
Journal on Satisfiability, Boolean Modeling and Computation 2 (2006) 61-102

The SAT 2005 Solver Competition on Random Instances

Oliver Kullmann∗ O.Kullmann@Swansea.ac.uk

Computer Science Department

University of Wales Swansea

Swansea, SA2 8PP, UK

Abstract

An analysis of the SAT 2005 sub-competition on random instances is given. This

year this (sub-)competition set-up was geared to establish a basic setting, focusing on the

instances near the (infamous) “50% densities”, so first we have to establish a more quan-

titative understanding of phase transitions here. We present extended empirical results,

clearly showing that the models used before, which are motivated by large-scale consider-

ations, are inadequate at the relatively small scale considered here. Then the series’ and

all individual instances used in the competition are described. We give a formal definition

of the competition evaluation, and analyse the results of the competition, looking into the

details of the scoring mechanism as well as into alternative evaluation methods.
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1. Introduction

The SAT 2005 solver competition has three sub-competitions: the “i-competition” on

so-called “industrial benchmarks”, the “h-competition” on so-called “handmade bench-

marks”, and the “r-competition” on random CNF. Each sub-competition itself has three

sub-competitions regarding the selection of benchmarks, namely considering all bench-

marks or only satisfiable or only unsatisfiable benchmarks. In this article we discuss the

r-competition in detail, considering first the choice of benchmarks, then discussing the eval-

uation criteria for the solver results, and finally interpreting the outcome. In the final

section we give some recommendations for the next r-competition (planned for SAT 2007).

The goals for the build of the r-competition can be seen on the one hand in finding a basic

selection of challenging benchmarks (which are “just right”, neither too hard nor too easy),

and on the other hand in setting up a reasonably fair evaluation framework. Unlike the i-

and h-competition with their wide ranges of very diverse benchmarks, the r-competition is

based on quite predictable benchmarks (this is after all the main advantage in using ran-

dom formulas), and thus an especially fine-tuned evaluation scheme for the r-competition is

conceivable. However, all sub-competitions are using the same uniform evaluation scheme;
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this year’s SAT competition actually introduced a new evaluation scheme, giving up the

previously used more “qualitative” (and very simple) evaluation (see [4]), and setting up a

purely quantitative (and more complex) scoring scheme. Within this framework, it seems

fair to say that that both goals have been realised: The benchmarks allowed to clearly dis-

tinguish the strongest solvers, and the new evaluation scheme molded the multidimensional

aspects of “the strongest solver” (which depend on several parameters) into one coherent

picture. Further argumentation one finds in the rest of the paper.

1.1 The choice of benchmarks

For the selection of benchmarks we wanted to establish a new basic standard, so we con-

sidered only those formulas which have attracted most attention, namely random k-CNF

near the assumed phase transition (from almost always satisfiable to almost always un-

satisfiable). The case k = 3 is of greatest interest here, but we believe that a better

understanding of random formulas needs to consider mixed clause-sizes (as was demon-

strated with the well-known “2 + p”-model; see [14]), and so as a first step we considered

also k = 5, 7. Even asymptotically the notion of phase transition for SAT is yet not well

understood, and for “finite sizes” the situation is even less clear; as we discuss in Section

2, a good “finite approximation” of the location of “the phase transition” is to consider

the density ρ = d1(
1
2 , n, k) where 50% of all random k-CNF’s are satisfiable (for a given

number n of variables), and so the benchmarks aim at giving a random sampling of random

3, 5, 7-CNF near the 50%-density for interesting n-values (which here always denotes the

number of variables).

Due to time constraints, the r-competition can only consider very small sample sizes;

for each pair of k, n, ρ considered (clause-length, number of variables, density), which makes

a “series” in the language of the SAT competition, only 10 benchmarks are allowed. Just

creating 10 random formulas, also for ρ ≈ d1(
1
2 , n) with high chance some series are very

biased towards having nearly only satisfiable or nearly only unsatisfiable instances, which

is intolerable here since it would basically ruin the series (the incomplete solvers cannot

handle the unsatisfiable instances at all, while having too many satisfiable instances does not

allow to differentiate between complete solvers, which are more geared towards unsatisfiable

instances). So the benchmarks had to be created in such a way that the right balance

between satisfiable and unsatisfiable instances was guaranteed. Of course, randomness had

also to be guaranteed, and thus selecting such instances were pre-decision was successful

(leaving out other instances) is not an option. Complete solvers currently can handle only

quite small instances (called “medium size instances” here), for which the spread of running

times is still feasible, and thus all medium size instances have been pre-decided.1.

For incomplete solvers the situation is different however, since at problem sizes chal-

lenging for these solvers the variation of run times are enormous; as the reader can see

with Table 5, the larger series with the large size benchmarks still contain instances which

not only no solver from the competition could solve, but which have not been solved until

1. Randomness is guaranteed by just choosing the first 5 satisfiable and the first 5 unsatisfiable instances

given by the random generator, without skipping instances; given enough time, this can be done.
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today. So here a different approach had to be used: All instances should be satisfiable,

and they should be satisfiable “by construction” (no pre-decision needed — currently likely

no unsatisfiable instance of this size (and near the 50%-density) could be solved by any

means provided on this planet). So densities ρk where chosen which seem to be well below

the 50%-density so that all instances should be satisfiable, while still close enough to the

50%-density to be challenging.

1.2 The results

Progress with complete solvers on random formulas is slow and arduous. This year the

winner of last year, kcnfs-2004, was still dominant. It seems that the second solver,

march dl, was aiming more to be an all-round-solver (much more so than kcnfs-2004, which

outside its domain of random CNF does not show good performance) and so couldn’t mess

with kcnfs-2004 on random formulas (especially on longer clause-lengths, where march dl

shows quite weak performance, likely due to the fact, that march dl in its preprocessing

translates all formulas into 3-CNF).

Incomplete solvers (especially local search solvers) have always been strong on random

formulas, and this year is no exception. Last year’s winner, adaptnovelty, was clearly

beaten by the new champ, ranov, quite clearly dominating the competition on satisfiable

(random) formulas. ranov also achieved the highest score on all random formulas, which

seems not unreasonable, while kcnfs-2004 achieved a creditable third rank here;2. however,

there are serious doubts whether it makes sense to compare solvers which are only capable of

solving satisfiable instances with complete SAT solvers, and thus for the final official ranking

only complete solvers have been taken into account in the all-instances sub-competition.

1.3 Outline of this article

In Section 2 we present an excerpt of our own experimental work on the satisfiability phase

transition, which started with [9, 10]. The basic problem here is to get reasonable predictions

for the 50% density function d1(
1
2 , n, k); we review shortly the existing experimental studies

in the literature, and our material clearly demonstrates that none of these approaches, which

are motivated by “large scale” considerations, gives a good approximation for the given

“small scale”. In order to make the motivation for these approaches comprehensible, we also

give a basic review on “scaling”. Table 1 gives by far the most comprehensive experimental

data on the location of 50% densities so far, while with model (2) a numerically quite

reasonable general model for the probability of satisfiability of arbitrary random 3-CNF is

given; the derived model (3) for d1(p, n), the density of random 3-CNF with n variables

having a satisfiability probability p, is for the special case of p = 1
2 not much worse than

the special models (7), (8), (9), (10) and (11) obtained for the 50% density (only for clause-

length k = 3; for greater clause-length at this time not enough numerical information has

been gathered to obtain a similarly detailed picture). While these special models either

2. That actually both incomplete and complete solvers were among the three highest scores in the all-

formulas sub-competition can be seen as an success of the new evaluation method, which in a somewhat

unpredictable way takes many factors into consideration.
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stipulate the threshold density or the critical exponent (by using some external reasoning),

with model (12) we were able to fit all parameters numerically, obtaining a model offering by

far the best fit (as always in this article, this holds only for the range of n-values considered).

In Section 3 we explain the choices and properties of our benchmarks. Section 4 then

discusses the evaluation of the competition. Subsection 4.1 precisely defines the scoring

method, while Subsection 4.2 presents the solver evaluations in detail. We conclude in

Section 5 with a resume on this year’s competition and an outlook on the next competition.

The appendices contain comprehensive experimental data (including a detailed description

of each single benchmark, and a complete alternative analysis, based on lexicographical

ordering).

2. The satisfiability threshold for random formulas

Since we decided to focus this year’s r-competition on instances close to the “50% densities”,

we need to know how they can be defined and how to compute them. In Subsection 2.1

we (curtly) review the model for random formulas used here and what is known (especially

numerically) about the “threshold” and the “phase transition”. The extensive computer

experiments performed by us so far led to a first (preliminary) general model (1) for the

probability that a random 3-CNF is satisfiable. Then in Subsection 2.2 we have a closer

look at the 50% densities for 3-CNF, based on the experimental data presented in Table 1.

Since our experimental results are only applicable to clause-size k = 3 and medium

number of variables (and thus only here we have a quite precise knowledge about the 50%

densities), here is what we have done for the other situations:

1. For the large size instances of random 3-CNF we have chosen the constant density 4.2.

Recall that we want to make sure that all these formulas are satisfiable; now there are

no indications that the 50% densities for 3-CNF will ever fall below 4.24, and thus,

using the (assumed) increasing sharpness of the phase transition with increasing n,

the probability of finding an unsatisfiable formula at density 4.2 for the values of n

considered here should be very low.

2. Clause-size k = 5:

It is known that 18.79 < T(5) < 21.33 holds for the (assumed) random 5-CNF thresh-

old T(5) (see [2, 1]); [13] predicts T(5) ≈ 21.117.

(a) For the medium size instances we have chosen a fixed density 21.3, which accord-

ing to our experience is an estimation which is “good enough”.

