
Journal on Satisfiability, Boolean Modeling and Computation 2 (2006) 145-164

Report of the Third QBF Solvers Evaluation∗

Massimo Narizzano mox@dist.unige.it

Luca Pulina luca@star.dist.unige.it

Armando Tacchella tac@dist.unige.it

Laboratory of Systems and Technologies for Automated Rasoning (STAR-Lab)

DIST, University of Genoa, Viale Causa, 13 – 16145 Genoa, Italy

Abstract

This paper reports about the 2005 comparative evaluation of solvers for quantified
Boolean formulas (QBFs), the third in a series of non-competitive events established with
the aim of assessing the advancements in the field of QBF reasoning and related research.
We evaluated thirteen solvers on a test set of more than three thousands QBFs, selected
from instances submitted to the evaluation and from those available at www.qbflib.org.
In the paper we present the evaluation infrastructure, from the criteria used to assemble
the test set to the hardware set up, and we show different views about the results obtained,
highlighting the strength of different solvers and the relative hardness of the instances
included in the test set.

Keywords: quantified Boolean formulas, empirical evaluation, automated reasoning tools

Submitted October 2005; revised February 2006; published March 2006

1. Introduction

The 2005 comparative evaluation of solvers for quantified Boolean formulas (QBFs) is the
third in a series of non-competitive events established with the aim of assessing the advance-
ments in the field of QBF reasoning and related research. The non-competitive nature of
the evaluation is meant to encourage the developers of QBF reasoning tools and the users
of QBF technology to submit their work. Indeed, our evaluation does not award one par-
ticular solver, but instead draws a picture of the current state of the art in QBF solvers
and applications of QBF reasoning. Running the evaluation enables us to collect data re-
garding the strength of different solvers and methods, the relative hardness of the QBF
instances available, and to shed some light on the open issues for the researchers in the
QBF community.

With respect to last year evaluation [1] we witnessed a slight decrease in the number
of submitted solvers (from sixteen to thirteen) but we observed a growth in the variety
of techniques that are used by the solvers. In particular, while most of the participants
in the previous evaluations were complete solvers extending the well-known Davis, Put-

∗ The authors would like to thank the anonymous reviewers for their help in improving the quality of
this manuscript, and all the participants to the QBF evaluation for submitting QBF instances and
solvers. The work of the authors is partially supported by grants from MIUR and by a grant from Intel
Corporation.

c©2006 Delft University of Technology and the authors.

www.qbflib.org

M. Narizzano et al.

nam, Logemann, Loveland procedure (DPLL) [2, 3] for propositional satisfiability (SAT),
in this evaluation only seven solvers are DPLL-based. As for the others, one is incomplete
(WalkQSAT [4]), one is based on Q-resolution and expansion of quantifiers (quantor [5]),
two of them use a core engine based on BDDs: zero-suppressed BDDs in QMRes [6] and
standard ROBDDs in qbfbdd [7]. Finally, the solver sKizzo features a combination of the
above techniques (including search) and skolemization [8]. The variety of the technologies
deployed confirms the vitality of the research on QBF reasoning tools. Regarding applica-
tions, two families of QBF instances obtained by encoding, respectively, formal verification
and planning problems, have been submitted, for a total of 46 instances. To these we must
add three generators, two of them for problems having a circuit-like structure, and one
random generator. Finally, a suite of randomly generated Horn/RenHorn QBFs has been
submitted.

The evaluation consists of two steps: (i) running the solvers on a selection of QBF
instances, and (ii) analysing the results. Step (i) is subject to the stringent requirements
of getting meaningful results and completing the evaluation in a reasonable time. In order
to fulfill these two requirements, we assembled a test set that minimises the number of
instances to be run, while maintaining a reasonable coverage of the initial pool. As we
show in Section 3, our resources allowed us to get a complete coverage for some classes
of instances, while for others we had to include in the test set only some instances in the
space of possible ones. Step (i) is completed by running the solvers on a farm of PCs, each
solver being restricted to the same amount of time and memory. Step (ii) consisted of two
phases. In the first phase we considered all the solvers and the instances of the test set to
give a rough, but complete, picture of the state of the art in QBF. By analysing the results
for discrepancies among the solvers results, i.e., solvers reporting different (un)satisfiability
results on the same instance, we were able to isolate solvers that are somehow problematic,
and we removed them from the subsequent analysis. The second phase is an in-depth
account of the results, where we tried to extract a narrow, but crisp, picture of the current
state of the art.

The paper is structured as follows. In Section 2 we briefly describe all the QBF solvers
that participated in the evaluation and all the instances that we used to construct the test
set. In Section 3 we present the first step of the evaluation, i.e., the choice of the test set
and a description of the computing infrastructure where the evaluation ran. In Section 4
we present the results of the evaluation first phase (Section 4.1), including data about
discrepancies in the results of the solvers (Section 4.2). In Section 5 we restrict our attention
to the solvers that passed the first phase and we present the results of the evaluation,
arranged solver-wise in Section 5.1, and instance-wise in Section 5.2. We conclude the
paper in Section 6 with a balance about the evaluation, including a discussion of some open
problems and challenges for the QBF community at large.

2. Solvers and Instances

Thirteen solvers from ten different authors participated to the evaluation this year. The
requirements for the solvers were to be able to read the input instance in a common format
(the Q-DIMACS format [9]), and to provide the answer (satisfiable/unsatisfiable) in a given
output format. Noticeably, all the solvers complied on the input requirements, which was not

146

Report of the Third QBF Solvers Evaluation

the case in previous evaluations [1, 10], while a few solvers required wrapper scripts to adapt
the output format (ssolve and semprop) or to load additional applications required to run
the solver (openQBF, requiring the JVM). A short description of the solvers submitted to
the evaluation follows.

GRL by Andrew G.D. Rowley, is a search-based solver with an innovative learning mechanism
described in [11].

openQBF by Gilles Audemard, Daniel Le Berre and Olivier Roussel, is a search-based solver, fea-
turing basic unit propagation and pure literal lookahead, plus a conflict backjumping lookback
engine; the heuristic is derived from Böhm and Speckenmeyer’s heuristic for SAT.

qbfbdd by Gilles Audemard and Lakhdar Säıs, uses a combination of search and symbolic (BDD-
based) techniques (see [7] for more details).

qbflHR by Florian Letombe, is a search-based solver, with a number of features such as trivial-
truth, trivial-falsity, Horn and renamable Horn formulas detection.

QchaffLearn by Andrew G.D. Rowley, is a search-based complete QBF solver that uses zchaff

as a sub-procedure to determine the (un)satsfiability of the QBF as search proceeds. zchaff

is allowed to learn across runs and the QBF solver also implements conflict and solution
learning. QChaffLearn uses watched literals and watched clauses [12].

QMRes by Guoqiang Pan and Moshe Y. Vardi, is based on a symbolic implementation of the
original DP algorithm, achieved using ZBDDs. The algorithm features multi-resolution, a
simple form of unit propagation, and heuristics to choose the variables to eliminate.

quantor by Armin Biere, is based on Q-resolution (to eliminate existential variables) and Shannon
expansion (to eliminate universal variables), plus a number of features, such as equivalence
reasoning, subsumption checking, pure literal detection, unit propagation, and also a scheduler
for the elimination step.

ssolve by Rainer Feldmann and Stefan Schamberger, is a search-based algorithm, featuring trivial
truth and a modified version of Rintanen’s method of inverting quantifiers. The data structures
used are extensions of the data structures of Max Böhm’s SAT-solver.

semprop by Reinhold Letz, is a search-based solver written in Bigloo (a dialect of Scheme), featur-
ing dependency directed backtracking and lemma/model caching for false/true subproblems.

