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Abstract

This paper is concerned with the complexity of some natural subclasses of minimal un-
satisfiable formulas. We show the DP –completeness of the classes of maximal and marginal
minimal unsatisfiable formulas. Then we consider the class Unique–MU of minimal unsatis-
fiable formulas which have after removing a clause exactly one satisfying truth assignment.
We show that Unique–MU has the same complexity as the unique satisfiability problem
with respect to polynomial reduction. However, a slight modification of this class leads
to the DP –completeness. Finally we show that the class of minimal unsatisfiable formulas
which can be divided for every variable into two separate minimal unsatisfiable formulas is
at least as hard as the unique satisfiability problem.
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1. Introduction

A propositional formula F in conjunctive normal form is called minimal unsatisfiable if and
only if F is unsatisfiable and any proper subformula of F is satisfiable. The class of minimal
unsatisfiable formulas is denoted as MU and shown to be DP –complete [10]. DP is the class
of problems which can be described as the difference of two NP–problems. It is strongly
conjectured that DP is different from NP and from coNP .

We are interested in subclasses of MU mainly for two reasons. One reason is that for
proof calculi hard formulas are almost all minimal unsatisfiable (see for example [2, 5, 12])
and a deeper understanding of MU –formulas may help to develop new hard formulas and
new satisfiability algorithms. For example, the deficiency property leads to new polyno-
mially solvable classes of formulas, where the deficiency is the difference of the number of
clauses and the number of variables [4]. MU(k) is the class of formulas in MU with defi-
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ciency k and shown to be decidable in polynomial time [7, 8]. The second reason lies in the
close relation between some subclasses of MU –formulas and the Unique–SAT –problem.

At first we investigate the complexity of two subclasses of MU , namely the class of
maximal and the class of marginal MU –formulas. A formula F in MU is called maximal, if
for any clause f ∈ F and any literal L which is not in f , adding L to f yields a satisfiable
formula. In a certain sense maximal formulas are maximal extensions of MU –formulas.
Instead of “maximal”, the word “saturated” was used in [9]. A marginal MU –formula is a
MU –formula for which the deletion of an occurrence of a literal leads to an unsatisfiable
formula which is not in MU . That means marginal formulas are the minimal kernel of
minimal unsatisfiable formulas. Obviously, both classes can be represented as the intersec-
tion of a NP–problem and a coNP–problem and lie therefore in DP . We will show that
both classes are DP -complete. The results are not astonishing, but the polynomial–time
reductions from the problem MU may be of interest.

Another class of restrictions is based on a limited number of satisfying truth assignments.
Besides the unsatisfiability, minimal unsatisfiable means that for any clause f the formula
F − {f} is satisfiable. F is called unique minimal unsatisfiable, if for any clause f the
formula F − {f} has exactly one satisfying truth assignment, that means F − {f} is in
Unique–SAT . The class of these formulas is denoted as Unique–MU . At a first glance
to demand that for all clauses there is exactly one satisfying truth assignment seems to be
very strong.

We will show that the problem Unique–MU is as hard as the Unique–SAT –problem.
Although it is not known whether Unique–SAT is DP –complete, some evidence has been
found that supports the belief that Unique–SAT is not DP -complete (see e.g. [11]). Thus,
Unique–MU is unlikely DP -complete. A slight modification of Unique–MU is the class
Almost–Unique–MU of almost unique minimal unsatisfiable formulas. A formula F is in
Almost–Unique–MU if for at most one clause F − {f} may have more than one satis-
fying truth assignment. Under the assumption that Unique–SAT is not DP –complete,
Almost–Unique–MU is stronger than Unique–MU , because we will show DP –completeness
of Almost–Unique–MU .

A more detailed analysis of the class Unique–SAT leads to class Dis–MU . A minimal
unsatisfiable formula F is in Dis–MU if and only if F has a disjunctive splitting on any
variable. That means, for any variable x of F , F can be split into two disjoint subformula
H and G such that H resp. G contains no occurrence of x resp. ¬x and that they are in
MU when setting the variable true resp. false. Dis–MU is of interest, because Dis–MU is
a proper subclass of Unique–MU and its close relation to tree–like decision procedures. We
establish a polynomial–time reduction from Unique–SAT , which shows that Dis–MU is at
least as hard as Unique–SAT . However, we did not succeed in finding a reduction from
Dis–MU to Unique–SAT .

Summarizing, we shall show Unique–SAT ≈p Unique–MU ≤p Dis–MU and MU ≈p

MARG–MU ≈p MAX–MU ≈p Almost–Unique–MU , where ≤p denotes the polynomial–
time reducibility and A ≈p B is an abbreviation for A ≤p B and B ≤p A.
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2. Notation

A literal is a propositional variable or a negated propositional variable. var(F ) is the set
of variables of a formula F . Clauses are sets of literals without multiple occurrences of
literals. Since formulas with multiple occurrences of clauses are not minimal unsatisfiable,
we consider a formula in CNF not as a set of clauses but as a multi–set of clauses. Given
a formula F and a variable x, we use F |x=0 (F |x=1, respectively) to denote the formula
obtained from F by deleting the clauses containing ¬x (x, respectively) and removing all
occurrences of x (¬x, respectively). Suppose F ∈ MU , we say F has a disjunctive splitting
on a variable x if F can be split into two disjoint subformulas G and H such that G contains
no occurrences of ¬x, H contains no occurrences of x, G|x=0 ∈ MU , and H|x=1 ∈ MU . In
this case, we call (G, H) a disjunctive splitting of F on x. It has been proved in [4] that for
any formula F ∈ MU with deficiency 1 (i.e., the difference between the number of clauses
and the number of variables is 1), F always has a disjunctive splitting on some variable.
However, there are minimal unsatisfiable formulas F such that F has no disjunctive splitting
on any variable.

3. Maximal MU–Formulas

In this section we will show the DP –completeness of so called maximal minimal unsatisfiable
formulas. For a formula F ∈ MU and a clause f ∈ F we say f is maximal in F if for
any literal L occurring neither positively nor negatively in f the formula obtained from
F by adding L to f is satisfiable. We say F ∈ MU is maximal minimal unsatisfiable,
F ∈ MAX–MU , if every clause in F is maximal.

That MAX–MU is in DP is not hard to see. For the DP –hardness we establish a
reduction from the DP –complete problem MU . At first we introduce an auxiliary function
by associating to a formula F , a clause f , and a new variable z a formula ξ(F, f, z) preserving
the minimal unsatisfiability. Later on the formula ξ(F, f, z) will be used in order to associate
in polynomial time to each formula in MU a maximal formula.

Definition 1. For a clause f = L1 ∨ · · · ∨Lk, we use ρ(f) to denote the formula consisting
of the following clauses:

¬L1 ∨ L2 ∨ L3 ∨ · · · ∨ Lk,

¬L2 ∨ L3 ∨ · · · ∨ Lk,

¬L3 ∨ · · · ∨ Lk,

· · ·
¬Lk.