(b) For the large size instances we chose the fixed density 20.

3. Clause-size k = 7:

It is known that 84.82 < T(7) < 87.88 holds for the (assumed) random 7-CNF thresh-

old T(7) (see [2, 1]); [13] predicts T(7) ≈ 87.79.
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(a) For medium size instances the fixed density 89 was chosen; though outside of

the (proven) interval for the (assumed) threshold value, according to our exper-

imentations this density is close to the 50% density for the considered n-values,

which is vindicated by Table 4.

(b) For large size instances we chose the density 85.

2.1 The fixed clause-length model for random formulas

We use the standard model for fixed clause-length random formulas, where for given k, c, n ∈

N0 we consider all 2k ·
(
n
k

)
clauses of fixed size k (without repetitions and without clashing

literals) over variables 1, . . . , n, and where all (2k ·
(
n
k

)
)c clause-sequences (“random CNF

formulas”) of length c are equally likely. Now Prε(k, c, n) is the probability, that such a

random CNF is satisfiable (ε = 1) resp. unsatisfiable (ε = 0). Following the more general

notation from [10], allowing also for mixed clause-sizes, I will actually use the notation

Prε(ρ · ∆k, n) := Prε(k, round(ρ · n), n), where round : R≥0 → N0 is standard rounding to

the nearest integer; ρ here is called the density.

Figure 1 shows experimental data on the threshold behaviour of the satisfiability prob-

abilities Pr1(ρ · ∆3, n) for variable numbers n in the range from 100 to 400 and densities

ρ from 4.0 to 4.6. We see that the curves are turning from strictly increasing to strictly

decreasing between densities 4.2 and 4.3; this behaviour is called the threshold phenomenon,

and a generally accepted conjecture (the “Satisfiability Threshold Conjecture”) is, that for

every k ∈ N, k ≥ 2 there is a critical density T(k) ∈ R>0, such that for all ε > 0 we have

limn→∞ Pr1((T(k)+ ε) ·∆k, n) = 0 and limn→∞ Pr1((T(k)− ε) ·∆k, n) = 1. Up to now only

T(2) = 1 has been proven, while the existence of T(k) for k ≥ 3 is open; see [2, 1] for the

currently best bounds for k ≥ 4.

Actually a more striking picture is generally believed: In Figure 2 basically the same

data as in Figure 1 is shown, but this time all data is entered into one diagram, with the

density on the x-axis, while the number of variables is constant for each curve. We see a

critical point emerging at around density 4.243, with a critical probability of around 0.565.

The conjecture is, that for every k ∈ N, k ≥ 2 such a picture emerges for large n; the

critical density then must be the threshold T(k). Moreover it is believed that there are

scaling functions χ−1
k : R →]0, 1[ such that for “large n” the following equation is “nearly

precise”:

Pr1(ρ · ∆k, n) = χ−1
k

(ρ − T(k)

n−1/νk

)
. (1)

νk is called the critical exponent. See [10] for some general information on this approach,

while [16] proves that if νk exists, then νk ≥ 2 must hold; only for the case k = 2 this

approach has been verified (with ν2 = 3) in [5]. We remark here, that the critical probability

0.565 experimentally observed for k = 3 and small values for n is not too far away from 1
2 ,

and thus the general (often erroneous) association of the threshold density with the “50%

density” is possibly not too far away from the truth.

Now how to get numerical information out of this general approaches? Ignoring the

assumption of “large n”, our best guess at this time is to use (1) for curve fitting. Purely
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Figure 1. Curves n 7→ Pr1(ρ · ∆3, n) for various densities ρ shown on top of each graph. The
points are the means of the observations, joined by solid lines, while the dotted lines show the 95%

confidence intervals.
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approximation for the critical point is obtained by “visual inspection”.
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based on numerical considerations, our best guess for the scaling function χ3 at this time

is χ−1
3 (x) = 1

2(1 − tanh(x)) = e−x

ex+e−x . Using a considerable amount of data collected in

the OKdatabase (see [10] for an early overview), curve fitting yields the following quite

reasonable model3.:

Pr′1((x · ∆3, n)) =
1

2

(
1 − tanh(0.047 · (x − 4.245) · n1/1.11 + 0.155)). (2)

We see that the threshold-approximation of 4.245 obtained by this approach is quite close

to the above “critical density” 4.243; for recent claims coming from statistical physics that

T(3) ≈ 4.267 (see [13]) there must be a reversal of direction for larger n, which cannot be

seen in the experimental data for the medium size values of n considered.

Stipulating that ρ 7→ Pr1(ρ · ∆k, n) is continuous and strictly decreasing (for fixed n),

we denote by d
[k]
1 (p, n) for 0 < p < 1 the unique density ρ with Pr1(ρ · ∆k, n) = p. Model

(2) then yields the model

d
[3]
1

′
(p, n) = 4.245 + 21.1 · (arctanh(1 − 2p) + 0.155) · n−1/1.11 (3)

(where arctanh is the inverse of tanh). For p = 1
2 we obtain a reasonable model for the

((in)famous) 50% densities, which are closer examined in the following subsection.

2.2 Approximating the “50%-density”

Here we want to have a closer look at d
[3]
1 (1

2 , n) = d1(
1
2 , n) (following the tradition [8, 7]),

the density where for given n the satisfiability probability is 1
2 (we consider only k =

3 here); if n goes to infinity, then d1(
1
2 , n) tends to T(3) (if existent), and, as already

remarked, the “magical probability” 1
2 is not too far away from the experimentally observed

critical probability 0.565 (at least for small n). The approach is to compute approximations

d̃1(0.5, n) by statistical sampling, and then to use curve fitting to obtain a model.

According to the definition Pr1(ρ · ∆3, n) actually is a step function (that is, piecewise

constant), and thus can not be directly used for the definition of d1(p, n). Instead, we

have to consider Pr1(ρ · ∆3, n) at ρ = m
n for m ∈ N, and we have to extend this function

continuously so that the resulting function is injective. The natural choice is to use splines

of order at least 1. In this article we consider the simplest case of order 1, that is, linear

interpolation. So let ρl(p, n) (the “left density”) for 0 < p < 1 and n ∈ N be m
n for the

maximal m ∈ N such that Pr1(
m
n · ∆3, n) > p, and let ρr(p, n) := ρl(p, n) + 1

n (the “right

density”), while d̃1(p, n) is the density where the line through the observed frequencies at

densities ρl(p, n) and ρr(p, n) yields the frequency p.

In Table 1 our experimental observations on the computation of d̃1(0.5, n) are given,

while the plotted points in Figure 3 show d̃1(0.5, n) itself (see also Figure 4 for an enlarged

view). The minimal number of variables considered is the minimal sensible value at all,

namely n = 3. We remark here, that by using the results from [15] we can precisely

3. the residual standard error is 0.014709 on 2707 degrees of freedom (where these observations are averages

obtained from several hundred million runs of OKsolver on random formulas), and the coefficient of

determination between observed and predicted values is r
2 = 0.9988937
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calculate d1(0.5, 3) ≈ 6.471570641, where the precise value is rounded correctly to the given

precision, validating the statistical data at this one point. See [10] for more information

(including statistical quality indicators; an updated report using the extended data set will

be made available in due course).

From the general model (1) for Pr1(ρ · ∆k, n) we obtain the general basic approach

d
[k]
1 (p, n) = T(k) + χk(p) · n−1/νk . (4)

Values for ν3 from the literature are:

1. [8] ν3 ≈ 3
2 = 1.5 by finite size scaling;

2. [7] ν3 ≈ 5
3 = 1.6 by fitting a 50% curve;

3. [16] proves ν3 ≥ 2 (provided that ν3 makes sense at all; for our range this result might

well not be applicable).

Fixing the critical exponent to one of these three values, we can use linear regression; all

three regression curves are shown in Figure 3, and as the reader can see, none of these

models gives a reasonable approximation of the observed data (with the smallest critical

exponent 3
2 as the “winner” here).

Instead of fixing the critical exponent, we can fix the approximation for the threshold

T(3) and use linear regression in the form

log(d1(0.5, n) − T(3)) = log(χ3(0.5)) −
1

ν3
· log(n)

to compute log(χ3(0.5)) and − 1
ν3

. Using the approximation xc = 4.245 (see model (3))

resp. xc = 4.243 (see Figure 2) we obtain the models

d
(xc=4.245)
1 (0.5, n) = 4.245 + 6.42 · n− 1

0.96 . (5)

resp.

d
(xc=4.243)
1 (0.5, n) = 4.243 + 5.97 · n− 1

0.99 . (6)

These models are also displayed in Figure 3, and they provide a better fit; actually they

look quite good, but this is deceiving, since the scale on the density axis is very large.

One can argue that considering “too small” values of n spoils the picture, and thus

in Figure 4 we only consider data points for n ≥ 100. The fit indeed now is better; the

resulting approximations are as follows:

d
(ν3=

3

2
)

1 (0.5, n)′ = 4.244 + 0.815 · n− 1

1.5 (7)

d
(ν3=

5

3
)

1 (0.5, n)′ = 4.242 + 0.63 · n− 1

1.6 (8)

d
(ν3=2)
1 (0.5, n)′ = 4.237 + 0.438 · n− 1

2 (9)

d
(xc=4.245)
1 (0.5, n)′ = 4.245 + 0.5 · n− 1

1.72 (10)

d
(xc=4.243)
1 (0.5, n)′ = 4.243 + 0.42 · n− 1

1.87 . (11)
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Figure 3. Estimated 50%-satisfiability curve (plotted points calculated from the observed data
reported in Table 1) together with seven regression curves. First the three models from the literature
(recognisable by their poor fit), shown by a solid line, dashed line, and a dotted lines respectively
(with increasing critical exponent). Then the two alternative models (with a better fit; hardly dis-
tinguishable): model (5) shown by a dotted-dashed line, and (6) by a long-dashed line. Finally
two models derived from global models are shown: Using p = 1

2 in (3) by a line with two dots
followed by a long dash, while the second global model from [10] by a line with two long dashes
followed by a dot (these two models offer a reasonable approximation).
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Again, model (11) seems to provide the best fit. Finally, taking a purely empirical

standpoint and performing non-linear regression (least-squares) for all three parameters

T(3), χ3(p), ν3 ∈ R>0 in model (4); we obtain

d
()
1 (0.5, n)′ = 4.259 + 925.1 · n− 1

0.447 . (12)

This model is shown as the solid line in Figure 4 with the best fit. However also with

this method we do not obtain a satisfactory model over the whole range of n-values we

considered.