WalkQSAT by Ian Gent, Holger Hoos, Andrew G. D. Rowley, and Kevin Smyth, is the first
incomplete QBF solver based on stochastic search methods. It is a search-based solver using
WalkSAT as a SAT oracle and guidance heuristic.

sKizzo by Marco Benedetti, is a reasoning engine for QBF featuring several techniques, including
search, resolution and skolemization (see, e.g., [8]).

yQuaffle by Yinlei Yu and Sharad Malik, is a search-based solver, featuring multiple conflict
driven learning, solution based backtracking, and inversion of quantifiers.

The evaluation received 553 instances divided in 11 different families and three random
generators, grouped in six different suites (after the name of their authors/submitters) as
follows.

Ansotegui (5 families, 38 instances) QBF encodings of evader-pursuer problems on fixed size
checkerboards.

Biere A generator for the following problem: given an 〈n〉-bit-counter with optional reset (r) and
enable (e) signals, check whether it is possible to reach the state where all 〈n〉 bits are set to
1 starting from the initial state where all bits are set to 0.

147

M. Narizzano et al.

Pan A generator of barrel-shifter instances, with n control bits (i.e., 2n input and output bits) with
the assertion that for all combinations of input and control bits, there is a combination for
the output bits.

Ling (4 families, 8 instances) QBF encodings for FPGA logic synthesis described in [13].

Letombe (2 families, 507 instances) Randomly generated Horn and renamable Horn QBFs (the
generator was not part of the submission).

ESTWZ (i.e., Egly, Seidl, Tompits, Woltran and Zolda) A generator of QBF encodings for the
evaluation of nested counterfactuals (see [14] for more details).

In order to obtain the evaluation test set, we have also considered about five thousand
instances (67 families) from www.qbflib.org:

Ayari (5 families, 72 instances) A family of problems related to the formal equivalence checking of
partial implementations of circuits (see [15]).

Castellini (3 families, 169 instances) Various QBF-based encodings of the bomb-in-the-toilet plan-
ning problem (see [16]).

Gent-Rowley (8 families, 612 instances) Various encodings of the famous “Connect4” game into
QBF [17].

Katz (2 families, 20 instances) QBF encodings of Model Checking problems for safety properties.

Lahiri-Seshia (1 family, 3 instances) QBF encodings of convergence testing instances generated in
term-level model checking.

Letz (1 family, 14 instances) Formulas proposed in [18] generated according to the pattern
∀x1x3 . . . xn−1∃x2x4 . . . xn(c1 ∧ cn) where c1 = x1 ∧ x2, c2 = ¬x1 ∧ ¬x2, c3 = x3 ∧ x4,
c4 = ¬x3∧¬x4 , and so on. The instances consists of simple variable-independent subproblems
but they should be hard for standard (i.e., without non-chronological backtracking) QBF
solvers.

Mneimneh-Sakallah (12 families, 202 instances) QBF encodings of vertex eccentricity calculation
in hardware circuits [19].

Narizzano (4 families, 4000 instances) QBF-based encoding of the robot navigation problems pre-
sented in [16].

Pan (18 families, 378 instances) Encodings of modal K formulas satisfiability into QBF (see [20]).
The original instances have been proposed during the TANCS’98 comparison of theorem
provers for modal logics [21].

Rintanen (5 families, 47 instances) Planning, hand-made and random problems, some of which
have been presented in [22].

Scholl-Becker (8 families, 64 instances) encode equivalence checking for partial implementations
problems (see [23]).

3. Evaluation: test set and infrastructure

As we outlined in Section 1, deciding the test set for the evaluation is complicated by two
competing requirements: (i) obtaining meaningful data and (ii) completing the evaluation
in reasonable time. As a first step towards this goal, we classified the instances into classes
according to their structure: fixed and probabilistic. We say that a class of instances has
probabilistic structure when at least one of the parameters characterizing the instances

148

www.qbflib.org

Report of the Third QBF Solvers Evaluation

of the class is a random variable following a given probability distribution. On the other
hand, if none of the parameters characterizing the instances of a class is a random variable,
then the class of instances has fixed structure. Intuitively, in the case of probabilistic
structure classes, the parameters that define the members of the class do not pin down
specific instances, but instead sets of instances from which a (small) subset of candidates
is chosen from a (possibly large) population. Fixed structure classes, on the other hand,
exhibit only one representative for each choice of the characteristic parameters: in the
limit, fixed structure classes are collection of instances, each one being a unique specimen
obtained, e.g., from different encodings of the same real-world application. Fixed structure
classes include, for instance, the families generated by iterating some kind of fixed pattern
as in Pan/TANCS’98 suite, or those derived from planning domains as Castellini “Bomb in
the toilet” and Ansotegui “Evader-pursuer” suites. Probabilistic structure classes include,
for instance, the families generated according to Model A [24], or those derived from the
Narizzano “Robot on the grid” suite (where a fixed number of obstacles is placed uniformly
at random on the grid).1. Notice that the classification according to structure is essential to
avoid compensation effects in the analysis of the results, i.e., some solver could be extremely
poor on fixed structure classes, but appear as a good solver overall because of an extremely
good performance on probabilistic structure classes. Moreover, since probabilistic structure
classes contain (possibly many) samples of each instance, their cardinality is usually large
when compared to fixed structure ones, and this could severely bias any analysis that did
not differentiate between the two classes.

Table 1 shows the classification of the evaluation test set according to structure, as well
as the number of instances in each of the classes and suites included in the set (parenthesised
numbers). From Table 1 we see that the evaluation test set is comprised of 551 and 2640
instances coming from fixed and probabilistic structure classes, respectively, for a total of
3191 instances. The test set is divided into three groups. With reference to Table 1, from
top to bottom:

• the first group (“Generated”, 3 fixed and 2 probabilistic structure suites) contains
instances that we generated using software submitted for the evaluation or available
on QBFLIB;

• the second group (“Sampled”, 5 fixed and 2 probabilistic structure suites) contains
instances for which we extracted only some representatives from the original collec-
tions: the purpose was to reduce the number of instances while maintaining significant
coverage of the original classes;

• the third group (“Covered”, 6 fixed structure suites) contains families that could not
be easily shrinked without incurring the risk of losing relevant contents: given the
relatively small size of these suites, the number of submitted solvers and the available
computing resources, this choice was perfectly sustainable.

In particular, the criteria used for assembling the first and second group of instances are
detailed in the following.

1. In the previous QBF evaluations [1, 10] an analogous classification used the terminology “random” and
“non-random” to identify probabilistic and fixed structure classes respectively.

149

M. Narizzano et al.

Table 1. Overview of the QBF evaluation test set.

Selection Fixed (551) Probabilistic (2640)

Generated

Biere (24)
Gent-Rowley (60)
Pan/Shifter (6)

ESTWZ (1080)
Tacchella/Model A (1200)

Sampled
Castellini (38)
Mneimneh-Sakallah (52)
Pan/TANCS’98 (108)

Letombe (240)
Narizzano (120)

Covered

Ansotegui (38)
Ayari (71)
Katz (20)
Lahiri-Seshia (3)
Letz (14)
Ling (8)
Rintanen (45)
Scholl-Becker (64)

Biere We generate counters with increasing width, from 2 to 64 bits, with exponential increment
(2,4,16,. . .). For each width, we consider the four versions obtained allowing or suppressing
the reset and enable signals.