For a formula F = {f} + H let z be a new variable. Then we define

ξ(F, f, z) = z ∨cl H + {f} + ¬z ∨cl ρ(f),

where L ∨cl {g1, · · · , gm} denotes the formula {L ∨ g1, · · · , L ∨ gm}

The formula ρ(f) + {f} is a maximal minimal unsatisfiable formula. That means we
have ρ(f) + {f} ∈ MAX–MU .

Lemma 1. For a CNF formula F , a clause f ∈ F , and a new variable z, F ∈ MU if and
only if ξ(F, f, z) ∈ MU , and f is maximal in ξ(F, f, z).
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Proof. For short we write ξ(F ) instead of ξ(F, f, z).

(⇒) Suppose F ∈ MU . Then obviously ξ(F ) is unsatisfiable. Next we show for any
h ∈ ξ(F ) that ξ(F ) − {h} is satisfiable. We proceed by a case distinction.

Case 1. h = f : F − {f} is satisfiable for some truth assignment t: We extend t to t′ by
defining t′(z) = 0. Clearly, t′ is a truth assignment of ξ(F ) − {f}.

Case 2. h = z ∨ g for some g ∈ H: Let t be a satisfying truth assignment for F − {g}.
We extend t to t′ by defining t′(z) = 0. Then t′ is a truth assignment of ξ(F ) − {h}.

Case 3. h = ¬z ∨ g for some g ∈ ρ(f): Since {f}+ (ρ(f)−{g}) is satisfiable, we extend
some satisfying truth assignment for {f}+ (ρ(f)− {g}) to t′ by defining t′(z) = 1. Then t′

is a (partial) satisfying truth assignment for ξ(F ) − {h}.

Altogether, we have shown ξ(F ) ∈ MU .

It remains to show that f is maximal in ξ(F ). Let L be a literal occurring neither
positively nor negatively in f .

Case 1. L 6∈ {z,¬z}: {L∨f}+ρ(f) is satisfiable, since f+ρ(f) ∈ MAX–MU . Therefore,
(ξ(F ) − {f}) + {L ∨ f} is satisfiable (set z = 1).

Case 2. L = ¬z: (ξ(F ) − {f}) + {L ∨ f} is satisfiable, since H is satisfiable.

Case 3. L = z: Similar to the case L = ¬z.

Altogether we have shown f is maximal in ξ(F ).

(⇐) Suppose ξ(F ) ∈ MU and f is maximal in ξ(F ). Then F = H +{f} is unsatisfiable.
Suppose F 6∈ MU . H must be minimal unsatisfiable, since ξ(F ) ∈ MU . Then we obtain
(ξ(F )−{f}) |= z. Hence, (ξ(F )−{f})+{¬z∨f} is minimal unsatisfiable, in contradiction
to the maximality of f . Thus F is minimal unsatisfiable.

Lemma 2. Suppose F ∈ MU .

1) Any clause of ¬z ∨cl ρ(f) is maximal in ξ(F ).

2) g ∈ H is maximal in F if and only if z ∨ g is maximal in ξ(F ).

Proof. Ad 1: For a clause h = ¬z ∨ g with g ∈ ρ(f) let L be a literal with L,¬L 6∈ h.
{f}+(ρ(f)−{g})+{L∨ g} is satisfiable, since {f}+ρ(f) is in MAX–MU . Thus for z = 1
the formula (ξ(F )−{h})+{L∨h} is satisfiable. That means ¬z∨ρ(f) is maximal in ξ(F ).

Ad 2: (⇒) Suppose g is maximal in F , and L is a literal with L,¬L 6∈ (z ∨ g).
(F − {g}) + {L ∨ g} is satisfiable, because g is maximal in F . Then for z = 0 the formula
(ξ(F ) − {z ∨ g}) + {L ∨ z ∨ g} is satisfiable. Therefore, z ∨ g is maximal in ξ(F ).

(⇐) Suppose z ∨ g is maximal in ξ(F ), but g is not maximal in F . Then there is a
literal L, such that (F − {g}) + {L ∨ g}, denoted as F ′, is in MU . It is easy to see that
ξ(F ′) equals the formula (ξ(F )− {z ∨ g}) + {L ∨ z ∨ g}. By the previous lemma we obtain
ξ(F ′) ∈ MU in contradiction to the maximum of z ∨ g.

Theorem 1. MAX–MU is DP –complete.

Proof. As mentioned above the class MAX–MU lies in DP . We establish a polynomial-time
transformation δ(F ) for which we show F ∈ MU if and only if δ(F ) ∈ MAX–MU . Then
the DP –hardness of MAX–MU follows from the DP –completeness of MU [10].

Procedure MU-MAX
Input: A formula F in CNF
Output: A formula δ(F ) in CNF

4



The Complexity of Some Subclasses of Minimal Unsatisfiable Formulas

begin

C :=the set of clauses in F

while C is non-empty
for a clause f in C; for a new variable z

F := ξ(F, f, z)
C := z ∨cl (C − {f})

end while

δ(F ) := F

end

We define C0 = C, and for i ≥ 1, let Ci be the set of clauses we obtain after the i-th run
of the while–loop. Please note that |C0| = m and that |Ci+1| = |Ci| − 1, where m is the
number of clauses in F . There are at most m runs of the while–loop. It is easy to see that
the running time within the while–loop is bound by O((mn)2), where n is the number of
variables of F . Therefore, the procedure requires not more than O((mn)3) steps.

Now it remains it to prove F ∈ MU if and only if δ(F ) ∈ MAX–MU .

We define F0 = F , and for i ≥ 1, let Fi be the formula we obtain after the i-th run of
the while–loop of the procedure MU-MAX.

(⇒) Suppose F ∈ MU . Then by Lemma 1, every Fi is minimal unsatisfiable. By
Lemma 1 and 2, any clause in Fi − Ci is maximal in Fi. Suppose δ(F ) = Fk. Then Ck is
empty. That implies, δ(F ) is maximal minimal unsatisfiable.

(⇐) Suppose δ(F ) = Fk is maximal. Then by Lemma 1 and 2, Fk−1 ∈ MU and any
clause in Fk−1 − Ck−1 is maximal in Fk−1. By an iterative application of Lemma 1 and 2
finally we obtain F ∈ MU .

4. Marginal MU–Formulas

A MU –formula F is called marginal if, and only if removing an arbitrary occurrence of a
literal from F leads to an unsatisfiable formula which is not in MU . The class of marginal
formulas is denoted as MARG–MU .

Theorem 2. MARG–MU is DP –complete.

Proof. Obviously, the class MARG–MU is in DP . We will show the DP –hardness by a
reduction from the DP –complete problem MU [10]. We establish a procedure running in
polynomial time generating a formula σ(F ) from a formula F , such that F ∈ MU if and
only if σ(F ) ∈ MARG–MU . The procedure is based on an iterative application of the
following function ζ.