3. The selection of benchmarks

In Table 2 in the appendix the information about the series with medium size benchmarks

are summarised. For each clause-length k ∈ {3, 5, 7} there are 7 series of benchmarks, each

containing 10 benchmarks with a fixed number of (formal) variables and a density near the

50%-density, 5 of them are satisfiable, 5 unsatisfiable (predetermined with OKsolver). For

clause-size k = 3 we have used the data discussed in Subsection 2.2 (with some fluctuations,

which we consider to be negligible here).

All instances have been created using OKgenerator (see [9, 11]), a strong random for-

mula generator based on AES (the new encryption standard, replacing DES), which allows

platform-independent replicable creation of large numbers of large size formulas (also for

mixed clause-sizes and for non-boolean variables). In Table 4 for all medium size instances

information is given on how to create them, whether they are satisfiable or unsatisfiable, and

how successful the solvers were on them. The creation process started with a certain seed,

solving all instances until 5 satisfiable and 5 unsatisfiable instances have been obtained, and

the first 5 instances have been chosen in each case.4.

In Table 3 in the appendix the information about the series with large size benchmarks

are summarised. For each clause-length k ∈ {3, 5, 7} there are 6 series of benchmarks, each

containing 10 benchmarks with a fixed number of (formal) variables and a density near

but below the 50%-density, so that all of them are likely to be satisfiable (most instances

have been solved before the competition, some other instances have been solved during the

competition, but there remain for the larger sizes unsolved instances). Again in Table 5 the

specifics about the instances are given (how to create them with OKsolver, whether they

are known to be satisfiable or unsolved, and the success rate of solvers).

4. For the larger instances several keys have been used. This reflects the meaning of the keys (s0, s1),

where s0 in our experimental system (soon to be released as part of the OKlibrary) is used to identify

a computer, while s1 is used for the experiment number (both numbers are unsigned 32 bit integers),

since to solve the larger instances we run several machines in parallel; this might have introduced some

bias towards easier instances, but we believe that the somewhat random fashion in which we run the

computers (of different speed) should counteract this tendency (and the large instances where hard

enough anyway).
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Figure 4. As Figure 3, but evaluated only for n ≥ 100. Model (7) is shown by a solid line, (8) by
a dashed line, and (9) by a dotted line. Then the two alternative models (with a better fit): model
(10) shown by a dotted-dashed line, and (11) by a long-dashed line. Finally model (12) shown by
a solid line (with the best fit).
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4. The evaluation

After giving in Subsection 4.1 a formal definition of the “official” evaluation method (the

“scoring method”) of the SAT 2005 competition, in Subsection 4.2 then we discuss the

results of the (r-)competition. First the sub-competition on unsatisfiable instances in sub-

section 4.2.1, then the sub-competition on satisfiable instances in subsection 4.2.2, and

finally the sub-competition on all instances in subsection 4.2.3.

We will see that regarding the scoring method in all three sub-competitions we have a

clear winner, but when considering the different clause-sizes on its own, then the situation

is less clear (for the unsat-sub-competition regarding the second and the third place, for the

sat-sub-competition regarding all three places): For each clause-size alone there is always a

best solver, but since this solver varies, it is only the “genius” of the scoring method which

integrates these partial results into one result. Obviously this is especially the case for the

all-instances sub-competition, since it is completely unclear how to compare incomplete and

complete solvers.

One can argue that the scoring method makes the competition very unpredictable due

to the global nature of the scoring method (how much a solver gains depends also on the

other solvers), but it seems to be as close as we can get at this time towards a “fair” method

(where the scoring method acts like a kind of Delphian oracle).

4.1 Review of the evaluation method

A competition C for us is a tuple C = (S, B, S, Sb, time, timeout, sat), where

• S is a (finite) set; the elements s ∈ S are called solvers.

• B is a (finite) set; the elements b ∈ B are called benchmarks.

• S is a partition of B (a set of disjoint non-empty subsets of B whose union is B); the

elements S ∈ S are called series’.

• Sb ⊆ S × B; the elements (s, b) ∈ Sb are the pairs of solvers s which solved the

benchmark b.

• time : Sb → R≥0 with time ≤ timeout; it is time(s, b) the running time of solver s on

benchmark b.

• timeout : Sb → R>0; timeout(s, b) is the time out of solver s on benchmark b.

• sat : B → {0, 1} specifies for each benchmark b ∈ B whether b is considered to be

satisfiable (in case of sat(b) = 1) or unsatisfiable (sat(b) = 0).

Some remarks:

1. Instead of using real numbers we could use rational numbers.

2. Times are always measured in seconds.
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3. Since running times are usually rounded, we allow time(s, b) = 0 for cases where the

running time is rounded to zero.

4. timeout(s, b) is the total time available to solver s when it solved benchmark b;

for the SAT 2005 competition in the sub-competition on random instances we have

timeout(s, b) = 1200 (20 minutes) if solver s solved benchmark b in round 1, and

timeout(s, b) = 6000 (100 minutes) if s solved b in round 2 (there are no other possi-

bilities).

5. As usual for relations, we use Sb(s) for the set of benchmarks solver s solved, and

Sb−1(b) for the set of solvers which solved benchmark b.

6. Usually before the competition starts the map sat : B → {0, 1} is only partially

defined; during the competition some new values for sat(b) may be added, and also

possibly some values are redefined (or un-defined). However, for the evaluation finally

every benchmark (or “problem instance”) has to be categorised. For the SAT 2005

competition all medium size random instances have been sat-decided in advance, while

all large size random instances are considered to be satisfiable (for most of these

instances this was verified in advance, while for the remaining instances the choice of

the densities should guarantee that they are satisfiable with very high probability5.).

A competition C determines three sub-competitions:

• C0,1 = C is the all-instances competition;

• C0 is the only-unsatisfiable-instances competition, obtained from C by restricting B to

B0 := sat−1(0), keeping S, and restricting the other components of C accordingly.

• C1 is the only-satisfiable-instances competition, obtained from C by restricting B to

B1 := sat−1(0), keeping S, and restricting the other components of C accordingly.

We emphasise that for the sub-competitions only benchmarks were discarded, not solvers;

thus complete solvers participate also at the only-satisfiable-instances competition (though

with low chances), and the incomplete solvers participate also at the only-unsatisfiable-

instances competition (though at this time, where no incomplete solver was able to handle

unsatisfiable instances, they all ended up not solving any instance here). The evaluation

process is defined for arbitrary competitions C; applied to the sub-competitions C0,1, C0, C1

one obtains the ranking for the all-instances (sub-)competition, only-unsatisfiable-instances

(sub-)competition and only-satisfiable-instances (sub-)competition respectively.

The evaluation parameters are given by the tuple (stpp, stspf, stsf, tss, fss), where

• stpp ∈ R≥0 is the standard problem purse. The value used for the SAT 2005 compe-

tition is stpp = 1000. (This value serves only as a standardisation factor, so that one

gets “pleasant numbers”.)

5. though it seems, that current knowledge does not allow to make any more precise statements here
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• stspf ∈ R≥0 is the standard speed factor ; we define the standard speed purse as stspp :=

stspf · stpp. The value used for the SAT 2005 competition is stspf = 1, and thus

stspp = 1000. (As a result, problem purse and speed purse all in all have equal

importance.)

• stsf ∈ R≥0 is the standard series factor ; we define the standard series purse as stsp :=

stsf · stpp. The value used for the SAT 2005 competition is stsf = 3, and thus stspp =

3000. (We will see in Tables 8 and 7, that due to this choice the series purse is less

important than each of problem purse and speed purse.)

• tss ∈ N is the threshold for series size. For the SAT 2005 competition we have tss = 5.

• fss ∈ R≥0 is the factor for small series’. For the SAT 2005 competition we have

fss = 1
3 .

Given a competition C and an evaluation parameter tuple e, we define in the following

the scoring function scoreC,e : S → R≥0 which yields a ranking of the solvers (the higher

the score, the better the solver). The main equation is

score(s) := pp(s) + spp(s) + sp(s), (13)

• pp : S → R≥0 gives the problem purse of solver s, defined as

pp(s) :=
∑

b∈Sb(s)

stpp

|Sb−1(b)|
.

• spp gives the speed purse of solver s, defined as

spp(s) :=
∑

b∈Sb(s)

stspp ·
spf(s, b)∑

s′∈Sb−1(b) spf(s′, b)
,

where for (s, b) ∈ Sb the speed factor spf(s.b) is defined as

spf(s, b) :=
timeout(s, b)

1 + time(s, b)
.