ESTWZ In the original theory (evaluation of nested counterfactuals over a knowledge base) we
consider instances having 4,8 and 16 variables, with 2,4, and 8 clauses-to-variables ratio, and
a nesting depth of 2,4, and 8; all the clauses have size 3 and the sample size is 10. The
corresponding QBF instance is obtained as a non-prenex QBF, so we also take into account
also four different prenexing strategies (described in [14]).

Gent-Rowley The basic Connect4 game is played with 4 stones on a 7x6 board. The parametric
version is generated by scaling the board up and down; scaling up yields, 8x7 and 9x8 boards,
scaling down yields 6x5 and 5x4 boards. For each board size, we generate other configurations
by varying (i) the number of stones (from 3 up to the height of the board) and (ii) the outcome
of the game (either “R”ed wins, “W”hite wins or “D”raw).

Pan/Shifter We generate shifters of increasing widths, from 3 to 8 bits, in step 1 increments; it is
important to notice that the file size corresponding to the largest instance is 4MB.

Tacchella/Model A The number of alternations k in the quantifiers goes from 0 (i.e., a SAT
formula) to 5 using step 1 increments; the number of variables v is fixed to 20, 40, 80, 160
(the total number of variables is thus v(k + 1)); for each alternation depth and number of
variables, the clause-to-variables ratio varies from 2 to 32 in exponential steps. There are at
least 2 existential literals per clause, and clauses have length 5. We consider 10 samples per
data point.

Castellini We discard the “G” suite (deterministic) and keep the “A” (nondeterministic, flushing
action allowed for the toilets) and the “C” suite (as “A” plus the possibility of clogging). For
each of the two suites we run the same combinations of tests used in [16].

150

Report of the Third QBF Solvers Evaluation

Letombe We run a selection of the submitted instances obtained by imposing a coarser sampling
of the parameter space.

Mneimneh-Sakallah For each circuit, we run a variable number of instances using exponential
increments until the diameter is reached. We include the formula corresponding to the diame-
ter length k (unsatisfiable) and the formula corresponding to k− 1 (satisfiable). All the other
formulas corresponding to j < k are satisfiable.

Narizzano For each value of D (number of obstacles known in advance) we consider plan lengths
2,4 and 8. The sample size is 10.

Pan/TANCS’98 The original Modal K instances are comprised of 9 subseries, each one includ-
ing 21 satisfiable instances (“n” problems) and 21 unsatisfiable instances (“p” problems)
parametrised according to their “size” k. We run 12 QBF instances for each of the 9 sub-
series, corresponding to 6 “p” and 6 “n” problems, respectively. We consider instances with
k ∈ {4, 8, 12, 16, 20, 21} .

Notwithstanding the relatively small sample size, notice that the total number of instances
in the ESTWZ and Tacchella/Model A suites accounts for more than half of the total
number of instances in the test set.

As for the computing infrastructure, the evaluation ran on a farm of 10 identical rack-
mount PCs, equipped with 3.2GHz PIV processors, 1GB of RAM and running Debian/GNU
Linux (distribution sarge). We split the evaluation job evenly across the 10 machines, us-
ing perl scripts to run subsets of instances on all the 13 solvers on each machine. This
methodology has two points in its favour. First, the scripts are extremely lean and simple:
one server script, plus as many client scripts as there are machines running, accounting for
less than 100 lines of perl code. This makes the whole evaluation infrastructure lightweight
and easy to debug. Second, by running clusters of instances on the same machine, we are
guaranteed that small differences that could exist even in identical hardware, are compen-
sated by the fact that a given instance is evaluated by all the participants on the very same
machine. While noise in the order of one second does not matter much when comparing
instances to decide their hardness, it can make a big difference when the total runtime on
the instance is in in the order of one second or less and we are comparing solvers. Finally,
all the solvers were limited to 600 seconds of CPU time and 900MB of memory: in the fol-
lowing, when we say that an instance has been solved, we mean that this happened without
exceeding the resource bounds above.

4. Evaluation: first phase results

4.1 Preliminary analysis

In Table 2 and Table 3, we present the raw results of the evaluation concerning, respectively,
fixed (551 instances) and probabilistic structure (2640 instances) classes of instances. Each
table consists of nine columns that for each solver reports its name (column “Solver”), the
total number of instances solved and the cumulative time to solve them (columns “#” and
“Time”, group “Total”), the number of instances found satisfiable and the time to solve
them (columns “#” and “Time”, group “Sat”), the number of instances found unsatisfiable
and the time to solve them (columns “#” and “Time”, group “Unsat”), and, finally, the
number of instances uniquely solved and the time to solve them (columns “#” and “Time”,

151

M. Narizzano et al.

Table 2. Results of the evaluation first phase (fixed structure classes).

Solver Total Sat Unsat Unique
Time # Time # Time # Time

sKizzo-v0.5∗ 346 5349.53 175 3764.85 171 1584.68 – –

quantor 318 2048.39 151 1099.58 167 948.81 4 755.48

sKizzo-v0.4∗ 310 4424.50 150 2935.19 160 1489.31 – –

semprop 289 8333.98 132 2641.80 157 5692.18 1 46.20

QchaffLearn∗ 268 4741.67 89 2436.57 179 2305.10 26 254.50

yQuaffle 250 7041.47 100 3095.33 150 3946.14 – –

ssolve 243 6827.56 103 2785.80 140 4041.76 – –

GRL∗ 241 7889.24 97 4203.54 144 3685.7 5 2289.66

QMRes 227 5044.58 122 2878.88 105 2165.70 15 1151.64

qbflHR∗ 208 7781.81 90 3639.60 118 4142.21 1 0.30

openQBF 201 13744.20 78 3076.64 123 10667.50 – –

WalkQSAT 189 3922.26 96 2988.10 93 934.16 – –

qbfbdd 106 4868.56 53 3488.26 53 1380.30 – –

group “Unique”); a “–” (dash) in the last two columns means that the solver did not solve
any instance uniquely. Both tables are sorted in descending order, according to the number
of instances solved, and, in case of a tie, in ascending order according to the cumulative
time taken to solve them. A “∗” after the solver’s name denotes the solvers that have been
removed from the second phase analysis.

Looking at the results on fixed structure classes in Table 2, we can see that all the
solvers, with the only exception of qbfbdd, were able to solve at least 25% of the instances
in this category. On the other hand, only four solvers, namely sKizzo (both versions),
semprop and quantor, were able to solve more than 50% of the instances. Overall, this
indicates that given the current state of the art in QBF reasoning, the performance demand
of the fixed structure domains is still exceeding the capabilities of most solvers. The per-
formance of the solvers is also pretty similar: excluding qbfbdd, there are 157 instances
(about 28% of the total) separating the strongest solver (sKizzo-v0.5), from the weakest
solver (WalkQSAT), and the number of instances solved by the strongest five participants
are in the range [346-268], thus spanning only 67 instances (about 14% of the total). Some
difference arises when considering the number of instances uniquely solved by a given solver:
QchaffLearn, QMRes, GRL, quantor, qbflHR, and semprop are the only solvers
able to solve, respectively, 26, 15, 5, 4, 1 and 1 instance(s). There are two important obser-
vations regarding this result. First, and most important, the outstanding performance of
QchaffLearn is obfuscated by a quite heavy discrepancy record: together with qbflHR,
QchaffLearn is the solver that has the highest number of results disagreeing with respect
to the majority of the other competitors. Indeed, QchaffLearn has been excluded from
the second phase for this reason (see Subsection 4.2 for more details). The second obser-
vation is that, excluding QchaffLearn, QMRes stands out as the best solver in terms

152

Report of the Third QBF Solvers Evaluation

Table 3. Results of the evaluation first phase (probabilistic structure classes).