Let F = {L ∨ f, L ∨ g} + H be a formula with at least two occurrences of the literal L.
For new variables y and z we define

ζ(F, L ∨ f, L ∨ g, y, z) = {y ∨ f, z ∨ g,¬y ∨ z, y ∨ ¬z,¬y ∨ ¬z ∨ L} + H.

The formula describes the equivalence of y and z, the two occurrences of L are replaced by
one occurrence, and ζ(F, L ∨ f, L ∨ g, y, z) |= F . For short we write ζ(F ).

Claim 1. F ∈ MU if and only if ζ(F ) ∈ MU
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Proof. (⇒) Let F be a formula in MU . At first we show ζ(F ) is unsatisfiable. Suppose, by
contrary, that ζ(F ) is satisfiable for some satisfying truth assignment t. Then we have either
t(y) = 1 or t(z) = 1, since {f, g} + H is unsatisfiable. Because of the clauses (¬y ∨ z) and
(y ∨ ¬z), we have t(L) = 1. Thus, t is a satisfying truth assignment for F in contradiction
to F ∈ MU . Hence, ζ(F ) is unsatisfiable. Next we show for any clause h ∈ ζ(F ) the
satisfiability of ζ(F ) − {h} by a case distinction.

Case 1. h ∈ H: Let t be a satisfying truth assignment for F − {h}. If t(L) = 1 then we
extend t to t′ by defining t′(y) = t′(z) = 1. Clearly, t′ is a satisfying truth assignment for
ζ(F ) − {h}. If t(L) = 0 then we extend t to t′ by defining t′(y) = t′(z) = 0. Then t′ is a
satisfying truth assignment for ζ(F ) − {h}.

Case 2. h = (¬y ∨ z): Since F ∈ MU , the formula H + {L ∨ g} is satisfiable. Because
L ∨ f is in F , H + {g} is satisfiable. Let t be a satisfying truth assignment for H + {g}.
We extend t to t′ by adding t′(y) = 1 and t′(z) = 0. Obviously, t′ is a satisfying truth
assignment for ζ(F ) − {h}.

Case 3. h = (y ∨ ¬z) or h = (¬y ∨ ¬z ∨ L): Similar to case 2.

Case 4. h = (y ∨ f): H + {g} is satisfiable, because H + {L ∨ g} is satisfiable and the
clause L ∨ f is in F . Let t be a satisfying truth assignment for H + {g}. We extend t to t′

by adding t′(y) = t′(z) = 0. Obviously, t′ satisfies ζ(F ) − {h}.

Case 5. h = (z ∨ g): Similar to case 4.

Altogether, we have shown ζ(F ) ∈ MU .

(⇐) For ζ(F ) ∈ MU at first we show the unsatisfiability of F . Suppose F is satisfiable
for some satisfying truth assignment t. If t(L) = 1 resp. t(L) = 0 then we extend t to t′ by
defining t′(y) = t′(z) = 1 resp. t′(y) = t′(z) = 0. Then t′ is a satisfying truth assignment
for ζ(F ) in contradiction to ζ(F ) ∈ MU . Thus F is unsatisfiable. Next we show for any
clause h ∈ F the satisfiability of F − {h}.

Case 1. h ∈ H: If {f, g}+(H −{h}) is satisfiable then F −{h} is satisfiable. Therefore
we assume {f, g} + (H − {h}) is unsatisfiable. Since ζ(F ) ∈ MU , ζ(F ) − {h} is satisfiable
for some satisfying truth assignment t. Then we obtain t(y) = t(z) = 1, and therefore
t(L) = 1. Hence, t is a satisfying truth assignment for F − {h}.

Case 2. h = (L ∨ f): Let t be a satisfying truth assignment for ζ(F ) − {y ∨ f}. Since
ζ(F ) ∈ MU , we obtain t(y) = 0, t(z) = 0, and therefore t(L) = 0. Hence, {g} + H is
satisfiable. Thus F − {h} is satisfiable.

Case 3. h = (L ∨ g): Similar to case 2.

Altogether, we have shown F ∈ MU . This completes the proof of Claim 1.

For a formula F ∈ MU and a literal L we say F is marginal w.r.t. the literal L if
removing any occurrence of L from F results in an unsatisfiable formula which is not in
MU .

Claim 2. For F ∈ MU , ζ(F ) is marginal w.r.t. the new literals y,¬y, z,¬z.

Proof. For sake of symmetry it suffices to show the marginality of F w.r.t y and ¬y. At
first we prove ζ(F ) is marginal w.r.t. y. Clearly, removing y from the clause y∨¬z violates
the minimal unsatisfiability, because ¬z would be a subclause of ¬y ∨ ¬z ∨ L. Removing
y from y ∨ f also violates the minimal unsatisfiability. That can be seen by showing the
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unsatisfiability of the formula

G := {f, z ∨ g, y ∨ ¬z,¬y ∨ ¬z ∨ L} + H.

Suppose G is satisfiable for some satisfying truth assignment t. Since F is minimal un-
satisfiable, we obtain the unsatisfiability of {f, g} + H, and therefore t(z) = 1. Then we
obtain t(y) = 1, because of y ∨ ¬z ∈ G, and therefore t(L) = 1. That would be a satisfying
truth assignment for F in contradiction to F ∈ MU . Thus G is unsatisfiable. Therefore,
removing y from y ∨ f would result in a non–minimal unsatisfiable formula. That is to say,
ζ(F ) is marginal w.r.t. y.

Next we show F is marginal w.r.t. ¬y. It is easy to see that removing ¬y from the clause
¬y∨ z violates the minimal unsatisfiability. Now we prove that ¬y cannot be removed from
¬y∨¬z∨L preserving the minimal unsatisfiability. We only need to prove that the following
formula

K := {y ∨ f, z ∨ g,¬y ∨ z,¬z ∨ L} + H

is unsatisfiable. Suppose, by contrary, that t is a satisfying truth assignments for K. For
t(L) = 0 we obtain t(y) = t(z) = 0. That means {f, g} + H is satisfiable in contradiction
to F ∈ MU . For t(L) = 1 the formula H is unsatisfiable, because F{L ∨ f, L ∨ g} + H is
unsatisfiable. Thus K is unsatisfiable. Consequently, ζ(F ) is marginal w.r.t. ¬y, and we
finish the proof of Claim 2.

Claim 3. For F ∈ MU , if F is marginal w.r.t. a literal B different from L, then ζ(F ) is
marginal w.r.t the literal B.

Proof. Suppose, by contrary, that there is h ∈ ζ(F ) such that (ζ(F ) − {h}) + {hB} is also
in MU , where hB is obtained from h by removing B. We proceed by a case distinction:

Case 1. h ∈ H: Let F ′ = (F − {h}) + {hB}. It is easy to see that (ζ(F )− {h}) + {hB}
equals ζ(F ′). By Proposition 1, we know F ′ is in MU in contradiction to the marginality
of F w.r.t. B.

