p, (Z)) < Bin <p, <;‘> - ((1 _25 )n))] < e~ 9(1-Bm’p,
(1)
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Further observe that the sets of clauses that any two variables support w.r.t. to some
assignment are always disjoint (since the supporting variable is unique by definition). If
is k-misleading w.r.t. ¢ then in particular there exist k pairs of variables (t1, f1), ..., (tk, f&)
s.t. Support(t;, 1) < Support(f;,1). The probability for this is at most

e 9(1=Bn*pen/3 < ~(g(1-B)Coe/3)n _ (6—9(1—B)Co-8/3>n <1277,

The last inequality is due to 1 — 3 < 1 — ¢ and therefore g(1 — 3) < g(1 —€), where ¢ is
some fixed number, while Cjy can be an arbitrarily large. Finally observe that there are at
most 2" - 2" = 4" ways to choose the sets of ¢;’s and f;’s. The lemma follows by applying
the union bound. |

Remark 3. In order for a measure function M to fit the proof of Proposition 5 it suffices
for M to obey Equation (1) (maybe with some other function g'), and also

PrM(t) < M(f)[M(ty) < M(fi),..., M(t;,) < M(fi,)] < PriM(t) < M(f)],
for every r-subset of the variables (i,r < k).

Proof. (Proposition 5) The proof we give here shares some ideas with the analysis in [9].
We prove that Proposition 5 holds with probability 1 for F' s.t. F is 10~°~directable w.r.t.
. Since this is the case whp, as asserted by Proposition 6, Proposition 5 follows. For two
assignments 1, ¢, define T'(¢, @) to be the set of variables on which ¢ and ¢ agree, and
F (1, ) the set of variables on which they disagree. Let E. (1) be the set of en variables with
lowest support w.r.t. 1. Observe that if ¢ is some satisfying assignment of F', and v is the
current assignment that Directed Walk(F, ¢) considers, then the variables in T'(v), ) N E- (1))
will be “wrongly” flipped. Our goal is then to show that |T'(¢), ¢) N Ec(¢)| cannot be too
large.

Set ¢ = 1075 (as required by Proposition 5). Suppose at first that for every 1 at distance
> en from o, |T(¢, ) NE: ()| < en/3. If so, then |F(¢, o) NE:(¢)| > 2en/3. Thus in every
iteration of Directed Walk the distance from ¢ is decreased by at least 2en/3 —en/3 = en/3.
The initial distance is at most n; hence, after at most n/(en/3) = 3/e = 3 - 10° rounds an
assignment v’ at distance at most en from ¢ is reached.

It remains to prove that the above picture is indeed the case. To this end, consider a
“bad” assignment 1 at distance > en from ¢ but for which |T'(¢, ¢) N Ec(¢)| > en/3. This
implies that |F(¢,¢) N E-(¢)| < 2en/3. Since the distance between 1 and ¢ is > en, it
holds that |F'(v, ¢)| > en. The two last observations imply that |F' (i, p) \ E-(¢)| > en/3.

Set k = en/3. Let fi, fo,..., fr be variables in F(i,¢) \ E:(¢), and t1,to,...,tx be
variables in T'(v,¢) N Ec(1). For every t;, fj, Support(t;,1p) < Support(f;,) (by the
definition of E.(¢)) and the choice of the t;’s and the f;’s). However this means that ¢
is k-misleading w.r.t. ¢ (as the Hamming distance between 1 and ¢ is greater than en),
which contradicts that fact that F' is e-directable w.r.t. ¢. |
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7. Algorithm’s Analysis — Proof of Theorem 1

We say that a formula F' is typical if Propositions 1, 2, 3 and 6 hold for F'. The discussion
in Sections 5 and 6 guarantees that indeed whp a formula sampled according to PE};nt, n’p
greater than some sufficiently large constant, is typical. Thus proving Theorem 1 reduces
to proving that SupportSAT (always) finds a satisfying assignment in polynomial time for
typical formulas. In all the propositions below we assume that F' is typical; we let H be the

core promised in Proposition 2 and ¢ the planted assignment of F.

Proposition 7. Let 7 be the assignment defined in line 7 of SupportSAT. Then T agrees
with @ on the assignment of all variables in H.