Solver Total Sat Unsat Unique
Time # Time # Time # Time

ssolve 1824 26694.60 1060 14577.80 764 12116.80 39 2928.53

semprop 1655 76482.80 927 44603.20 728 31879.60 36 12977.80

WalkQSAT 1475 19709.40 785 10458.10 690 9251.32 35 2433.56

sKizzo-v0.5∗ 1422 68907.30 702 11083.80 720 57823.40 6 3791.52

QchaffLearn∗ 1413 32784.30 768 15236.20 645 17548.10 7 2047.92

qbflHR∗ 1388 26003.30 893 9702.13 495 16301.20 12 11.91

GRL∗ 1368 27528.20 777 14618.90 591 12909.30 1 366.91

sKizzo-v0.4∗ 1358 52155.80 656 7365.07 702 44790.70 3 1027.44

yQuaffle 1305 41105.10 747 21233.80 558 19871.30 20 1088.96

openQBF 1272 39971.90 745 23742.90 527 16229 2 1180.99

quantor 821 4588.30 624 3098.37 197 1489.93 – –

qbfbdd 461 14758.10 333 8737.40 128 6020.67 1 821.62

QMRes 451 24164.10 415 14098.90 36 10065.20 – –

of instances uniquely solved. This result confirms that the technology on which QMRes is
based provides an interesting alternative to the “classic” search-based paradigm.2.

Looking at the results on random instances in Table 3, we can see that all the solvers,
with the exception of QMRes and qbfbdd, were able to solve at least 25% of the instances
in this category; eight solvers were able to solve more than 50% of the instances, but no
solver reached the 75% threshold. Overall, this indicates that the choice of parameters for
the generation of probablistic classes yielded a performance demand within the capabilities
of most solvers, but with a kernel of hard instances that are challenging for the current
state of the art. The performance of the solvers is however rather different: even excluding
QMRes and qbfbdd, there are 1003 instances (about 38% of the total) separating the
strongest solver (ssolve), from the weakest one (quantor), and the number of instances
solved by the strongest five participants are spread over 411 instances (about 16% of the
total). Considering the number of instances uniquely solved by a given solver, it turns
out that ssolve is both the strongest solver and the one solving the highest number of
instances in this class, but also the performance of semprop, WalkQSAT, yQuaffle and
qbflHR stands out. In the case of WalkQSAT, this is probably due to the randomised
algorithms on which the solver is based, since they allow WalkQSAT to solve quickly
some instances that are out of the reach of complete solvers (e.g., some of the Nested
Counterfactuals instances). As for qbflHR, the good performances on some classes of
instances (chiefly QHorn and Model A instances) is paramount to obtaining the good overall
result. Finally, semprop and yQuaffle do not excel on any single family, but they yield
good performances on a wide variety of instances across different probabilistic structure
classes.

153

M. Narizzano et al.

Table 4. Discrepancies occurred in the results (by solver).

Solver Majority Minority

GRL 51 13

openQBF 54 0

qbfbdd 13 0

qbflHR 43 26

QchaffLearn 39 46

QMRes 27 0

quantor 53 0

semprop 75 0

sKizzo-v0.4 48 11

sKizzo-v0.5 50 11

ssolve 80 0

WalkQSAT 73 0

yQuaffle 58 0

4.2 Discrepancies among solver results

As we have anticipated in Section 1, some discrepancies, i.e., at least two solvers reporting
different (un)satisfiability results on the same instance, were detected during the analysis
of the first phase results. A total of 95 discrepancies were detected, of which 60 regarding
probabilistic structure classes and the remaining 35 regarding fixed structure classes. Table 4
reports the data about discrepancies and it is divided into three columns reporting the
name of the solver (“Solver”), the number of times its result agrees with the majority of
the solvers (“Majority”) and the number of times its result disagrees with the majority
of the solvers (“Minority”). Considering the results presented so far, we have decided to
include in the second phase of the evaluation only those solvers that have a “clean record”,
i.e., that are never found disagreeing with the majority of solvers on some instance. From
Table 4 we can see that the solvers having this property are eight: openQBF, qbfbdd,
QMRes, quantor, semprop, ssolve, WalkQSAT, and yQuaffle. On the other hand,
GRL, QchaffLearn, qbflHR, and sKizzo (both versions) are excluded on the basis of
the previous argument. The data obtained by disregarding the above solvers are free of
discrepancies. Clearly, for instances that were solved by just one solver, and for which we
do not know the satisfiability status in advance, the possibility that the solver is wrong still
exists, but we consider this as unavoidable given the current state of the art. Notice that the
same problem exists in the SAT competition when a solver is the only one to report about
an instance and the answer is “unsatisfiable”.3. Finally, we wish to point out that our data,
and the policy that we adopted, reflects the state of affairs at the time of the evaluation.
Indeed, most of the solvers that we excluded from the second phase have undergone further

2. Indeed, many of the instances uniquely solved by QMRes are in the Pan/TANCS’98 suite, so the
performances of QMRes may result from specific optimizations for this kind of problems.

3. This year, the SAT competition hosted a special category reserved to solvers that can emit an unsat-
isfiability proof, but only two participants (out of more than 50 solvers submitted to the competition)
had this capability, confirming the technological difficulty of emitting certificates whenever a full proof
of the result is necessary.

154

Report of the Third QBF Solvers Evaluation

Table 5. Results of the evaluation second phase (fixed structure classes).

Category Solver Solved Sat Unsat Unique
Time # Time # Time # Time

quantor 101 1716.70 53 935.57 48 781.13 12 1578.35
semprop 83 1853.18 41 371.07 42 1482.11 2 553.47

Formal ssolve 81 2480.64 36 281.12 45 2199.52 2 0.08
Verification yQuaffle 79 1417.83 40 324.75 39 1093.08 – –

(242) QMRes 75 2545.13 45 2040.24 30 504.89 18 1288.27
openQBF 68 3339.33 28 934.78 40 2404.55 – –
qbfbdd 64 1513.61 29 1139.05 35 374.56 – –
WalkQSAT 52 836.18 30 790.40 22 45.78 – –

yQuaffle 108 2444.83 28 1012.29 80 1432.54 – –
semprop 103 1947.95 26 297.13 77 1650.82 1 511.79
quantor 102 230.70 29 74.43 73 156.27 2 16.23

Planning ssolve 101 883.00 28 302.23 73 580.77 – –
(159) openQBF 93 8883.30 24 900.29 69 7983.01 – –

WalkQSAT 85 236.30 31 86.42 54 149.88 – –
QMRes 37 1410.15 10 468.07 27 942.08 – –
qbfbdd 26 2704.64 9 1699.03 17 1005.61 – –

quantor 115 100.99 69 89.58 46 11.41 2 12.11
QMRes 115 1089.30 67 370.57 48 718.73 14 142.38
semprop 103 4532.85 65 1973.6 38 2559.25 3 235.64

Miscellanea yQuaffle 63 3178.81 32 1758.29 31 1420.52 – –
(150) ssolve 61 3463.92 39 2202.45 22 1261.47 – –

WalkQSAT 52 2849.78 35 2111.28 17 738.50 – –
openQBF 40 1521.53 26 1241.57 14 279.96 – –
qbfbdd 16 650.31 15 650.18 1 0.13 – –

improvements and bug fixes (e.g., new versions of QchaffLearn and sKizzo have been
recently distributed), and new and promising approaches to certify the solvers’ output are
emerging (e.g., the method described in [25]).