Case 2. h = y ∨ f : We define F ′ = {L ∨ fB, L ∨ g} + H, where fB is obtained from f

by removing B. It is easy to see that (ζ(F ) − {h}) + {hB} equals the formula ζ(F ′). By
Proposition 1, we obtain F ′ ∈ MU in contradiction to the marginality w.r.t. B.

Case 3. H = z ∨ g: Similar to case 2.

Now we introduce the above mentioned procedure.

Procedure MU–MARG
Input: A formula F in CNF
Output: A formula σ(F ) in CNF .
begin

L:=the set of literals occurring at least twice in F

while L is non-empty
for some L ∈ L
for two clauses L ∨ f, L ∨ g ∈ F ; for new variables y, z

F := ζ(F, L ∨ f, L ∨ g, y, z)
remove from L literals occurring in F exactly once

end while
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σ(F ) := F

end

The running time of the procedure MU–MARG is bound by a polynomial depending on
the length of F , because within the while–loop a double occurrence of a literal L is replaced
by one occurrence. Please note, that any literal of the input formula occurs exactly once in
σ(F ). Now it suffices to prove F ∈ MU ⇔ σ(F ) ∈ MARG–MU .

By an iterative application of Claim 1, we see that F ∈ MU if and only if σ(F ) ∈ MU .

Now it remains to show that for a formula F ∈ MU the formula σ(F ) is marginal, that
means marginal w.r.t any literal. Since a literal L ∈ lit(F ) occurs in σ(F ) exactly once,
σ(F ) is marginal w.r.t L. By means of Claim 2 and Claim 3, we see that σ(F ) is marginal
w.r.t. the introduced literals. Thus, σ(F ) is marginal w.r.t. any literal and therefore
marginal.

5. Unique–MU and Almost–Unique–MU

In this section we investigate MU –formulas F for which F − {f} is in Unique–SAT for all
clauses resp. for all but one clause f ∈ F . The classes are defined as
Unique–MU = {F ∈ MU | ∀f ∈ F : F − {f} has exactly one satisfying truth assignment}
Almost–Unique–MU = {F ∈ MU | there is at most one clause f ∈ F , such that F − {f}
has more than one satisfying truth assignment}

In the first part of this section we prove Unique–SAT ≈p Unique–MU , whereas in the
second part the DP –completeness of Almost–Unique–MU is shown.

Theorem 3. Unique–MU ≤p Unique–SAT

Proof. We introduce a pol–time computable function θ for which we show F ∈ Unique–MU
if and only if θ(F ) is in Unique–SAT . In order to simplify the construction we demand
that any literal occurs negatively and positively in the formula. If this is not the case
then obviously the formula F is not in MU and therefore not in Unique–MU . For F =
{f1, · · · , fm} we define

θ(F ) := ((F − {f1}) + {f1}) ∧
∧

1≤i≤m

(F − {fi})
i+1.

(F −{fi})
i+1 is the formula we obtain by renaming the variables of the formulas (F −{fi}),

such that the formulas (F − {fj})
j+1 (1 ≤ j ≤ m) and ((F − {f1}) + {f1}) have pairwise

different variables. f1 is the conjunction of the negated literals of f1.
If F is in Unique–MU then obviously θ(F ) belongs to Unique–SAT . For the other

direction the only non–trivial part is the unsatisfiability of F . Since θ(F ) belongs to
Unique–SAT , the formulas (F −{f1})

2 and ((F −{f1})+{f1}) have unique satisfying truth
assignments. That means (F−{f1}) and ((F−{f1})+{f1}) have the same unique satisfying
truth assignment. Hence, we have (F − {f1} |= {f1}). That means (F − {f1}) + {f1} = F

is unsatisfiable.

That w.r.t. polynomial reducibility Unique–SAT is not harder than Unique–MU will be
shown by establishing an appropriate reduction. At first we introduce the transformation
ω(F ), which will be used later on as a basis for our desired transformation. Let F =
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{f1, f2, · · · , fm} be a 3–CNF formula over variables {x1, x2, · · · , xn} with clauses fi = Li1∨
Li2 ∨ Li3. We introduce new variables {y1, y2, · · · , ym}. πi (1 ≤ i ≤ m) denotes the clause

y1 ∨ · · · ∨ yi−1 ∨ yi+1 ∨ · · · ∨ ym.

ω(F ) is the conjunction of the following groups of clauses:

(A) The clauses f1 ∨ π1, f2 ∨ π2, · · · , fm ∨ πm

(B) The clauses

¬L11 ∨ π1 ∨ ¬y1, ¬L21 ∨ π2 ∨ ¬y2, · · · , ¬Lm1 ∨ πm ∨ ¬ym

¬L12 ∨ π1 ∨ ¬y1, ¬L22 ∨ π2 ∨ ¬y2, · · · , ¬Lm2 ∨ πm ∨ ¬ym

¬L13 ∨ π1 ∨ ¬y1, ¬L23 ∨ π2 ∨ ¬y2, · · · , ¬Lm3 ∨ πm ∨ ¬ym

(C) The clauses ¬yi ∨ ¬yj (1 ≤ i < j ≤ m)
(D) The clause y1 ∨ y2 ∨ · · · ∨ ym

Next we show some Lemmas for the function ω(F ).

Lemma 3. ω(F ) is unsatisfiable.

Proof. Suppose, by contrary, ω(F ) is satisfiable for a satisfying truth assignment t. From
the clauses in (C) and (D), we know that there is exactly one yi such that t(yi) = 1.
W.o.l.g. we assume t(y1) = 1. Then t(y2) = · · · = t(ym) = 0 and from the clauses
¬L11 ∨ π1 ∨ ¬y1, ¬L12 ∨ π1 ∨ ¬y1, ¬L13 ∨ π1 ∨ ¬y1, we get t(L11) = t(L12) = t(L13) = 0.
But then we obtain t(f1 ∨ π1) = 0, a contradiction. Thus, F is unsatisfiable.

Lemma 4. ∀h ∈ ω(F ) : h 6= (y1 ∨ y2 ∨ · · · ∨ ym) ⇒ ω(F ) − {h} is satisfiable.

Proof. The satisfying truth assignments are given below: si is a satisfying (partial) truth
assignment for ω(F )−{fi ∨πi}, where si(yi) = 1, si(yj) = 0 (1 ≤ j ≤ m, j 6= i), si(Li1) =
si(Li2) = si(Li3) = 0.

tik is a satisfying (partial) truth assignment for ω(F )−{¬Lik∨πi∨¬yi}, where tik(yi) =
1, tik(yj) = 0 (1 ≤ j ≤ m, j 6= i), tik(Lik) = 1, tik(Li(k⊕1)) = tik(Li(k⊕2)) = 0. The
symbol ⊕ denotes the addition module 3.

vij is a satisfying (partial) truth assignment for ω(F ) − {¬yi ∨ ¬yj}, where vij(yi) =
vij(yj) = 1, vij(yk) = 0 (1 ≤ k ≤ m, k 6= i, k 6= j).