Proof. Let B; be the set of core variables whose assignment in v; disagrees with ¢ at the
beginning of the i* iteration of the main for-loop — line 2 in SupportSAT. It suffices to prove
that |Bjt1| < |Bj;|/2 (if this is true, then after log n iterations Biog, = 0)). By contradiction
assume that not in very iteration |B;;1| < |B;|/2, and let j be the first iteration violating
the inequality (that is, |Bjy1| > |Bj|/2). Consider a variable z € Bj;. If also « € B, this
means that z’s assignment was not flipped in the j** iteration, and therefore, = supports
at least n%p/10 clauses w.r.t. 1j. By the second item in the definition of a core, at least
n?p/10 — n?p/40 > n2p/20 of these clauses contain only core variables. Since the literal of
x is true in all these clauses, but in fact should be false under ¢, each such clause must
contain another variable on which ¢ and 1); disagree, that is another variable from B;. If
x ¢ Bj, this means that x’s assignment was flipped in the 4t iteration. This is because z
supports less than n2p/10 clauses w.r.t. ;. Since x supports at least n?p/4 clauses w.r.t.
¢ it must be that in at least n?p/4 —n?p/10 > n?p/8 of them the literal of some other core
variable evaluates to true (rather than false as it should be w.r.t. ¢). For conclusion, let
U = Bj U Bj1; there are at least n?p/20 - |Bj;1| clauses containing at least two variables
from U. Now if |Bj+1| > |Bj|/2 then n?p/20 - |Bj11] > n?p/30 - |U|, and to begin with
(by Proposition 5) |By| < n/10° (we can assume w.l.o.g. that |Bji1| < n/10°, otherwise
just take the first n/10° variables in Bj;; and therefore |U| < 2n/105 < n/10%). This
contradicts Proposition 1. |

Proposition 8. Let £ be the partial assignment defined in line 13 of SupportSAT. Then all
assigned variables in & are assigned according to ¢, and all the variables in H are assigned.

Proof. The core variables are assigned according to ¢ when the unassignment begins
(Proposition 7). Therefore, by the definition of core, every core variable supports at least
n?p/4 clauses w.r.t. o, and also w.r.t. 7 (the assignment at hand before the unassignment
step begins). Therefore all core variables survive the first round of unassignment. By
induction it follows that the core variables survive all rounds. Now suppose by contradiction
that not all assigned variables are assigned according to ¢ when the unassignment step ends.
Let U be the set of variables that remain assigned when the unassignment step ends, and
whose assignment disagrees with ¢. Every o € U supports at least n?p/10 clauses w.r.t. to
1, but each such clause must contain another variable on which ¢ and ¢ disagree (since the
clause is satisfied by ¢, and ¢(z) = false). Thus we have n?p|U|/10 clauses each containing
at least two variables from U. Since UNH = () (by the first part of this argument) it follows
that |U] < e~ ©"*P)p < /104, contradicting Proposition 1. [
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Proposition 9. The exhaustive search in Step 3 of SupportSAT completes in polynomial
time with a satisfying assignment of F.

Proof. By Proposition 8, the partial assignment at the beginning of the exhaustive search
step is patrial to some satisfying assignment of the entire formula. Therefore the exhaustive
search will succeed. Further observe that the unassigned variables are a subset of the non-
core variables (Proposition 8). Proposition 3 then guarantees that the running time of the
exhaustive search will be at most polynomial. |

Theorem 1 then follows from Propositions 7-9.

Taking a closer look at the proof of Theorem 1 it turns out that we actually prove the
following:

e The support-based greedy step of SupportSAT (Steps 1 and 2) set (almost all) frozen
variables in F' correctly (that is, according to the planted assignment).

e The exhaustive search completes the assignment of the rest.

The latter implies that the frozen variables embed enough “support structure” to allow a
support-based greedy heuristic to set their assignment correctly. This asserts an interest-
ing connection between the clustering phenomenon, the notion of frozen variables and the
success of support-based greedy heuristics.

8. Discussion

In this work we introduce a new approach to SAT-solving heuristics. The main building
stone of our approach is the notion of support. As a case study, we rigorously show the
effectiveness of a simple support-based algorithm for the Planted 3SAT distribution with
clause-variable ratio some sufficiently large constant.

The notion of support seems to be useful in other contexts as well. The experimental
results in [27, 5] seem to indicate that simple variations on the classical RWalkSAT (which
now take into account the support) outperforms RWalkSAT by far, and seem to remain
efficient way into the “hard” near threshold regime. Also in [1] the existence of separated
clusters and frozen variables is shown for Py, ,, (with m/n some suitably chosen parameter
below the threshold, and k some large enough constant) — the notion of support plays a
major role in showing the existence of frozen variables (in fact a similar structure to our
core is shown to exist whp).

Therefore there is hope that our new approach will be applicable in various distributions
and clause-density regimes, and encourage the development of further heuristics that prove
useful in practice — based on the notion of support. As part of this line of research it will be
interesting to check experimentally whether the subprocedures that compose SupportSAT
(Directed Walk, or the refinement step, Step 2) are effective in other settings as well, for
example in below-threshold random 3SAT formulas.
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