5. Evaluation: second phase results

5.1 Solver-centric view

In Table 5 we report second phase results about fixed structure classes (551 instances),
divided into three categories:

Formal Verification 242 instances, including Ayari, Biere, Katz, Mneimneh/Sakallah,
and Scholl/Becker instances.

Planning 159 instances, including Castellini, Gent/Rowley, Narizzano, and part of Rinta-
nen instances.

Miscellanea 150 instances, including Letz, Pan (both TANCS’98 and Barrel Shifter) and
the remaining Rintanen instances.

Table 5 is arranged analogously to Tables 2 and 3, except an additional column that indicates
the category. The solvers are classified independently for each category, and in descending

155

M. Narizzano et al.

order according to the number of instances solved: in case of ties, the solvers are prioritised
according the time taken to solve the instances, smallest time first.

Looking at Table 5, the first observation is that three solvers, namely quantor, sem-

prop and yQuaffle turn out to be the strongest solvers on fixed structure classes: quan-

tor is leader in Formal Verification and Miscellanea categories (in the latter together with
QMRes) and it earns a third place in the Planning category by solving only five problems
less than the leader yQuaffle; semprop, in spite of its far-from-optimised implementa-
tion, turns out to be second best in Formal Verification and Planning categories, and third
best on Miscellanea instances; yQuaffle ends up fourth best in Formal Verification, but it
is the best solver on Planning instances, and the fourth best on the Miscellanea instances. A
second observation regards QMRes which, in spite of its opaque performance on Planning
instances, rivals with quantor for the leadership in the Miscellanea category, and is the
only solver able to solve 18 instances in the Formal Verification arena and 14 in the Mis-
cellanea category (the highest number of uniquely solved instances in both cases). Overall,
the strongest solver in the Formal Verification category (quantor) is able to solve only
42% of the total number of instances, while yQuaffle is able to solve about 68% of the
Planning category, and both quantor and QMRes raise to 77% the percentage of solved
instances in the Miscellanea category. It is also significant that in the planning category the
strongest solver is DPLL-based (yQuaffle), while both in the Formal verification and in
the Miscellanea categories the strongest solvers (quantor and QMRes) express alternative
paradigms.

Focusing on Formal Verification category, we can see that all the solvers are pretty much
in the same capability ballpark: only 49 instances separate the strongest solver (quantor)
from the weakest one (WalkQSAT). Considering the three strongest solvers, namely quan-

tor, semprop and ssolve, we can see that they are able to uniquely solve 12, 2 and 2
instances, respectively, so none of them is subsumed by the portfolio constituted by all the
other solvers. At the same time, semprop, with 22.33 seconds average solution time, and
ssolve, with 30.63 seconds, seem to be slightly less optimised than quantor, which fares
around 17 seconds average solution time. Among the other solvers, it is worth noting that
WalkQSAT performs quite nicely in terms of average solution time (16 seconds), while
QMRes stands out for its ability to uniquely solve 18 instances using a cumulative CPU
time that is only twice as big as the time limit (600 seconds) allowed for a single instance.

As for the Planning category, we can see that the performances of the solvers are more
diverse than in Formal Verification: 82 instances (about 50% of the total) separate the
strongest solver (yQuaffle) from the weakest one in this category (qbfbdd). However,
this portion of the test set is relatively easy, as only 1 instance was uniquely solved by
semprop (second best) and only 2 instances were uniquely solved by quantor (third
best). As noticed before, search-based solvers seem definitely to have an edge over other
techniques in this category, as quantor, QMRes and qbfbdd are lagging behind other
search-based solvers of comparable strength, such as yQuaffle, ssolve and openQBF.
Notice that, although yQuaffle ends up being the strongest solver, the portfolio including
all the other solvers is able to solve all the instances that yQuaffle solves.

Finally, considering the Miscellanea category, the first thing to be observed is that
most of these instances come from a single source: Pan/TANCS’98 instances (108) and
Pan/Shifter (6). In particular, the first group of instances is derived from translations

156

Report of the Third QBF Solvers Evaluation

Table 6. Results of the evaluation second phase (probabilistic structure classes).

Category Solver Solved Sat Unsat Unique
Time # Time # Time # Time

ssolve 1126 3461.92 620 1604.62 506 1857.30 57 1782.01
semprop 1047 5067.83 573 2089.98 474 2977.85 9 202.89
WalkQSAT 978 6915.97 561 3153.68 417 3762.29 3 142.64

Model A openQBF 884 15412.53 542 6052.20 342 9360.33 – –
(1200) yQuaffle 793 12520.38 454 6077.92 339 6442.46 – –

quantor 570 3120.84 474 1753.45 96 1367.39 – –
QMRes 431 23062.65 403 14049.81 28 9012.84 – –
qbfbdd 313 7735.22 199 3016.00 114 4719.22 – –

ssolve 88 4568.60 83 2167.56 5 2401.04 – –
qbfbdd 87 2416.00 87 2416.00 – – 2 1482.58
yQuaffle 85 1041.92 85 1041.92 – – – –

Planning openQBF 80 12174.73 80 12174.73 – – – –
(120) semprop 74 10216.09 56 3878.73 18 6337.36 13 5703.50

quantor 40 79.63 40 79.63 – – – –
WalkQSAT 1 5.26 1 5.26 – – – –
QMRes – – – – – – – –

ssolve 231 542.80 132 537.38 99 5.42 24 132.32
semprop 141 36124.47 79 22272.33 62 13852.14 – –
yQuaffle 137 13158.45 84 3902.50 53 9255.95 – –

QHorn qbfbdd 57 4605.82 43 3304.37 14 1301.45 1 13.17
(240) WalkQSAT 51 392.34 – – 51 392.34 – –

openQBF 25 19.47 – – 25 19.47 – –
quantor 15 55.21 – – 15 55.21 – –
QMRes – – – – – – – –

WalkQSAT 445 12395.86 223 7299.17 222 5096.69 36 2433.60
semprop 393 25074.39 219 16362.15 174 8712.24 39 11669.82

Nested ssolve 379 18121.32 225 10268.27 154 7853.05 10 2373.11
Counterfactual yQuaffle 290 14384.36 124 10211.48 166 4172.88 20 1088.96

(1080) openQBF 283 12365.15 123 5516.00 160 6849.15 2 1180.99
quantor 196 1332.62 110 1265.29 86 67.33 – –
QMRes 20 1101.45 12 49.11 8 1052.34 – –
qbfbdd 4 1.03 4 1.03 – – – –

of structured modal K instances [21], and the translation algorithm applied is the same
for all the instances, so it is reasonable to assume that the original structure, although
obfuscated by the translation, carries over to the QBF instances. In conclusion, the best
solvers in this category are probably those that can discover and take advantage of such a
hidden structure. Looking at the results it seems that QMRes and quantor are clearly
the strongest reasoners in this category. In particular while QMRes is the only one able
to solve 14 instances (about 10% of this category), quantor manages to solve the same
number of instances of QMRes by using 1 order of magnitude less CPU time, and semprop

fares a respectable number of 100 instances solved. Both quantor and semprop are able
to solve uniquely 2 and 3 instances, respectively, so none of the three strongest solvers is
subsumed by the portfolio including all the solvers.