Lemma 5. F ∈ SAT if and only if ω(F ) ∈ MU .

Proof. Because of the Lemma 3 and 4 it suffices to show F is satisfiable if and only if
ω(F ) − {y1 ∨ y2 ∨ · · · ∨ ym} is satisfiable.
Suppose F is satisfiable with a truth assignment t. Now we extend t to t′ by defining t′(yi) =
0 for all 1 ≤ i ≤ m. Clearly, t′ is a satisfying truth assignment for ω(F )−{y1∨y2∨· · ·∨ym}.
Suppose ω(F ) is minimal unsatisfiable. Then ω(F )−{y1 ∨ y2 ∨ · · · ∨ ym} is satisfiable with
some truth assignments t. Since ω(F ) is unsatisfiable, we obtain t(y1) = t(y2) = · · · =
t(ym) = 0 and therefore t(f1) = t(f2) = · · · = t(fm) = 1. That implies the satisfiability of
F .

9
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After these preparations we introduce the function Ω for which F ∈ Unique–SAT if and
only Ω(F ) ∈ Unique–MU will be shown.

χi is the disjunction of all literals ¬x, where x ∈ var(F ) − var(fi), and χ denotes the
disjunction of all literals ¬x, where x ∈ var(F ). Ω(F ) is the formula consisting of the
following groups of clauses:

(A’) For each clause (fi ∨ πi) ∈ ω(F ):

fi ∨ πi ∨ χi, fi ∨ πi ∨ x for all x ∈ var(F ) − var(fi)

(B’) For each clause (¬Lik ∨ πi ∨ ¬yi) ∈ ω(F ):

¬Lik ∨ πi ∨ ¬yi ∨ χi, ¬Lik ∨ πi ∨ ¬yi ∨ x for all x ∈ var(F ) − var(fi)

(C’) For each clause (¬yi ∨ ¬yj) ∈ ω(F ):

¬yi ∨ ¬yj ∨ χ, ¬yi ∨ ¬yj ∨ x for all x ∈ var(F )

(D’) The clause y1 ∨ y2 ∨ · · · ∨ ym.

Next we show some Lemmas for the function Ω.

Lemma 6. Ω(F ) is unsatisfiable.

Proof. Suppose Ω(F ) is satisfiable with a satisfying truth assignment t. Since ω(F ) is
unsatisfiable, see Lemma 1, some clauses in ω(F ) are false for t. Since the clause y1 ∨ y2 ∨
· · · ∨ ym belongs to Ω(F ) and to ω(F ), this clause is true for t. If t(fi ∨ πi) = 0, then we
obtain the contradiction t(χi) = 1 and t(x) = 1 for all x ∈ var(F ) − var(fi). By the same
argument we obtain a contradiction for the clauses ¬Lij ∨ πi ∨ ¬yi and ¬yi ∨ ¬yj . Hence,
Ω(F ) is unsatisfiable.

The next lemma states that almost all (Ω(F )−{h}) are uniquely satisfiable independent
on the satisfiability of F .

Let s, t be two (partial) truth assignments, we say s is a proper segment of t if s(x)
is defined implies that t(x) is also defined and s(x) = t(x) for each variable x. Clearly,
whenever s is a satisfying (partial) truth assignment of a formula and s is a proper segment
of t then t is a satisfying truth assignment of the formula, too.

Lemma 7. ∀h ∈ Ω(F ) : h 6= (y1 ∨ · · · ∨ ym) ⇒ Ω(F ) − {h} ∈ Unique–SAT .

Proof. We claim that s′i is the unique satisfying truth assignment of Ω(F ) − {fi ∨ πi ∨ χi},
where

s′i(yi) = 1,
s′i(yj) = 0, 1 ≤ j ≤ m, j 6= i,

s′i(Li1) = s′i(Li2) = s′i(Li3) = 0,
s′i(x) = 1, for all x ∈ var(F ) − var(fi)

We first show that s′i is a satisfying truth assignment of Ω(F ) − {fi ∨ πi ∨ χi}. Clearly, s′i
makes all the clauses fi ∨ πi ∨ x true, x ∈ var(F )− var(fi). Please note that si (defined in

10
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the proof of Lemma 4) is a proper segment of s′i. Thus s′i is a satisfying truth assignment
of ω(F ) − {fi ∨ πi}. Since except for clauses fi ∨ πi ∨ x, x ∈ var(F ) − var(fi) every clause
in Ω(F )− {fi ∨ πi ∨ χi} is a super clause of some clause in ω(F )− {fi ∨ πi}, it follows that
s′i is a satisfying truth assignment of Ω(F ) − {fi ∨ πi ∨ χi}.

Next we shall show the uniqueness of s′i. W.o.l.g., we assume i = 1. Now let t be any
satisfying truth assignment of Ω(F )−{f1 ∨ π1 ∨χ1}. Since Ω(F ) is unsatisfiable, it follows
that

t(y2) = · · · = t(ym) = 0,
t(L11) = t(L12) = t(L13) = 0,
t(x) = 1, for all x ∈ var(F ) − var(f1).

Now from the clause y1∨y2∨· · ·∨ym we get t(y1) = 1. Hence we obtain t = s′1. Consequently,
s′1 is the unique satisfying truth assignment of Ω(F ) − {f1 ∨ π1 ∨ χ1}.

The proofs of the following statements below are analogical.

s′′i is the unique satisfying truth assignment of Ω(F ) − {fi ∨ πi ∨ z}, where

s′′i (yi) = 1,
s′′i (yj) = 0, 1 ≤ j ≤ m, j 6= i,

s′′i (Li1) = s′′i (Li2) = s′′i (Li3) = 0,
s′′i (z) = 0,
s′′i (x) = 1, for all x ∈ var(F ) − var(fi), x 6= z

t′i is the unique satisfying truth assignment of Ω(F ) − {¬Lik ∨ πi ∨ ¬yi ∨ χi}, where

t′ik(yi) = 1,
t′ik(yj) = 0, 1 ≤ j ≤ m, j 6= i,

t′ik(Lik) = 1,
t′ik(Li(k⊕1)) = t′ik(Li(k⊕2)) = 0,

t′ik(x) = 1, for all x ∈ var(F ) − var(fi).

where ⊕ is the addition module 3.

t′′i is the unique satisfying truth assignment of Ω(F ) − {¬Lik ∨ πi ∨ ¬yi ∨ z}, where

t′′ik(yi) = 1,
t′′ik(yj) = 0, 1 ≤ j ≤ m, j 6= i,

t′′ik(Lik) = 1,
t′′ik(Li(k⊕1)) = t′′ik(Li(k⊕2)) = 0,

t′′ik(z) = 0,
t′′ik(x) = 1, for all x ∈ var(F ) − var(fi), x 6= z.

where ⊕ is the addition module 3.

v′ij is the unique satisfying truth assignment of Ω(F ) − {¬yi ∨ ¬yj ∨ χ}, where

v′ij(yi) = v′ij(yj) = 1,

v′ij(yk) = 0, 1 ≤ k ≤ m, k 6= i, k 6= j,

v′ij(x) = 1, for all x ∈ var(F ).