• Finally let Ss := {(s, S) ∈ S × S : Sb(s) ∩ S 6= ∅} be the relation between solver and

series’ expressing that the solver solved at least one instance of the series (so that

Ss(s) is the set of series’ solved by solver s, while Ss−1(S) is the set of solvers which

solved series S). Now

sp(s) :=
∑

S∈Ss(s)

sp(S)

|Ss−1(S)|
,

where for S ∈ S we set the series purse

sp(S) :=

{
stsp if |S| ≥ tss

fss · stsp if |S| < tss
.
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We remark here, that since every series of medium size random instances has exactly

5 satisfiable and 5 unsatisfiable instances, while every large size random series has

exactly 10 satisfiable instances (and 0 unsatisfiable), for all three sub-competitions

the speed purse of every series is always 3000 (since the second case in the definition

of sp(S) here never applies).

The sum over all problem purses of all solvers equals the sum over all speed purses (due

to stspf = 1), namely
∑

s∈S

pp(s) =
∑

s∈S

spp(s) = |Sb(S)| · stpp,

where |Sb(S)| is the number of benchmarks solved altogether. The sum over all series purse

is given by ∑

s∈S

sp(s) =
∑

S∈S

sp(S).

A final remark on the choice of the evaluation parameters: As we will see in the sequel,

fortunately the winners of the three sub-competitions turn out to be independent of the

choice of these parameters, however the second and the third places can be altered for

all three sub-competitions by reducing the standard speed factor and/or increasing the

standard series factor. So the final outcome contains an element of arbitrariness, but this is

hardly surprising, and furthermore quite big changes are needed to change ranks two and

below. In the future a sensitivity analysis might be appropriate when deciding on the final

result and the final values of the evaluation parameters, but in this article we stick to the

given values.

4.2 The results

4.2.1 Unsatisfiable instances only

Table 8 gives the scores of the solvers on unsatisfiable instances. The clear winner (not

only with the total score, but also in all three partial scores) is kcnfs-2004, the winner

of last year’s competition. On the second place we have march dl, and on the third place

Dew Satz 1a. march dl has a slightly worse problem purse than Dew Satz 1a, a slightly

better series purse, and a much better speed purse. The fourth-place solver wllsatv1 is

worse than these three solvers in all partial scores.

The series solved by the first three solvers:

1. kcnfs-2004 for clause-sizes k =

3 : n = 300, 360, 400, 450, 500

5 : n = 70, 80, 90, 100, 110

7 : n = 45, 50, 55, 60, 65

2. march dl for clause-sizes k =

3 : n = 300, 360, 400, 450, 500
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5 : n = 70, 80, 90

7 : n = 45

3. Dew Satz 1a for clause-sizes k =

3 : n = 300, 360, 400

5 : n = 70, 80, 90, 100

7 : n = 45, 50, 55

We see that march dl has problems with higher clause-sizes (likely due to the fact, that

all clauses are translated into 3-clauses in the preprocessing phase), but is comparable to

kcnfs-2004 for clause-size 3. A closer look at the performance per clause-length is given in

Tables 9, 10 and 11, where we give the details of the behaviour of all solvers on unsatisfiable

instances for (fixed) k = 3, 5, 7, ranked lexicographically as follows: Each solver gets assigned

a 14-tuple of numbers, where the first 7 numbers give the number of instances not solved

in the series with n = 600, . . . , 300, while the last 7 entries give the average running time of

the solver on the instances it solved in the respective series (“+∞” if the solver didn’t solve

the instance); now a solver is ranked higher than another solver if its associated vector is

lexicographically smaller than the associated vector of the other solver.

We see again, that kcnfs-2004 is superior for all three clause-lengths; furthermore

kcnfs-2004 and march dl are far superior over all other solvers on clause-length 3, both

in speed and solving capability, and the high speed purse march dl got for k = 3 over-

compensated its poor results for k = 5, 7.

4.2.2 Satisfiable instances only

Table 7 gives the scores of the solvers on satisfiable instances. The clear winner (also in

all three partial scores) is ranov. The second place takes g2wsat, and the third place vw

(g2wsat has a slightly better problem purse, a slightly worse series purse, and a much better

speed purse). The fourth-place solver rpaws10 is clearly worse than vw regarding problem

and series purse (but somewhat better than vw regarding the speed purse — it seems vw

carries its name for good reasons).

The series solved (all three solvers solved all medium size series, so they are not reported

here):

1. ranov for clause-sizes k =

3 : n = 2000, 4000, 6000, 8000, 10000

5 : n = 500, 600, 700, 800, 900, 1000

7 : n = 120, 140, 160, 200

2. g2wsat for clause-sizes k =

3 : n = 2000, 4000, 6000, 8000, 10000, 12000

5 : n = 500
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7 : n = 120, 140, 160, 180

3. vw for clause-sizes k =

3 : n = 2000, 4000, 6000, 8000, 10000, 12000

5 : n = 500, 600, 700, 800

7 : n = 120, 140

We see that ranov misses out for (k, n) = (3, 12000), while g2wsat shows disastrous

performance for k = 5. As before, in Tables 12, 13 and 14 we give the details of the behaviour

of all solvers on unsatisfiable instances for (fixed) k = 3, 5, 7, ranked lexicographically. We

see that vw, g2wsat and rpaws10 are somewhat better than ranov for k = 3, but that ranov

(and also vw, but to a lesser degree) got especially high problem and series purses for k = 5,

and that ranov is also superior for k = 7, earning high problem scores.

4.2.3 All instances

In Table 6 we show the scores of the solvers in the all-instances sub-competition. We see

that the scores of the leading incomplete solvers (which solved only satisfiable instances)

are invariant (are the same as in the only-sat instances sub-competition), while the scores of

complete solvers change: to their problem and speed purses the purses earned on satisfiable

instances are added, while the series purses get diminished since all the series they solved

are solved easily by incomplete solvers. The two leading incomplete solvers come first, and

then comes the leading complete solver (who is especially strong regarding the speed-purse).

Now it was decided that only “complete solvers” (meaning that they solved at least

one unsatisfiable random instance) are eligible for an official ranking here, and so only the

framed solvers in Table 6 actually were officially participating in this sub-competition. The

ranking of these solvers is nearly identical to the ranking in the unsatisfiable-instances-

only, only places 7 and 8 switched. Please note that the scores on satisfiable instances are

computed in the context of the whole competition (not just considering the “complete”

solvers, but also the local search solvers).

5. Conclusion

5.1 Resume on this year’s competition

Regarding the set-up of the competition the two main targets have been fulfilled:

• The basic selection of the series’ and benchmarks turned out to be suitable.

• The evaluation method has selected a ranking which seems to be fair.

Regarding the solver, on the unsatisfiability front not much has been gained, but new strong

solvers showed up on the satisfiability front.
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5.2 The next competition in 2007

Considering the selection of benchmarks and series, it seems reasonable to extend the choice

to include also at least the mixed 2,3-CNF case. Whether also other types of random

formulas should be considered (for example with variable clause-size, or “planted” satisfiable

instances) is not clear to me: In the SAT 2003 r-competition (see [3]) quite different types

of random benchmarks were considered, but due to the very different natures of these

benchmark types in the following year’s competition (see [4]) it was decided to use only

uniform random instances.

How the scoring method will work out next time is hard to say — due to its global

nature the method is sensitive against formation of “cliques” among the solvers, but it

might be that it is not easy to misuse the system. It seems reasonable that the scoring

system for the all-instances sub-competition should consider only eligible solvers (different

from this competition, where all solvers have been taken into account for the scores). This

year the influence of the diversity of series solved was considerably smaller than the influence

of actual instances solved; one might thus consider to increase the standard series factor

(which would be in line with previous SAT competitions).

More research must go into the quantitative understanding of the phase transition,

extending the results from Section 2 to bigger numbers of variables and larger clause-

sizes. It is conceivable that the choice of densities for the large size instances had an

effect on the competition, and that with a different setting a different outcome would have

resulted (using higher densities, making the instances harder); using the SP-algorithm ([6])

might allow to move closer to the 50%-densities). Regarding the basic set-up the following

recommendations seem reasonable to me:

1. k = 3:

(a) Medium size: One could still use the same parameter value (roughly adding 20

variables doubles the running time on unsatisfiable instances); in case one has

special indication about progress perhaps one could shift the set from 300, . . . , 600

to 350, . . . , 650.

(b) Large size: I propose n = 4000, 7000, 10000, 13000, 16000, 19000.

2. k = 5:

(a) Medium size: Could also be repeated (the densities could be fine-tuned, but

likely this has no big effect).

(b) Large size: Perhaps a slight increase, say, n = 600, 700, 800, 900, 1000, 1100.

3. k = 7:

(a) Medium size: As for k = 5.