157

M. Narizzano et al.

In Table 6 we report second phase results about random instances (2640 instances),
divided into four categories:

Model A 1200 instances, generated according to the guidelines presented in Section 3.

Planning 120 instances, corresponding to the four Robot families in the suite Narizzano.

QHorn 240 instances, corresponding to (a subset of) the quantified Horn and renamable
Horn instances submitted to the evaluation by Florian Letombe.

Nested Counterfactuals 1080 instances, generated according to the guidelines presented
in Section 3.

Table 6 is arranged analogously to Table 5.
Looking at Table 6, the first observation is that it is difficult to identify a group of solvers

that performs well across different categories. For instance, while ssolve turns out to be
the best on three categories out of four, namely Model A, Planning, and QHorn, it is only
third best on Nested Counterfactuals instances. A second observation is that search-based
solvers seem to have an edge over solvers using other kind of techniques. quantor, QMRes

and qbfbdd trail the pack on Model A and Nested Counterfactuals instances. On QHorn
instances, their performance is far from the strongest solvers in this category, although
qbfbdd manages to solve one instance uniquely. The Robot category represents a (partial)
exception to this trend, with qbfbdd managing to get an excellent performance in terms
of instances solved (only three less than ssolve) and particularly in terms of running time
with an average solution time of 27.77 seconds versus 51.90 seconds obtained by ssolve.
Notice, however, that in this category the performance of quantor and QMRes is still
relatively poor. A third observation relates to the performance of WalkQSAT, which is
rather good on Model A and Nested Counterfactuals categories, and quite poor on Planning
and QHorn instances. These data seem to indicate that, although all these categories are
defined by probabilistic parameters, their peculiar structure is pretty differentiated across
the categories.

Focusing on Model A instances, we see that the strongest solver in this category (ssolve)
is able to solve 1126 instances, about 94% of the total, while the second and third best solvers
(semprop and WalkQSAT) are able to solve 1047 and 978 instances, about 87% and 81%
of the total, respectively. ssolve, semprop and WalkQSAT are also the only solvers able
to solve 57, 19 and 3 instances, respectively, so none of them is subsumed by the portfolio
obtained considering all the second phase solvers. At least in the case of Model A instances
it is pretty clear that the best solvers are search-based (WalkQSAT is also incomplete),
that the hardness of the test set is well within their capabilities, and that their architecture
(particularly the one of ssolve) seems to be best suited to solve this kind of instances.

Regarding Planning instances, we recall that this category coincides with a subset of
the four “Robot on the grid” families available on QBFLIB. ssolve is again the strongest
solver with 88 (73%) instances solved, while qbfbdd and yQuaffle, solving 87 and 85
instances, are second and third best respectively. The results on this category of problems
are rather interesting, both because qbfbdd excellent performances on these instances are
unabridged in other categories, and because semprop, far from being the best solver in the
category, is able to solve 9 instances uniquely, while all the other solvers (including ssolve

158

Report of the Third QBF Solvers Evaluation

and qbfbdd) are subsumed by the portfolio obtained considering all the solvers. The poor
performances of WalkQSAT seem to indicate that these problems might have some kind
of structural information which qbfbdd is able to exploit. Since quantor solves only 30%
of the instances and QMRes is not able to solve a single instance, the kind of structure
hidden in the Robot instances is probably entirely different from the one to be found in fixed
structure planning classes, where quantor is one of the strongest solvers and qbfbdd is
the weakest one.

In the QHorn category, ssolve is clearly the strongest solver, with 231 instances (96.2%)
solved and 24 instances uniquely solved. yQuaffle and semprop are second and third
best, but they are able to solve only slightly more than 50% of the instances, so their
performance is quite far from that of ssolve. It is interesting to notice that, although
ssolve does not implement any specific heuristic for detecting Horn clauses, its performance
is particularly good on this class of instances. A possible explanation is that, among the
general-purpose optimisations used by ssolve, one is effective also for randomly-generated
instances built with Horn or renamable Horn clauses.

Finally, the category of Nested Counterfactuals highlights how our choice of generation
parameters for this class yields a test set that is far too difficult for current state-of-the-art
solvers. WalkQSAT, remarkably the strongest solver in this category, is able to solve
445 instances, only 41% of the total. The five strongest solvers in this category, namely
WalkQSAT, semprop, ssolve, yQuaffle and openQBF are all search based and they
are able to solve uniquely 36, 39, 10, 20 and 2 instances respectively. These data seem
to indicate that search (particularly, stochastically driven one) is at the moment the best
strategy to deal with this kind of problems, and that they are currently defying the heuristics
featured by state-of-the-art solvers.

5.2 Instance-centric view

In Table 7 we show the classification of the fixed structure classes included in the evaluation
test set according to the solvers admitted to the second phase. Table 7 consists of nine
columns where for each family of instances we report the name of the family in alphabetical
order (column Family), the number of instances included in the family, the number of
instances solved, the number of such instances found SAT and the number found UNSAT
(group “Overall”, columns “#”, “N”, “S”, “U”, respectively), the time taken to solve the
instances (column “Time”), the number of easy, medium and medium-hard instances (group
“Hardness”, columns “E”, “M”, “H”). The number of instances solved and the cumulative
time taken for each family is computed considering the “SOTA solver”, i.e., all the second
phase solvers running in parallel. An instance is thus solved if at least one of the solvers
solves it, and the time taken is the best among the times of the solvers that solved the
instance. The instances are classified according to their hardness with the following criteria:
easy instances are those solved by all the solvers, medium instances are those non-easy
instances that could still be solved by at least two solvers, medium-hard instances are those
solved by one reasoner only, and hard instances are those that remained unsolved.

According to the data summarised in Table 7, the fixed structure classes consisted of
551 instances, of which 396 have been solved, 188 declared satisfiable and 208 declared
unsatisfiable, resulting in 46 easy, 294 medium, 56 medium-hard, and 155 hard instances.

159

M. Narizzano et al.

Table 7. Classification of fixed structure classes (second stage data)