11
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v′′ij is the unique satisfying truth assignment of Ω(F ) − {¬yi ∨ ¬yj ∨ z}, where

v′′ij(yi) = v′′ij(yj) = 1,

v′′ij(yk) = 0, 1 ≤ k ≤ m, k 6= i, k 6= j,

v′′ij(z) = 0,

v′′ij(x) = 1, for all x ∈ var(F ), x 6= z.

Lemma 8. F ∈ SAT ⇔ ω(F ) ∈ MU ⇔ Ω(F ) ∈ MU .

Proof. Because of Lemma 5 we have only to show the second equivalence.
(⇒) Suppose ω(F ) ∈ MU . Note that every clause in Ω(F ) − {y1 ∨ y2 ∨ · · · ∨ ym} is a
super clause of some clause in ω(F ) − {y1 ∨ y2 ∨ · · · ∨ ym} which is satisfiable. Thus,
Ω(F ) − {y1 ∨ y2 ∨ · · · ∨ ym} is satisfiable. This fact and Lemma 6–7 imply the minimal
unsatisfiability of Ω(F ).

(⇐) Suppose Ω(F ) ∈ MU . Please note that each clause in Ω(F ) is a super clause
of some clause in ω(F ). Thus, if ω(F ) is satisfiable then Ω(F ) is satisfiable, too. Hence
ω(F ) is unsatisfiable. It is not difficult to see that any satisfying truth assignment of
Ω(F )−{y1∨y2∨· · ·∨ym} is also a satisfying truth assignment of ω(F )−{y1∨y2∨· · ·∨ym}.
This fact and Lemma 3-4 imply the minimal unsatisfiability of ω(F ).

A simple consequence of Lemma 7 and 8 is the following Corollary.

Corollary 1. F ∈ SAT ⇔ Ω(F ) ∈ Almost–Unique–MU .

Lemma 9. F ∈ Unique–SAT ⇔ Ω(F ) ∈ Unique–MU .

Proof. (⇒) Suppose, F is uniquely satisfiable. Because of Lemma 8, Ω(F ) is minimal
unsatisfiable. Because of Lemma 7, it suffices to prove the unique satisfiability of Ω(F ) −
{y1∨y2∨· · ·∨ym}. Suppose t is a satisfying truth assignment. Since Ω(F ) is unsatisfiable, t

assigns the truth value 0 to every variable yi, 1 ≤ i ≤ m. Then it is not difficult to see that
t restricted to the variables in var(F ) is a satisfying truth assignments for F . Since F is
uniquely satisfiable, t is the only satisfying truth assignment for Ω(F )−{y1∨y2∨· · ·∨ym}.
(⇐) Suppose Ω(F ) ∈ Unique–MU , and t1, t2 are satisfying truth assignments for F . We
extend t1, t2 to t′1, t

′
2 by defining t′1(yi) = t′2(yi) = 0, 1 ≤ i ≤ m. Clearly, t′1 and t′2 are

satisfying truth assignments for Ω(F )−{y1∨y2∨· · ·∨ym}. Since Ω(F )−{y1∨y2∨· · ·∨ym} ∈
Unique–SAT , it follows that t1t2. Thus, F is in Unique–SAT .

We have shown Unique–SAT ≤p Unique–MU , because Ω(F ) can be computed in poly-
nomial time. That shows together with Theorem 3 the equivalence of both problems with
respect to polynomial reducibility.

Theorem 4. Unique–SAT ≈p Unique–MU .

In the remainder of this section we investigate minimal unsatisfiable formulas F for
which up to at most one clause f the formula F −{f} is in Unique–SAT . We will see that
in this case the decision problem is DP –complete. The proof of the DP –completeness of
the problem Almost–Unique–MU is based on a reduction from the DP –complete problem
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SAT –UNSAT of determining for a given pair (F, G) of propositional formulas whether F is
satisfiable and G is unsatisfiable (see [10]). For the reduction we make use of the previously
used function Ω(F ). Additionally we define Λ(F ) = Ω(F ) − {y1 ∨ y2 ∨ · · · ∨ ym}.

Lemma 10. Suppose, F contains at least six negative clauses with pairwise distinct vari-
ables.

(1) F ∈ UNSAT ⇒ Λ(F ) ∈ Unique–MU .
(2) Λ(F ) ∈ MU ⇒ F ∈ UNSAT .

Proof. Ad 1: Suppose F is unsatisfiable. At first we show λ(F ) := ω(F )−{y1 ∨ · · · ∨ ym} is
in MU . By Lemma 4, it is sufficient to show λ(F ) is unsatisfiable. Suppose, by contrary,
that λ(F ) is satisfiable. Then let t be a satisfying truth assignment of λ(F ). From the
clauses of group (C), see definition of ω(F ), we know that there is at most one i such that
t(yi) = 1.

Case 1. t(yi) = 1 for some i: W.o.l.g., we assume t(y1) = 1. Then we obtain t(y2) =
· · · = t(ym) = 0. Therefore, we get the contradiction

t(f1) = 1, t(L11) = t(L12) = t(L13) = 0.

Case 2. t(yi) = 0 for all i, 1 ≤ i ≤ m: Then we get t(f1) = t(f2) = · · · = t(fm) = 1, in
contradiction to the unsatisfiability of F .

Altogether, we have shown λ(F ) is minimal unsatisfiable.
¿From the proof of Lemma 7 we see that for all h ∈ Λ(F ) : (Λ(F ) − {h}) ∈ SAT .

Thus, to prove Λ(F ) ∈ MU it is sufficient to show the unsatisfiability of Λ(F ). Suppose
Λ(F ) is satisfiable with a satisfying truth assignment t. Since λ(F ) is unsatisfiable, some
clauses in λ(F ) are false for t. If t(fi ∨ πi) = 0, then we obtain the contradiction t(χi) = 1
and t(x) = 1 for all x ∈ var(F )− var(fi). By the same argument we obtain a contradiction
for the clauses ¬Lij ∨ πi ∨ ¬yi and ¬yi ∨ ¬yj . Hence, Λ(F ) is unsatisfiable. Moreover,
Λ(F ) ∈ MU .