(b) Large size: Perhaps a slight increase, say, n = 130, 150, 170, 190, 210, 230.
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Appendix A. Experimental data on the satisfiability threshold

Table 1: Estimated 50% densities d̃1(0.5, n) together with the probability of the event E, that
for the true 50% density d1(0.5, n) we have ρ̃l(0.5, n) < d1(0.5, n) ≤ ρ̃l(0.5, n), using the fixed
estimations of ρl(0.5, n) and ρr(0.5, n) given in the second column (together with the correspond-
ing clause numbers); this probability is also the probability for ρl(p, n) = ρ̃l(p, n) using the fixed
observed “left” density (for all statistical computations the R system has been used, and values
“1” just mean that for the given machine precision (on a 64-bit computer) the result is deemed
by R to be indistinguishable from 1). In the third column one finds the 95% confidence intervals
for Pr1(ρ, n) where ρ ∈ {ρ̃l(0.5, n), ρ̃r(0.5, n)}; the observed proportion P̃r1(ρ, n) for density
ρl(0.5, n) resp. ρr(0.5, n) is the centre of the respective confidence interval, while the sample sizes
are given in the fourth column.

n
ρ̃l(n) cl(n)
ρ̃r(n) cr(n)

CI95%(Pr1(
ρ̃l(n)
ρ̃r(n)

, n)) N d̃1(0.5, n) Pr(E)

3 6.333333 19
6.666667 20

[ 0.5215789,0.5218531 ]
[ 0.469346,0.46962 ]

51,000,000
51,000,000 6.471917 1

4 5.75 23
6 24

[ 0.547644,0.5495957 ]
[ 0.4973455,0.4993065 ]

1,000,000
1,000,000 5.991679 1

5 5.6 28
5.8 29

[ 0.5177162,0.5196757 ]
[ 0.4713391,0.4732971 ]

1,000,000
1,000,000 5.680624 1

10 4.9 49
5 50

[ 0.5326916,0.5346482 ]
[ 0.4938046,0.4957654 ]

1,000,000
1,000,000 4.986589 1

20 4.55 91
4.6 92

[ 0.527624,0.5295818 ]
[ 0.4975135,0.4994745 ]

1,000,000
1,000,000 4.597499 1

30 4.433333 133
4.466667 134

[ 0.5222545,0.5242134 ]
[ 0.4966685,0.4986295 ]

1,000,000
1,000,000 4.463604 1

40 4.375 175
4.4 176

[ 0.5206394,0.5225985 ]
[ 0.4958355,0.4977965 ]

1,000,000
1,000,000 4.396791 1

50 4.34 217
4.36 218

[ 0.5208574,0.5228165 ]
[ 0.4976565,0.4996175 ]

1,000,000
1,000,000 4.358825 1

60 4.333333 260
4.35 261

[ 0.5002668,0.5016532 ]
[ 0.4784634,0.4804227 ]

2,000,000
1,000,000 4.334077 1

70 4.314286 302
4.328571 303

[ 0.5025705,0.5045314 ]
[ 0.483419,0.4853790 ]

1,000,000
1,000,000 4.316934 1

80 4.3 344
4.3125 345

[ 0.5072791,0.5078989 ]
[ 0.4881931,0.4888129 ]

10,000,000
10,000,000 4.30497 1

90 4.288889 386
4.3 387

[ 0.5122839,0.5127221 ]
[ 0.4936259,0.4940641 ]

20,000,000
20,000,000 4.296335 1

100 4.28 428
4.29 429

[ 0.5163577,0.517734 ]
[ 0.4992249,0.4996331 ]

2,027,000
23,062,000 4.289676 1

110 4.281818 471
4.290909 472

[ 0.5046035,0.5056605 ]
[ 0.4868249,0.4878973 ]

3,440,000
3,340,000 4.284444 1

120 4.275 513
4.283333 514

[ 0.5100886,0.5110394 ]
[ 0.4934154,0.4943546 ]

4,250,000
4,357,000 4.280278 1

130 4.276923 556
4.284615 557

[ 0.5001457,0.5004744 ]
[ 0.4832432,0.4846289 ]

35,560,000
2,000,000 4.277069 1

140 4.271429 598
4.278571 599

[ 0.5066431,0.5085779 ]
[ 0.4901106,0.4920453 ]

1,027,000
1,027,000 4.274717 1

150 4.266667 640
4.273333 641

[ 0.5126888,0.5146491 ]
[ 0.4966204,0.498562 ]

1,000,000
1,020,000 4.272334 1

160 4.26875 683
4.275 684

[ 0.5031723,0.5045501 ]
[ 0.4889535,0.4903327 ]

2,025,000
2,020,000 4.270447 1

165 4.266667 704
4.272727 705

[ 0.5066583,0.5080377 ]
[ 0.4924623,0.49384 ]

2,020,000
2,025,000 4.269803 1

Continued on next page...
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Table 1.– continued from previous page

n
ρ̃l(n) cl(n)
ρ̃r(n) cr(n)

CI95%(Pr1(
ρ̃l(n)
ρ̃r(n)

, n)) N d̃1(0.5, n) Pr(E)

170 4.264706 725
4.270588 726

[ 0.5102851,0.5116643 ]
[ 0.4953123,0.4966897 ]

2,020,000
2,026,000 4.269017 1

175 4.262857 746
4.268571 747

[ 0.5138172,0.5151911 ]
[ 0.4989044,0.4996978 ]

2,035,000
6,105,000 4.268309 1

180 4.266667 768
4.272222 769

[ 0.5021189,0.503485 ]
[ 0.4878875,0.4892664 ]

2,060,000
2,021,000 4.267761 1

185 4.264865 789
4.27027 790

[ 0.5061181,0.5072461 ]
[ 0.4912335,0.4923606 ]

3,020,000
3,025,000 4.267291 1

190 4.263158 810
4.268421 811

[ 0.5088097,0.510751 ]
[ 0.4946866,0.4965814 ]

1,020,000
1,071,000 4.266797 1

195 4.261538 831
4.266667 832

[ 0.5133466,0.5145677 ]
[ 0.4988026,0.4996775 ]

2,576,030
5,020,000 4.266402 1

200 4.265 853
4.27 854

[ 0.5019885,0.503368 ]
[ 0.4872794,0.4886565 ]

2,020,000
2,026,000 4.26591 1

210 4.261905 895
4.266667 896

[ 0.507771,0.5099363 ]
[ 0.4939819,0.4961474 ]

820,000
820,000 4.264962 1

220 4.263636 938
4.268182 939

[ 0.501217,0.5032184 ]
[ 0.4880582,0.4902155 ]

960,000
826,000 4.264407 1

230 4.260870 980
4.265217 981

[ 0.5080306,0.5101841 ]
[ 0.4950474,0.4970918 ]

829,000
920,000 4.263907 1

240 4.2625 1023
4.266667 1024

[ 0.5015623,0.5039406 ]
[ 0.488656,0.4910165 ]

680,000
690,000 4.263388 1

250 4.26 1065
4.264 1066

[ 0.5087945,0.5111533 ]
[ 0.4953167,0.4976776 ]

691,000
690,000 4.26296 1

260 4.261538 1108
4.265385 1109

[ 0.5017549,0.504306 ]
[ 0.4901354,0.4926884 ]

591,000
590,000 4.262542 1

270 4.259259 1150
4.262963 1151

[ 0.5095096,0.5118531 ]
[ 0.4965166,0.4988606 ]

700,000
700,000 4.262304 1

280 4.260714 1193
4.264286 1194

[ 0.5038077,0.5055865 ]
[ 0.4910922,0.492901 ]

1,215,000
1,175,000 4.262035 1

290 4.258621 1235
4.262069 1236

[ 0.5112767,0.5133432 ]
[ 0.498948,0.50008 ]

900,000
3,000,000 4.261938 0.9996202

300 4.26 1278
4.263333 1279

[ 0.5053147,0.5077016 ]
[ 0.4939959,0.4964382 ]

675,000
644,788 4.261921 1

320 4.259375 1363
4.2625 1364

[ 0.5057446,0.5081959 ]
[ 0.4952544,0.49772 ]

640,000
632,685 4.261453 1

340 4.258824 1448
4.261765 1449

[ 0.5072184,0.5098333 ]
[ 0.4969247,0.4995591 ]

562,402
554,277 4.261262 1

360 4.261111 1534
4.263889 1535

[ 0.4989333,0.5023748 ]
[ 0.4855432,0.4892179 ]

324,911
284,835 4.261248 0.9320379

380 4.260526 1619
4.263158 1620

[ 0.4991427,0.5031961 ]
[ 0.4862026,0.4960579 ]

234,298
39,739 4.260833 0.9881939

400 4.26 1704
4.2625 1705

[ 0.499769,0.5094429 ]
[ 0.4834076,0.4960187 ]

41,248
24,300 4.260773 0.9999086

410 4.260976 1747
4.263415 1748

[ 0.498677,0.5131935 ]
[ 0.4814191,0.500455 ]

18,362
10,700 4.261941 0.9992649

420 4.257143 1788
4.259524 1789

[ 0.5054126,0.5261889 ]
[ 0.4856234,0.5096336 ]

8,984
6,744 4.259213 0.7820353

430 4.251163 1828
4.262791 1833

[ 0.537655,0.5794126 ]
[ 0.4802375,0.5022689 ]

2,218
8,000 4.26128 0.9991266

440 4.259091 1874
4.261364 1875

[ 0.492549,0.539765 ]
[ 0.4668287,0.5097294 ]

1,761
2,130 4.260408 0.9815843

450 4.26 1917
4.262222 1918

[ 0.5050388,0.5561743 ]
[ 0.4624155,0.5136316 ]

1,500
1,500 4.261597 0.9684218

460 4.260870 1960
4.263043 1961

[ 0.4667499,0.5369631 ]
[ 0.4256997,0.5356114 ]

805
333 4.261059 0.5383751

500 4.26 2130
4.262 2131

[ 0.4707095,0.5749885 ]
[ 0.4129634,0.569397 ]

369
167 4.261439 0.6518139

600 4.261667 2557
6.56 3936

[ 0.3152781,0.7694221 ]
[ 0,0.002377092 ]

20
1,550 4.470606 0.8052274
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Appendix B. The instances of the SAT 2005 competition

Table 2. Series with medium size benchmarks; k is clause-length, n the number of variables, c

the number of clauses, ρ = c
n the density. In the last two columns the number of solvers which

have solved the satisfiable respectively unsatisfiable sub-series (that is, have solved at least one
satisfiable resp. unsatisfiable instance) is shown together with the resulting series purse (the total
series purse is 3000).