Family Overall Time Hardness

N S U E M H

Adder 32 20 12 8 1220.68 3 6 11

Blocks 13 13 4 9 37.51 2 9 2

C432 8 7 3 4 1286.64 0 5 2

C499 8 5 3 2 2.23 0 4 1

C5315 8 4 2 2 0.34 0 3 1

C6288 8 1 1 0 3.99 0 0 1

C880 8 2 2 0 0.75 0 2 0

Chain 12 12 12 0 0.31 2 10 0

comp 8 8 4 4 0.06 1 7 0

Connect4 60 43 0 43 297.08 0 43 0

Counter 24 12 12 0 281.33 4 5 3

DFlipFlop 10 10 0 10 2.73 2 8 0

EP-4x4-log 7 7 7 0 2.51 0 7 0

EP-4x4-std 7 0 0 0 - 0 0 0

EP-6x6-log 8 3 0 3 286.94 0 3 0

EP-6x6-std 8 0 0 0 - 0 0 0

EP-8x8-log 8 4 0 4 537.21 0 3 1

FPGA FAST 5 5 4 1 0.79 0 5 0

FPGA SLOW 3 3 1 2 8.96 0 3 0

Impl 10 10 10 0 0.01 6 4 0

jmc quant 10 4 2 2 61.53 0 1 3

jmc quant sqr 10 3 2 1 11.37 0 0 3

k branch n 6 2 2 0 46.29 0 1 1

k branch p 6 3 0 3 189.46 0 1 2

k d4 n 6 6 6 0 36.8 0 1 5

k d4 p 6 6 0 6 2.18 0 6 0

k dum n 6 6 6 0 0.13 0 6 0

k dum p 6 6 0 6 0.14 0 6 0

k grz n 6 6 6 0 14.64 0 4 2

k grz p 6 6 0 6 6.63 0 6 0

k lin n 6 6 6 0 11.84 0 6 0

k lin p 6 6 0 6 0.71 0 6 0

Family Overall Time Hardness

N S U E M H

k path n 6 6 6 0 0.28 0 6 0

k path p 6 6 0 6 0.26 0 6 0

k ph n 6 4 4 0 37.34 1 3 0

k ph p 6 2 0 2 2.99 0 2 0

k poly n 6 6 6 0 0.11 0 6 0

k poly p 6 6 0 6 0.06 0 6 0

k t4p n 6 6 6 0 85.93 0 1 5

k t4p p 6 6 0 6 21.17 0 2 4

Logn 2 2 0 2 0.85 0 2 0

MutexP 7 7 7 0 0.09 2 3 2

Qshifter 6 6 6 0 18.61 1 5 0

s1196 2 0 0 0 - 0 0 0

s1269 5 0 0 0 - 0 0 0

s27 4 4 1 3 0.47 1 3 0

s298 6 2 2 0 120.38 0 1 1

s3330 5 0 0 0 - 0 0 0

s386 4 1 1 0 9.47 0 0 1

s499 6 2 2 0 154.87 0 1 1

s510 7 1 1 0 11.75 0 0 1

s641 4 0 0 0 - 0 0 0

s713 4 1 1 0 209.31 0 0 1

s820 5 1 1 0 54.79 0 0 1

SzymanskiP 12 12 0 12 546.32 0 12 0

term1 8 8 4 4 143.73 0 7 1

Toilet 8 8 5 3 1.27 2 6 0

ToiletA 18 18 8 10 12.15 5 13 0

ToiletC 20 20 11 9 2.81 4 16 0

Tree 14 14 5 9 0.01 5 9 0

uclid 3 0 0 0 - 0 0 0

VonNeumann 10 10 0 10 17.58 0 10 0

z4ml 8 8 4 4 0.01 5 3 0

These results indicate that the selected fixed structure classes are not trivial for current
state-of-the-art QBF solvers, since there is a small number of easy instances, and a sub-
stantial percentage of medium-to-hard instances. At the same time, the test set is not
overwhelming, since most of the non-easy instances could be considered of medium dif-
ficulty, i.e., they are solved by at least two solvers. Some of the families submitted for
the evaluation turned out to be pretty hard for the solvers: only 12 out of 24 instances
in the counter (Biere) instances, and 14 out of 38 in the EP (Evader-Pursuer, Ansotegui)
instances, were solved. On the other hand, the Ling suite, consisting of 8 instances in two
families was rated as medium difficulty. Some “old” instances that are still pretty hard
for current state-of-the-art solvers include the Lahiri-Seshia suite (uclid, 3 instances, all of
them hard), the Mneimneh-Sakallah suite (s27, 298, ..., a total of 52 instances of which 40
are hard), and the Katz suite (jmc quant, 20 instances, of which 13 are hard).

In Table 8 we show the classification of the probabilistic structure classes included in
the evaluation test set according to the solvers admitted to the second phase. Table 8 is
arranged similarly to Table 7, where the data about Nested Counterfactuals has been sum-
marised in a single entry, QHorn instances are divided into Horn (“Horn”) and renamable
Horn (renHorn) families, and Robot instances are presented split into four families corre-
sponding to the number of obstacles known in advance. Model A instances are split into 24
classes corresponding to six different values of the alternation depth (from 0 to 5 alterna-
tions), each family comprised of instances with different number of variables (20,40,80,160).
According to the data summarised in Table 8, this part of the evaluation second phase
consisted of 2640 instances, of which 2029 have been solved, 1126 declared satisfiable and

160

Report of the Third QBF Solvers Evaluation

Table 8. Classification of probabilistic structure classes (second phase data)

Family Overall Time Hardness
N S U E M H

CounterFactual 1080 542 272 270 20479.64 2 433 107
Horn 156 153 77 76 130.85 0 142 11
mA-t2-1qbf-5cnf-20var 50 50 40 10 0 50 0 0
mA-t2-1qbf-5cnf-40var 50 50 40 10 0.71 20 30 0
mA-t2-1qbf-5cnf-80var 50 50 40 10 220.3 10 40 0
mA-t2-1qbf-5cnf-160var 50 40 40 0 1.5 1 39 0
mA-t2-2qbf-5cnf-20var 50 50 20 30 0.1 24 26 0
mA-t2-2qbf-5cnf-40var 50 50 16 34 0.45 8 40 2
mA-t2-2qbf-5cnf-80var 50 47 12 35 617.97 0 39 8
mA-t2-2qbf-5cnf-160var 50 39 10 29 368.38 0 30 9
mA-t2-3qbf-5cnf-20var 50 50 30 20 0.06 10 40 0
mA-t2-3qbf-5cnf-40var 50 50 29 21 0.37 0 50 0
mA-t2-3qbf-5cnf-80var 50 48 28 20 694.9 0 46 2
mA-t2-3qbf-5cnf-160var 50 41 21 20 66.12 0 40 1
mA-t2-4qbf-5cnf-20var 50 50 22 28 0.34 1 49 0
mA-t2-4qbf-5cnf-40var 50 50 20 30 83.81 0 47 3
mA-t2-4qbf-5cnf-80var 50 47 20 27 44.49 0 39 8
mA-t2-4qbf-5cnf-160var 50 43 20 23 265.08 0 31 12
mA-t2-5qbf-5cnf-20var 50 50 30 20 0.06 0 50 0
mA-t2-5qbf-5cnf-40var 50 50 30 20 0.14 0 50 0
mA-t2-5qbf-5cnf-80var 50 50 30 20 2.55 0 50 0
mA-t2-5qbf-5cnf-160var 50 48 28 20 61.88 0 42 6
mA-t2-6qbf-5cnf-20var 50 50 29 21 0.14 0 50 0
mA-t2-6qbf-5cnf-40var 50 49 28 21 11.9 0 45 4
mA-t2-6qbf-5cnf-80var 50 49 27 22 1.18 0 40 9
mA-t2-6qbf-5cnf-160var 50 45 24 21 1.82 0 40 5
renHorn 84 83 56 27 133.61 0 69 14
RobotsD2 30 28 25 3 3678.75 0 23 5
RobotsD3 30 27 21 6 1903.32 0 23 4
RobotsD4 30 25 20 5 1445.26 0 22 3
RobotsD5 30 25 21 4 1724.27 0 22 3

903 declared unsatisfiable, resulting in 126 easy, 1687 medium, 216 medium-hard, and 611
hard instances. These results indicate that overall the selected probabilistic classes are
within the capabilities of current state-of-the-art QBF solvers, but in some cases they are
challenging as much as structured ones. This is the case, e.g., of Nested Counterfactuals,
which contributed 538 problems to the count of hard instances.

6. Conclusions

The final balance of the second QBF comparative evaluation can be summarised as follows.