Next we show Λ(F ) ∈ Unique–MU . Consider any clause h ∈ Λ(F ). We shall show
Λ(F ) − {h} ∈ Unique–SAT . The only two cases in which the proofs are different from
that in Lemma 7 are h = fi ∨ πi ∨ χi and h = fi ∨ πi ∨ z. We only show the case
h = fi ∨ πi ∨ χi. W.o.l.g., we assume i = 1. Let t be a satisfying truth assignment of
Λ(F ) − {h}. Clearly, t and s′1 are equal on every variable except for y1. Thus to prove
t = s′1 we only need to show t(y1) = 1. Now t assigns the truth value 0 to at most three
variables (at most four variables in case h = f1 ∨ π1 ∨ z) in var(F ). Please note that
there are in F six negative clauses whose variables are pairwise disjoint. By the pigeon
hole principle, there must be a negative clause, say fi, i 6= 1, such that t(fi) = 0. Suppose
t(y1) = 0. Then t makes the clause fi∨πi false. Thus, we obtain the contradiction t(χi) = 1
and t(x) = 1 for all x ∈ var(F ) − var(fi). Hence we get t(y1) = 1. Consequently, s′1 is the
unique satisfying truth assignment of Λ(F ) − {h}. For cases when h is one of the clauses
¬Lik ∨ πi ∨¬yi ∨ ξi,¬Lik ∨ πi ∨¬yi ∨ z,¬yi ∨¬yj ∨ ξ,¬yi ∨ yj ∨ z, it is easy to see that the
truth assignments t′i, t

′′
i , v

′
ij , v

′′
ij defined in the proof of Lemma 7 are respectively the unique

satisfying truth assignment of Λ(F ) − {h}.
Ad 2: Suppose Λ(F ) ∈ MU . Since every clause in Λ(F ) is a super clause of some clause

in λ(F ), it follows that λ(F ) is unsatisfiable. Note that if F is satisfiable then ω(F ) is
minimal unsatisfiable, and hence λ(F ) is satisfiable. Thus, F must be unsatisfiable.
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Theorem 5. The problem Almost–Unique–MU is DP –complete.

Proof. We define a reduction from SAT –UNSAT to Almost–Unique–MU . For a pair of
formulas F1, F2, w.o.l.g. we assume F2 contains at least six negative clauses whose variables
are distinct. Otherwise, we extend F2 for new variables x1, · · · , x18 to the formula

F2 + {¬x1 ∨ ¬x2 ∨ ¬x3, · · · ,¬x16 ∨ ¬x17 ∨ ¬x18}.

F2 and the generated formula are equivalent with respect to satisfiability. We can also
assume that Ω(F1) and Λ(F2) have different variables. Let h1 be a clause in Ω(F1) such
that Ω(F1)−{h1} ∈ Unique–SAT (from our construction we can easily find such a clause).
For a fixed clause h2 ∈ Λ(F2) we define

G := (Ω(F1) − {h1}) + {h1 ∨ h2} + (Λ(F2) − {h2}).

The theorem follows from the claim.

Claim. F1 ∈ SAT and F2 ∈ UNSAT if and only if G ∈ Almost–Unique–MU .

Proof of the claim.

(⇒) Suppose F1 is satisfiable while F2 is unsatisfiable. Then by Corollary 1 and Lemma
10, Ω(F1), Λ(F2) ∈ MU . We first show G is unsatisfiable. Suppose, by contrary, t is a
satisfying truth assignment of G. Then t(h1 ∨ h2) = 1. W.o.l.g., we assume that t(h1) = 1.
Then Ω(F1) is satisfiable, a contradiction. Since Ω(F1) and Λ(F2) have different variables,
it is easy to see that G − {h1 ∨ h2} is satisfiable. For any clause h ∈ Ω(F1) − {h1}, since
Ω(F1) − {h} ∈ SAT and Λ(F2) − {h2} ∈ SAT , it follows that G − {h} is satisfiable.
Similarly, we can show that G − {h} is also satisfiable for each h ∈ Λ(F2) − {h2}. Thus
G ∈ MU . The almost unique minimal unsatisfiability of G follows from the almost unique
minimal unsatisfiability of Ω(F1) and the unique minimal satisfiability of Λ(F2) and the
choice of h1.

(⇐) Suppose G ∈ MU . First we show Ω(F1) is unsatisfiable. Suppose Ω(F1) is satisfi-
able. Since G ∈ MU , we get that Λ(F2) − {h2} is satisfiable. Then G is satisfiable (note
that the two formulas have different variables). Thus Ω(F1) ∈ UNSAT . By the same argu-
ment, Λ(F2) ∈ UNSAT . Now the minimal unsatisfiability of Ω(F1) and Λ(F2) follows from
the minimal unsatisfiability of G. Then by Lemma 8 and Lemma 10 we have F1 ∈ SAT
and F2 ∈ UNSAT .

6. Dis–MU Formulas

A subset of Unique–MU –formulas are MU –formulas which have for each variable a so called
disjunctive splitting. We say a MU –formula F has a disjunctive splitting on a variable x,
if F can be partitioned into two subformulas G and H, where G resp. H contains no
occurrence of ¬x resp. x, and G|x=0, H|x=1 ∈ MU . We define

Dis–MU = {F ∈ MU | ∀x ∈ var(F ) ∃ G, H : F = G ∧ H, G ∩ H = empty, G resp. H

contains no literal ¬x resp. x, G|x=0, H|x=1 ∈ MU }.

We shall show that the problem whether a formula is in Dis–MU is at least as hard
as the unique satisfiability problem. Whether Dis–MU is equivalent to Unique–SAT w.r.t.
polynomial reducibility or DP –complete is still open. Clearly, it is sufficient to show that F
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is unique satisfiable if and only if Ω(F ) ∈ Dis–MU . The direction from right to left follows
from Lemma 9 and the fact that Dis–MU is a subclass of Unique–MU .

Suppose there is some F ∈ Dis–MU , but F 6∈ Unique–MU. That means there is some
f ∈ F such that F − {f} is not in Unique–SAT . Let x be a variable for which we have
neither F − {f} |= x nor F − {f} |= ¬x. Now we split F on x. Let G, H be two disjoint
subformulas such that G|x=0 ∈ MU and H|x=1 ∈ MU . Suppose w.l.o.g. f ∈ G. Then
f occurs not H and hence H ⊆ F − {f}. Since H|x=1 ∈ MU , we obtain H |= ¬x and
therefore F − {f} |= ¬x in contradiction to our assumption F − {f} 6|= ¬x.

Our next task is devoted to the proof of the direction from left to right, F ∈ Unique–SAT
implies Ω(F ) ∈ Dis–MU .