k n c ρ name purse sat purse unsat

3 300 1279 4.263 k3-r4.263-v300 29 103.4 11 272.7

360 1534 4.261 k3-r4.26-v360 27 111.1 8 375

400 1704 4.26 k3-r4.26-v400 23 130.4 8 375

450 1913 4.251 k3-r4.25-v450 13 230.8 2 1500

500 2130 4.26 k3-r4.26-v500 14 214.3 2 1500

550 2343 4.26 k3-r4.26-v550 9 333.3 0

600 2557 4.2616 k3-r4.261-v600 12 250 0

5 70 1491 21.3 k5-r21.3-v7 25 120 10 300

80 1704 21.3 k5-r21.3-v80 20 150 8 375

90 1917 21.3 k5-r21.3-v90 16 187.5 6 500

100 2130 21.3 k5-r21.3-v100 13 230.8 2 1500

110 2343 21.3 k5-r21.3-v110 11 272.7 1 3000

120 2556 21.3 k5-r21.3-v120 8 375 0

130 2769 21.3 k5-r21.3-v130 11 272.7 0

7 45 4005 89 k7-r89-v45 24 125 9 333.3

50 4450 89 k7-r89-v50 18 166.7 7 428.6

55 4895 89 k7-r89-v55 15 200 3 1000

60 5340 89 k7-r89-v60 13 230.8 1 3000

65 5785 89 k7-r89-v65 14 214.3 1 3000

70 6230 89 k7-r89-v70 8 375 0

75 6675 89 k7-r89-v75 9 333.3 0
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Table 3. Series with large size benchmarks; k is clause-length, n the number of variables, c the
number of clauses, ρ = c

n the density. In the last column the number of solvers which have solved
the series (that is, have solved at least one instance) is shown together with the resulting series
purse (the total series purse is 3000; recall that all instances here are (supposed to be) satisfiable).

k n c ρ name purse sat

3 2000 8400 4.2 k3-r4.2-v2000 6 500

4000 16800 4.2 k3-r4.2-v4000 5 600

6000 25200 4.2 k3-r4.2-v6000 5 600

8000 33600 4.2 k3-r4.2-v8000 4 750

10000 42000 4.2 k3-r4.2-v10000 3 1000

12000 50400 4.2 k3-r4.2-v12000 3 1000

5 500 10000 20 k5-r20-v500 5 600

600 12000 20 k5-r20-v600 2 1500

700 14000 20 k5-r20-v700 2 1500

800 16000 20 k5-r20-v800 2 1500

900 18000 20 k5-r20-v900 1 3000

1000 20000 20 k5-r20-v1000 1 3000

7 120 10200 85 k7-r85-v120 6 500

140 11900 85 k7-r85-v140 5 600

160 13600 85 k7-r85-v160 4 750

180 15300 85 k7-r85-v180 1 3000

200 17000 85 k7-r85-v200 1 3000

220 18700 85 k7-r85-v220 0

Table 4: The medium size benchmarks of the r-competition in detail. Using the first four columns,
the instances can be created from OKgenerator; consider for example the very first row: The
(satisfiable) instance with the r-competition name “bench1902” has been created by the call “OK-
generator s0=1 s1=21 n=300 l=3 cp=1279 nr0=0 nr1=0 -D -o.cnf” (looking up the number of clauses
in Table 2); s0 is the computer-identification, s1 the experiment-identification, while (nr0, nr1) is
the counter (and “-D” switches to Dimacs-output (default is XML), while “-o” generates the out-
put). In the column “problem-p” the number of solvers which have solved the instance is reported
together with the resulting problem purse, while the last column reports the average time used.

k n (s0, s1) (nr0, nr1) code sat problem-p µ time

3 300 (1, 21) (0, 0) 1902 1 25 40.0 50.5

(0, 1) 1904 0 10 100.0 128.4

(0, 2) 1906 1 25 40.0 11.7

(0, 3) 1908 0 10 100.0 90.2

(0, 4) 1909 0 11 90.9 168.2

(0, 5) 1910 0 9 111.1 115.3

Continued on next page...
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Table 4.– continued from previous page
k n (s0, s1) (nr0, nr1) code sat problem-p µ time

(0, 6) 1911 0 10 100.0 145.0

(0, 7) 1903 1 20 50.0 81.1

(0, 8) 1905 1 29 34.5 4.1

(0, 9) 1907 1 25 40.0 81.3

360 (14, 1) (0, 0) 1814 1 25 40.0 129.3

(0, 1) 1816 1 26 38.5 58.4

(0, 2) 1818 1 19 52.6 88.6

(0, 3) 1819 0 8 125.0 565.6

(0, 4) 1820 0 8 125.0 276.1

(0, 5) 1821 1 17 58.8 179.5

(0, 6) 1812 1 20 50.0 118.0

(0, 7) 1815 0 8 125.0 793.8

(0, 8) 1817 0 8 125.0 469.9

(0, 10) 1813 0 8 125.0 499.2

400 (1, 55) (0, 0) 1824 0 7 142.9 2297.4

(0, 1) 1826 0 4 250.0 1470.7

(0, 2) 1829 0 8 125.0 1736.1

(0, 3) 1831 0 4 250.0 1636.2

(0, 4) 1822 1 16 62.5 197.3

(0, 5) 1823 0 8 125.0 1059.9

(0, 8) 1827 1 17 58.8 107.0

(0, 9) 1830 1 19 52.6 218.9

(0, 11) 1825 1 23 43.5 56.0

(0, 12) 1828 1 19 52.6 301.6

450 (0, 0) (0, 0) 1807 1 11 90.9 876.8

(0, 1) 1809 1 10 100.0 204.3

(0, 2) 1811 0 2 500.0 555.1

(0, 3) 1802 0 2 500.0 458.2

(0, 4) 1804 0 2 500.0 501.0

(0, 5) 1805 1 11 90.9 461.9

(0, 6) 1806 1 11 90.9 1022.7

(0, 7) 1808 1 9 111.1 79.6

(0, 10) 1810 0 2 500.0 715.8

(0, 12) 1803 0 2 500.0 318.3

500 (5, 4) (0, 0) 1832 0 2 500.0 2117.2

(0, 1) 1834 0 2 500.0 1969.2

(0, 2) 1836 1 9 111.1 416.3

(0, 3) 1838 1 12 83.3 360.3

(0, 4) 1839 1 10 100.0 437.9

(0, 5) 1840 0 2 500.0 2728.8

Continued on next page...
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Table 4.– continued from previous page
k n (s0, s1) (nr0, nr1) code sat problem-p µ time

(0, 6) 1841 0 2 500.0 2201.5

(0, 7) 1833 0 2 500.0 2221.0

(0, 8) 1835 1 9 111.1 122.4

(0, 9) 1837 1 10 100.0 81.0

550 (18, 6) (0, 3) 1849 1 9 111.1 93.4

(0, 4) 1850 0 NaN

(0, 5) 1851 0 NaN

(0, 6) 1843 1 8 125.0 786.0

(0, 7) 1845 0 NaN

(19, 7) (0, 0) 1842 1 7 142.9 167.8

(0, 1) 1844 1 8 125.0 179.7

(0, 2) 1846 0 NaN

(0, 3) 1847 1 9 111.1 932.0

(0, 4) 1848 0 NaN

600 (22, 2) (0, 3) 1856 0 NaN

(0, 5) 1860 0 NaN

(23, 2) (0, 0) 1858 0 NaN

(0, 1) 1861 1 10 100.0 256.3

(0, 2) 1852 1 8 125.0 51.0

(0, 3) 1853 1 9 111.1 126.0

(0, 4) 1854 1 9 111.1 619.3

(0, 5) 1855 1 11 90.9 231.8

(0, 6) 1857 0 NaN

(0, 7) 1859 0 NaN

5 70 (9, 5) (0, 0) 1773 1 19 52.6 64.3

(0, 1) 1774 1 22 45.5 42.6

(0, 2) 1777 1 20 50.0 98.9

(0, 3) 1779 1 24 41.7 42.1

(0, 4) 1781 0 10 100.0 172.4

(0, 5) 1772 1 19 52.6 89.9

(0, 8) 1775 0 10 100.0 172.8

(0, 11) 1776 0 9 111.1 113.3

(0, 12) 1778 0 9 111.1 107.3

(0, 13) 1780 0 10 100.0 155.2

80 (23, 3) (0, 0) 1785 1 17 58.8 142.1

(0, 1) 1787 0 8 125.0 419.0

(0, 2) 1788 1 16 62.5 91.3

(0, 3) 1790 1 18 55.6 243.6

(0, 4) 1791 0 8 125.0 590.6

(0, 5) 1782 1 17 58.8 201.2

Continued on next page...
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Table 4.– continued from previous page
k n (s0, s1) (nr0, nr1) code sat problem-p µ time

(0, 6) 1783 1 17 58.8 117.3

(0, 7) 1786 0 8 125.0 438.5

(0, 9) 1789 0 8 125.0 451.3

(0, 12) 1784 0 8 125.0 451.5

90 (29, 1) (0, 0) 1797 0 6 166.7 1907.4

(0, 1) 1798 0 5 200.0 1223.6

(0, 2) 1800 1 16 62.5 913.7

(0, 3) 1801 1 16 62.5 711.7

(0, 4) 1792 0 6 166.7 1862.5

(0, 5) 1794 0 5 200.0 1128.6

(0, 6) 1796 0 6 166.7 1954.4

(0, 11) 1795 1 13 76.9 609.7

(0, 20) 1799 1 13 76.9 206.9

(0, 23) 1793 1 15 66.7 547.2

100 (28, 3) (0, 0) 1867 1 10 100.0 336.6

(0, 1) 1869 0 2 500.0 2279.1

(0, 2) 1862 0 2 500.0 2765.1

(0, 3) 1863 1 10 100.0 472.4

(0, 4) 1864 0 2 500.0 2521.4

(0, 5) 1865 1 13 76.9 456.4

(0, 6) 1866 0 2 500.0 2447.3

(0, 7) 1868 1 11 90.9 214.4

(0, 8) 1870 0 2 500.0 1889.9

(0, 10) 1871 1 12 83.3 179.1

110 (14, 6) (0, 0) 1874 0 1 1000.0 3896.0

(0, 1) 1877 0 1 1000.0 4332.8

(0, 2) 1878 0 1 1000.0 3794.7

(0, 3) 1879 0 1 1000.0 4584.7

(0, 4) 1880 0 1 1000.0 4070.9

(0, 5) 1881 1 8 125.0 303.5

(0, 7) 1875 1 8 125.0 206.3

(0, 10) 1872 1 11 90.9 211.9

(0, 11) 1873 1 9 111.1 414.1

(0, 12) 1876 1 8 125.0 390.9

120 (14, 7) (0, 0) 1887 1 7 142.9 25.0

(0, 1) 1889 1 8 125.0 517.3

(0, 2) 1891 0 NaN

(0, 3) 1882 1 7 142.9 11.3

(0, 4) 1883 0 NaN

(0, 5) 1884 0 NaN

Continued on next page...
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Table 4.– continued from previous page
k n (s0, s1) (nr0, nr1) code sat problem-p µ time