• 13 solvers participated, 12 complete and 1 incomplete: 8 search-based algorithms, and
5 based on other techniques including Q-resolution, symbolic DP, skolemization, and
Shannon expansion.

• 553 instances and three generators were submitted.

• State-of-the-art solvers, both for fixed and probabilistic classes, have been identified;
also, a total of 693 challenging instances that could not be solved by any of the

161

M. Narizzano et al.

participants admitted to the second phase have been identified to set the reference
point for future developments in the field.

The evaluation also evidenced some critical points.

• QBF encodings of real-world applications (e.g., Ayari’s hardware verification prob-
lems, Sakallah’s vertex eccentricity problems, etc.) are still contributing to the pool
of challenging instances, confirming analogous results obtained in the previous evalu-
ations.

• With the notable exception of sKizzo and qbfbdd, most of the solvers submitted
to the third evaluation have been submitted also to the second one, and some of
them have been around since the first edition; among these, ssolve and semprop

are essentially the same solvers that were submitted three years ago, but they still
manage to maintain a strong standing in some categories (including applications of
QBF reasoning).

• The question of how to check the answer of the QBF solvers in an effective way is still
mainly unanswered. Some progress has been made on this front, e.g., sKizzo includes
a certifier for the results it produces, and in [25] the authors describe a method to
generate certifiable results for yQuaffle, but the question of what is a general and
reasonably efficient certificate of (un)satisfiability for QBF is still open.

The last point is not only an issue for the QBF evaluation, but also for the implementa-
tion of QBF solvers: indeed, only eight out of thirteen solvers passed to the second phase,
meaning that developers would benefit a lot from a feasible method that is not linked to a
specific solver for checking the results of their solvers before the evaluation begins.

The analyses herewith presented are just a fraction of the possible ones about the evalu-
ation data. For further information, tables, instances and downloads, please visit QBFLIB
at www.qbflib.org. Here you will be able to access the evaluation data, from the runtime
of specific solvers on specific instances, to cumulative tables similar to those presented in
this paper.

References

[1] D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella. The second QBF solvers
evaluation. In Seventh International Conference on Theory and Applications of Sat-
isfiability Testing (SAT 2004), Lecture Notes in Computer Science. Springer Verlag,
2004. to appear.

[2] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7(3):201–215, 1960.

[3] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, 1962.

[4] A. G. D. Rowley I. P. Gent, H. H. Hoos and K. Smyth. Using Stochastic Local Search
to Solve Quantified Boolean Formulae. In 9th Conference on Principles and Practice

162

www.qbflib.org

Report of the Third QBF Solvers Evaluation

of Constraint Programming (CP 2003), volume 2833 of Lecture Notes in Computer
Science. Springer Verlag, 2003.

[5] A. Biere. Resolve and Expand. In Seventh Intl. Conference on Theory and Applications
of Satisfiability Testing, 2004. Extended Abstract.

[6] Guoqiang Pan and Moshe Y. Vardi. Symbolic Decision Procedures for QBF. In 10th
Conference on Principles and Practice of Constraint Programming (CP 2004), 2004.

[7] G. Audemard and Lakhdar Säıs. A Symbolic Search Based Approach for Quantified
Boolean Formulas. In Eight International Conference on Theory and Applications of
Satisfiability Testing (SAT 2005), volume 3569 of Lecture Notes in Computer Science.
Springer Verlag, 2005.

[8] M. Benedetti. Evaluating QBFs via Symbolic Skolemization. In Eleventh International
Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR
2004), volume 3452 of Lecture Notes in Computer Science. Springer Verlag, 2004.

[9] E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean Formulas satisfi-
ability library (QBFLIB), 2001. www.qbflib.org.

[10] D. Le Berre, L. Simon, and A. Tacchella. Challenges in the QBF arena: the SAT’03
evaluation of QBF solvers. In Sixth International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2003), volume 2919 of Lecture Notes in Computer
Science. Springer Verlag, 2003.

[11] Andrew G D Rowley Ian P Gent. Solution learning and solution directed backjumping
revisited. Technical Report APES-80-2004, APES Research Group, February 2004.

[12] I.P. Gent, E. Giunchiglia, M. Narizzano, A. Rowley, and A. Tacchella. Watched Data
Structures for QBF Solvers. In Sixth International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2003), volume 2919 of Lecture Notes in Computer
Science. Springer Verlag, 2003.

[13] A. Ling and S. D. Brown D. P. Singh. FPGA Synthesis Using Quantified Boolean
Satisfiability. In Eight International Conference on Theory and Applications of Sat-
isfiability Testing (SAT 2005), volume 3569 of Lecture Notes in Computer Science.
Springer Verlag, 2005.

[14] U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing Different Prenex-
ing Strategies for Quantified Boolean Formulas. In Sixth International Conference on
Theory and Applications of Satisfiability Testing (SAT 2003), volume 2919 of Lecture
Notes in Computer Science. Springer Verlag, 2003.

[15] Abdelwaheb Ayari and David Basin. Bounded model construction for monadic
second-order logics. In 12th International Conference on Computer-Aided Verification
(CAV’00), number 1855 in LNCS, pages 99–113. Springer-Verlag, 2000.

163

www.qbflib.org

M. Narizzano et al.

[16] C. Castellini and E. Giunchiglia and A. Tacchella. SAT-based planning in complex do-
mains: Concurrency, constraints and nondeterminism. Artificial Intelligence, 147:85–
117, 2003.

[17] I.P. Gent and A.G.D. Rowley. Encoding Connect 4 using Quantified Boolean Formulae.
Technical Report APES-68-2003, APES Research Group, July 2003.

[18] R. Letz. Lemma and Model Caching in Decision Procedures for Quantified Boolean
Formulas. In Proceedings of Tableaux 2002, LNAI 2381, pages 160–175. Springer, 2002.

[19] M. Mneimneh and K. Sakallah. Computing Vertex Eccentricity in Exponentially Large
Graphs: QBF Formulation and Solution. In Sixth International Conference on Theory
and Applications of Satisfiability Testing (SAT 2003), volume 2919 of Lecture Notes
in Computer Science. Springer Verlag, 2003.

[20] Guoqiang Pan and Moshe Y. Vardi. Optimizing a BDD-based modal solver. In Pro-
ceedings of the 19th International Conference on Automated Deduction, 2003.

[21] P. Balsiger, A. Heuerding, and S. Schwendimann. A Benchmark Method for the Propo-
sitional Modal Logics K, KT, S4. Journal of Automated Reasoning, 24(3):297–317,
2000.

[22] J. T. Rintanen. Improvements to the Evaluation of Quantified Boolean Formulae. In
Proc. of IJCAI, pages 1192–1197, 1999.

[23] C. Scholl and B. Becker. Checking equivalence for partial implementations. In 38th
Design Automation Conference (DAC’01), 2001.

[24] Ian Gent and Toby Walsh. Beyond NP: the QSAT phase transition. In Proc. of AAAI,
pages 648–653, 1999.

[25] Y. Yu and S. Malik. Verifying the Correctness of Quantified Boolean Formula(QBF)
Solvers: Theory and Practice. In ASP-DAC, 2005.

164

	Introduction
	Solvers and Instances
	Evaluation: test set and infrastructure
	Evaluation: first phase results
	Preliminary analysis
	Discrepancies among solver results

	Evaluation: second phase results
	Solver-centric view
	Instance-centric view

	Conclusions