Let F = {f1, f2, · · · , fm} be a 3–CNF formula, x ∈ var(F ). We define ω(F, x) to be the
formula obtained from ω(F ) as follows:

(1) If x ∈ fi and Lik is x, then add x to clauses

¬Li(k⊕1) ∨ πi ∨ ¬yi, ¬Li(k⊕2) ∨ πi ∨ ¬yi

(2) If ¬x ∈ fi and ¬x is Lik, then add ¬x to clauses

¬Li(k⊕1) ∨ πi ∨ ¬yi, ¬Li(k⊕2) ∨ πi ∨ ¬yi

(3) Add x to the clause y1 ∨ y2 ∨ · · · ∨ ym

Lemma 11. Suppose F ∈ SAT but F |x=1 ∈ UNSAT . Then ω(F, x) ∈ MU .

Proof. By means of Lemma 5, we obtain ω(F ) ∈ MU . By the construction of ω(F, x), it
is sufficient to show the unsatisfiability of ω(F, x). Suppose ω(F, x) is satisfiable. Let t be
a satisfying truth assignment of ω(F, x). We shall derive a contradiction. From the clauses
in group (C), we know that there are only two cases.

Case 1. t(y1) = t(y2) = · · · = t(ym) = 0: Then t(x) = 1, and t(f1) = · · · = t(fm) = 1
contradicts the assumption that F |x=1 ∈ UNSAT .

Case 2. There is exactly one i such that t(yi) = 1: Then t(fi) = 1. On the other hand, it
is not hard to show t(Li1) = t(Li2) = t(Li3) = 0 (there are two subcases: one is the case in
which fi contains x or ¬x, the other is that fi contains neither x nor ¬x). A contradiction.

Therefore, ω(F, x) is unsatisfiable, and the proof completes.

Now we define Ω(F, x) to be the formula consisting of the following groups of clauses.

(A’1) For each clause fi ∨ πi such that neither x ∈ fi nor ¬x ∈ fi, the clauses

fi ∨ πi ∨ χi, fi ∨ πi ∨ x, fi ∨ πi ∨ ¬x ∨ z, for all z ∈ var(F ) − var(fi), z 6= x.

(A’2) For each fi ∨ πi such that x ∈ fi or ¬x ∈ fi, the clauses

fi ∨ πi ∨ χi, fi ∨ πi ∨ z, for all z ∈ var(F ) − var(fi).

(B’1) For each clause ¬L ∨ πi ∨ ¬yi, where L ∈ {x,¬x}, the clauses

¬L ∨ πi ∨ ¬yi ∨ χi, ¬L ∨ πi ∨ ¬yi ∨ z, for all z ∈ var(F ) − var(fi).
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(B’2) for each clauses ¬Lik ∨ L ∨ πi ∨ ¬yi, where L ∈ {x,¬x}, the clauses

¬Lik ∨ L ∨ πi ∨ ¬yi ∨ χi, ¬Lik ∨ L ∨ πi ∨ ¬yi ∨ z, for all z ∈ var(F ) − var(fi).

(B’3) For each clause ¬Lik ∨ πi ∨ ¬yi such that Lik 6∈ {x,¬x} (then fi contains neither x

nor ¬x), the clauses

¬Lik ∨ πi ∨ ¬yi ∨ χi, ¬Lik ∨ πi ∨ ¬yi ∨ x,

¬Lik ∨ πi ∨ ¬yi ∨ ¬x ∨ z, for all z ∈ var(F ) − var(fi), z 6= x.

(C’1) For each clause ¬yi ∨ ¬yj , the clauses

¬yi ∨ ¬yj ∨ χ, ¬yi ∨ ¬yj ∨ x, ¬yi ∨ ¬yj ∨ ¬x ∨ z, for all z ∈ var(F ) − {x}.

(D’1) The clause y1 ∨ y2 ∨ · · · ∨ ym ∨ x.

Lemma 12. ω(F, x) ∈ MU ⇒ Ω(F, x) ∈ MU .

Proof. For ω(F, x) ∈ MU , it is easy to see that F is satisfiable. Then we have Ω(F ) ∈ MU .
Please notice that Ω(F, x) can be obtained from Ω(F ) by appropriately adding x or ¬x to
clauses containing neither x nor ¬x. Thus the Lemma follows from the unsatisfiability of
Ω(F, x) which is clearly implied by the unsatisfiability of ω(F, x).

Theorem 6. Unique–SAT ≤p Dis–MU .

Proof. It is sufficient to show
F ∈ Unique–SAT if and only if Ω(F ) ∈ Dis–MU .
The direction from right to left follows from the fact Dis–MU ⊆ Unique–MU and

Lemma 9. Now we only need to show the inverse direction. Suppose F is unique satisfiable.
Then we obtain Ω(F ) ∈ Unique–MU . We shall show, Ω(F ) has a disjunctive splitting
on any variable. First we can show that ω(F ) has a disjunctive splitting on each yi. For
the sake of symmetry, it is sufficient to show the assertion for ym. Let G be the following
formula

{fm ∨ πm, ¬Lm1 ∨ πi ∨ ¬ym, ¬Lm2 ∨ πi ∨ ¬ym, ¬Lm3 ∨ πi ∨ ¬ym,

¬y1 ∨ ¬ym, ¬y2 ∨ ¬ym, · · · , ¬ym−1 ∨ ¬ym}.

Clearly, G is a subformula of ω(F ) and G|ym=1 ∈ MU . For H = F −G, the formula H|ym=0

is the formula ω(F −{fm}). F −{fm} is satisfiable, since F is satisfiable. By Lemma 5, we
have H|ym=0 ∈ MU . Thus, (H, G) forms a disjunctive splitting of ω(F ) on ym.

Now it is not hard to see that Ω(F ) has a disjunctive splitting on each yi. Next we
show Ω(F ) has a disjunctive splitting on each variable x ∈ var(F ). Consider any variable
x ∈ var(F ). Since F is uniquely satisfiable, either F |x=0 ∈ UNSAT or F |x=1 ∈ UNSAT .
W.o.l.g., we assume F |x=1 is unsatisfiable. Then by Lemma 11-12, Ω(F, x) ∈ MU . Please
notice that x is a complete variable in Ω(F, x). That means, any clause in Ω(F, x) contains
either x or ¬x.

Thus (G+, G−) is a disjunctive splitting of Ω(F, x) on x, where G+ resp. G− is the
formula consisting of all clauses containing x resp. ¬x. Please note again that Ω(F, x) can
be obtained from Ω(F ) by appropriately adding x or ¬x to clauses containing neither x nor
¬x. Thus, appropriately removing some occurrences of x and ¬x from G+ and G− leads to
a disjunctive splitting of Ω(F ) on x.
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7. Conclusion

We have shown the hierarchy Unique–SAT ≈p Unique–MU ≤p Dis–MU and MU ≈p

MARG–MU ≈p MAX–MU ≈p Almost–Unique–MU . Although we did not find a reduction
from Dis–MU to Unique–SAT or to Unique–MU , we still believe that Dis–MU is as hard
as Unique–SAT , because of the close relationship between Dis–MU and Unique–MU .
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