(0, 6) 1885 0 NaN

(27, 3) (0, 7) 1886 0 NaN

(0, 8) 1888 1 7 142.9 18.4

(0, 9) 1890 1 8 125.0 347.0

130 (15, 4) (0, 0) 1892 1 11 90.9 500.8

(0, 1) 1894 0 NaN

(22, 4) (0, 0) 1898 0 NaN

(0, 1) 1900 1 9 111.1 148.6

(29, 2) (0, 0) 1901 0 NaN

(0, 1) 1893 0 NaN

(0, 2) 1896 1 7 142.9 49.0

(6, 6) (0, 0) 1895 1 7 142.9 304.0

(0, 1) 1897 0 NaN

(0, 2) 1899 1 7 142.9 12.6

7 45 (22, 3) (0, 0) 1706 0 9 111.1 577.3

(0, 1) 1708 0 9 111.1 576.1

(0, 2) 1710 1 21 47.6 98.1

(0, 3) 1711 0 9 111.1 583.5

(0, 4) 1702 1 19 52.6 288.1

(0, 5) 1704 0 9 111.1 545.7

(0, 6) 1705 0 9 111.1 560.6

(0, 7) 1707 1 23 43.5 187.4

(0, 8) 1709 1 17 58.8 281.9

(0, 10) 1703 1 18 55.6 216.2

50 (16, 4) (0, 0) 1716 0 5 200.0 1657.1

(0, 1) 1719 1 16 62.5 683.3

(0, 2) 1721 1 15 66.7 711.5

(0, 3) 1712 1 17 58.8 359.1

(0, 4) 1713 0 7 142.9 1554.3

(0, 5) 1714 1 15 66.7 309.0

(0, 6) 1715 1 16 62.5 188.6

(0, 7) 1717 0 5 200.0 1754.7

(0, 10) 1718 0 7 142.9 1529.0

(0, 11) 1720 0 5 200.0 1730.6

55 (15, 3) (0, 0) 1727 1 12 83.3 878.9

(0, 1) 1729 1 11 90.9 545.4

(0, 2) 1730 0 3 333.3 2725.5

(0, 3) 1722 0 3 333.3 2800.6

(0, 4) 1723 0 3 333.3 2768.7

(0, 5) 1724 1 12 83.3 288.0

Continued on next page...
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Table 4.– continued from previous page
k n (s0, s1) (nr0, nr1) code sat problem-p µ time

(0, 6) 1725 0 3 333.3 2616.5

(0, 7) 1728 0 3 333.3 2701.9

(0, 9) 1731 1 10 100.0 349.9

(0, 10) 1726 1 14 71.4 884.3

60 (11, 9) (0, 0) 1740 1 9 111.1 633.4

(0, 1) 1732 0 1 1000.0 987.8

(0, 2) 1734 0 1 1000.0 981.7

(0, 3) 1736 1 11 90.9 446.7

(0, 4) 1737 0 1 1000.0 984.0

(0, 5) 1738 0 1 1000.0 982.2

(0, 6) 1739 1 10 100.0 593.5

(0, 7) 1741 1 11 90.9 734.8

(0, 8) 1733 0 1 1000.0 1002.2

(0, 9) 1735 1 12 83.3 502.1

65 (13, 7) (0, 0) 1744 1 13 76.9 629.6

(0, 1) 1746 0 1 1000.0 3512.1

(0, 2) 1747 0 1 1000.0 3430.9

(0, 3) 1749 0 1 1000.0 3504.7

(0, 4) 1751 0 1 1000.0 3484.0

(0, 5) 1742 1 9 111.1 305.6

(0, 6) 1743 1 10 100.0 1059.6

(0, 7) 1745 0 1 1000.0 3365.7

(0, 11) 1748 1 11 90.9 84.0

(0, 12) 1750 1 10 100.0 661.9

70 (21, 6) (0, 0) 1752 1 8 125.0 192.1

(0, 1) 1755 0 NaN

(0, 2) 1756 0 NaN

(0, 3) 1758 1 7 142.9 228.7

(0, 4) 1759 0 NaN

(0, 5) 1760 0 NaN

(0, 6) 1761 1 8 125.0 383.5

(0, 7) 1753 0 NaN

(0, 9) 1757 1 8 125.0 612.7

(0, 12) 1754 1 8 125.0 63.1

75 (23, 4) (0, 3) 1770 1 6 166.7 894.8

(25, 4) (0, 0) 1769 0 NaN

(0, 1) 1762 0 NaN

(0, 2) 1763 1 8 125.0 1619.0

(0, 5) 1767 1 5 200.0 169.3

(26, 8) (0, 0) 1764 0 NaN

Continued on next page...
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Table 4.– continued from previous page
k n (s0, s1) (nr0, nr1) code sat problem-p µ time

(0, 1) 1765 1 8 125.0 323.4

(0, 2) 1766 0 NaN

(9, 6) (0, 0) 1768 0 NaN

(0, 1) 1771 1 7 142.9 130.4

Table 5: The large size benchmarks of the r-competition in detail. Using the first four columns, the
instances can be created from OKgenerator; consider for example the very first row: The (satisfi-
able) instance with the r-competition name “bench1663” has been created by the call “OKgenerator
s0=32 s1=2 n=2000 l=3 cp=8400 nr0=0 nr1=0 -D -o.cnf” (looking up the number of clauses in Table
3); s0 is the computer-identification, s1 the experiment-identification, while (nr0, nr1) is the counter
(and “-D” switches to Dimacs-output (default is XML), while “-o” generates the output). In the col-
umn “problem-p” the number of solvers which have solved the instance is reported together with
the resulting problem purse, while the last column reports the average time used. An entry “1∗” in
the sat-column indicates that we have been able to determine the satisfiability of the instance only
after the competition (so these instances seem to be quite hard), while a question mark indicates
that the instance has not been solved yet at all (despite running several solvers for weeks; two such
(very hard) instances remain, one for k = 3, n = 12000, and the other for k = 7, n = 220).

k n (s0, s1) (nr0, nr1) code sat problem-p µ time

3 2000 (32, 2) (0, 0) 1663 1 5 200.0 416.6

(0, 1) 1665 1 4 250.0 1017.3

(0, 2) 1667 1 2 500.0 665.9

(0, 3) 1669 1 5 200.0 118.6

(0, 4) 1670 1 4 250.0 1110.1

(0, 5) 1671 1 5 200.0 176.1

(0, 6) 1662 1 2 500.0 639.7

(0, 7) 1664 1 4 250.0 361.4

(0, 8) 1666 1 6 166.7 72.4

(0, 9) 1668 1 6 166.7 185.2

4000 (32, 40) (0, 0) 1676 1 3 333.3 2043.6

(0, 1) 1678 1 4 250.0 90.6

(0, 2) 1680 1 5 200.0 296.6

(0, 3) 1672 1 5 200.0 242.9

(0, 4) 1673 1 5 200.0 477.9

(0, 5) 1674 1 5 200.0 327.7

(0, 6) 1675 1 4 250.0 117.9

(0, 7) 1677 1 4 250.0 1435.8

(0, 8) 1679 1 5 200.0 603.6

(0, 9) 1681 1 5 200.0 629.7

Continued on next page...

91



O. Kullmann

Table 5.– continued from previous page
k n (s0, s1) (nr0, nr1) code sat problem-p µ time

6000 (32, 41) (0, 0) 1682 1 5 200.0 988.4

(0, 1) 1684 1 4 250.0 142.1

(0, 2) 1686 1 4 250.0 155.3

(0, 3) 1688 1 4 250.0 1348.3

(0, 4) 1689 1 4 250.0 435.3

(0, 5) 1690 1 2 500.0 1533.2

(0, 6) 1691 1 2 500.0 1776.6

(0, 7) 1683 1 4 250.0 806.0

(0, 8) 1685 1 4 250.0 1175.5

(0, 9) 1687 1 4 250.0 465.6

8000 (32, 14) (0, 0) 1696 1∗ NaN

(0, 1) 1698 1 4 250.0 411.9

(0, 2) 1700 1 3 333.3 347.7

(0, 3) 1692 1∗ NaN

(0, 4) 1693 1 4 250.0 224.1

(0, 5) 1694 1 2 500.0 1565.7

(0, 6) 1695 1 2 500.0 1136.3

(0, 7) 1697 1 4 250.0 1763.9

(0, 8) 1699 1 3 333.3 2174.6

(0, 9) 1701 1 4 250.0 982.1

10000 (32, 17) (0, 0) 1644 1∗ NaN

(0, 1) 1646 1 3 333.3 1934.8

(0, 2) 1648 1 3 333.3 2032.8

(0, 3) 1650 1 3 333.3 1896.7

(0, 4) 1651 1 1 1000.0 1337.0

(0, 5) 1642 1 1 1000.0 2097.4

(0, 6) 1643 1∗ NaN

(0, 7) 1645 1 1 1000.0 5578.6

(0, 8) 1647 1∗ NaN

(0, 9) 1649 1 1 1000.0 4985.6

12000 (32, 18) (0, 0) 1656 1 2 500.0 1424.8
(0, 1) 1658 1 1 1000.0 1850.1
(0, 2) 1660 1∗ NaN
(0, 3) 1652 ? NaN
(0, 4) 1653 1 3 333.3 1083.3
(0, 5) 1654 1 1 1000.0 4826.0
(0, 6) 1655 1 2 500.0 872.6
(0, 7) 1657 1 2 500.0 2540.9
(0, 8) 1659 1 1 1000.0 1300.4
(0, 9) 1661 1∗ NaN

Continued on next page...
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Table 5.– continued from previous page
k n (s0, s1) (nr0, nr1) code sat problem-p µ time

5 500 (32, 29) (0, 0) 1540 1 2 500.0 972.6

(0, 1) 1532 1 2 500.0 261.7

(0, 2) 1534 1 2 500.0 1009.5

(0, 3) 1536 1 1 1000.0 384.4

(0, 4) 1537 1 4 250.0 441.3

(0, 5) 1538 1 2 500.0 1866.4

(0, 6) 1539 1 2 500.0 374.8

(0, 7) 1541 1 5 200.0 315.4

(0, 8) 1533 1 3 333.3 1337.9

(0, 9) 1535 1 2 500.0 713.9

600 (32, 42) (0, 0) 1542 1 1 1000.0 83.8

(0, 1) 1544 1 1 1000.0 71.2

(0, 2) 1546 1 1 1000.0 459.9

(0, 3) 1548 1 1 1000.0 936.2

(0, 4) 1549 1 1 1000.0 433.4

(0, 5) 1550 1 1 1000.0 119.2

(0, 6) 1551 1 1 1000.0 1233.6

(0, 7) 1543 1 1 1000.0 192.8

(0, 8) 1545 1 2 500.0 1580.9

(0, 9) 1547 1 2 500.0 2157.0

700 (32, 43) (0, 0) 1560 1 1 1000.0 1368.9

(0, 1) 1552 1 1 1000.0 209.6

(0, 2) 1554 1 1 1000.0 1717.7

(0, 3) 1556 1 1 1000.0 548.4

(0, 4) 1557 1 2 500.0 1282.8

(0, 5) 1558 1 1 1000.0 169.5

(0, 6) 1559 1 1 1000.0 4698.5

(0, 7) 1561 1 1 1000.0 167.7

(0, 8) 1553 1 1 1000.0 2585.8

(0, 9) 1555 1 2 500.0 970.3

800 (32, 36) (0, 0) 1568 1 1 1000.0 10.0

(0, 1) 1570 1 1 1000.0 949.5

(0, 2) 1562 1 NaN

(0, 3) 1564 1 1 1000.0 888.9

(0, 4) 1565 1∗ NaN

(0, 5) 1566 1∗ NaN

(0, 6) 1567 1 1 1000.0 354.2
(0, 7) 1569 1 1 1000.0 1081.5
(0, 8) 1571 1 2 500.0 3228.6
(0, 9) 1563 1 1 1000.0 3387.5

Continued on next page...
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Table 5.– continued from previous page
k n (s0, s1) (nr0, nr1) code sat problem-p µ time

900 (32, 44) (0, 0) 1580 1∗ NaN

(0, 1) 1572 1 1 1000.0 4010.7

(0, 2) 1574 1 NaN

(0, 3) 1576 1∗ NaN

(0, 4) 1577 1 NaN

(0, 5) 1578 1∗ NaN

(0, 6) 1579 1 1 1000.0 122.8

(0, 7) 1581 1 NaN

(0, 8) 1573 1 NaN

(0, 9) 1575 1 1 1000.0 2932.2

1000 (32, 28) (0, 0) 1528 1∗ NaN

(0, 1) 1530 1 NaN

(0, 2) 1522 1∗ NaN

(0, 3) 1524 1∗ NaN

(0, 4) 1525 1∗ NaN

(0, 5) 1526 1 1 1000.0 3503.5

(0, 6) 1527 1 NaN

(0, 7) 1529 1 1 1000.0 5619.1

(0, 8) 1531 1∗ NaN

(0, 9) 1523 1 1 1000.0 1153.2

7 120 (32, 24) (0, 0) 1588 1 4 250.0 541.6

(0, 1) 1590 1 4 250.0 164.8

(0, 2) 1582 1 4 250.0 187.0

(0, 3) 1584 1 3 333.3 194.0

(0, 4) 1585 1 3 333.3 617.8

(0, 5) 1586 1 3 333.3 476.6

(0, 6) 1587 1 5 200.0 1123.3

(0, 7) 1589 1 4 250.0 257.1

(0, 8) 1591 1 5 200.0 809.5

(0, 9) 1583 1 4 250.0 67.1

140 (32, 30) (0, 0) 1594 1 1 1000.0 4463.0

(0, 1) 1596 1 2 500.0 1078.0

(0, 2) 1598 1 2 500.0 584.9

(0, 3) 1600 1 2 500.0 3797.7

(0, 4) 1601 1 1 1000.0 346.7

(0, 5) 1592 1 5 200.0 1106.0

(0, 6) 1593 1 2 500.0 2977.0
(0, 7) 1595 1 2 500.0 1654.4
(0, 8) 1597 1 2 500.0 1672.0
(0, 9) 1599 1 3 333.3 845.5

Continued on next page...
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Table 5.– continued from previous page
k n (s0, s1) (nr0, nr1) code sat problem-p µ time

160 (32, 31) (0, 0) 1605 1 1 1000.0 5016.6

(0, 1) 1606 1 2 500.0 474.2

(0, 2) 1609 1 1 1000.0 5361.6

(0, 3) 1611 1 NaN

(0, 4) 1602 1 1 1000.0 3251.0

(0, 5) 1603 1 2 500.0 900.3

(0, 6) 1604 1 1 1000.0 66.4

(0, 7) 1606 1 2 500.0 474.2

(0, 8) 1608 1 2 500.0 3118.9

(0, 9) 1610 1 2 500.0 3619.2

180 (32, 37) (0, 0) 1620 1 NaN

(0, 1) 1612 1∗ NaN

(0, 2) 1614 1 NaN

(0, 3) 1616 1 NaN

(0, 4) 1617 1 NaN

(0, 5) 1618 1 NaN

(0, 6) 1619 1 NaN

(0, 7) 1621 1 NaN

(0, 8) 1613 1 1 1000.0 666.8

(0, 9) 1615 1 NaN

200 (32, 19) (0, 0) 1626 1∗ NaN

(0, 1) 1628 1 1 1000.0 4393.4

(0, 2) 1630 1 NaN

(0, 3) 1622 1 NaN

(0, 4) 1623 1∗ NaN

(0, 5) 1624 1 NaN

(0, 6) 1625 1∗ NaN

(0, 7) 1627 1 NaN

(0, 8) 1629 1∗ NaN

(0, 9) 1631 1 NaN

220 (32, 20) (0, 0) 1640 ? NaN

(0, 1) 1632 1∗ NaN

(0, 2) 1634 1∗ NaN

(0, 3) 1636 1∗ NaN

(0, 4) 1637 1∗ NaN

(0, 5) 1638 1∗ NaN

(0, 6) 1639 1 NaN
(0, 7) 1641 1∗ NaN
(0, 8) 1633 1 NaN
(0, 9) 1635 1 NaN
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Appendix C. Scores of the solvers of the SAT 2005 competition

Table 6. Scores of all solvers on all instances (“large size” and “medium size”), showing the total
score and the partial scores according to (13); “# p” is the number of benchmarks solved (out of
105 + 285 = 39 · 10 = 390 benchmarks in total), and “# s” is the number of series solved (out
of 3 · 7 + 3 · 6 = 39 series in total). The framed solvers solved at least one unsatisfiable random
instance and thus were eligible to win a price, while the five underlined solvers solved unsatisfiable
instances in other sub-competitions but no unsatisfiable random instance (the remaining solvers are
local search solvers only capable of solving satisfiable instances).

solver score problem-p speed-p series-p # p # s

ranov 169903.3 66822.0 79054.1 24027.2 209 36

g2wsat 103286.1 35488.7 53270.2 14527.2 178 32

kcnfs-2004 95075.4 37211.4 53236.9 4627.2 167 21

vw 76002.5 33788.7 26936.6 15277.2 170 33

rpaws10 69619.0 20905.4 38186.5 10527.2 151 30

rrsaps 40228.4 12872.0 20379.2 6977.2 116 25

march dl 27141.6 13120.2 11468.0 2553.3 99 14

Dew Satz 1a 22940.3 14448.2 5281.6 3210.5 118 17

adaptnovelty 21748.0 12388.7 1932.2 7427.2 119 26

wllsatv1 16145.0 11128.6 2018.0 2998.4 104 16

saps 15603.9 9238.7 1738.1 4627.2 104 21

Dew Satz 1c 13914.0 7419.4 3995.6 2499.0 85 14

Dew Satz 1b 13281.2 7276.6 3505.7 2499.0 84 14

SatELiteGTI 10074.1 6806.8 1083.0 2184.3 79 13

minisat static 10058.2 6714.4 1123.8 2220.0 78 13

sat4j.jar 5289.4 3442.2 522.2 1324.9 50 9

csat 2325.6 1633.6 102.1 590.0 27 5

hsat.5 2162.2 891.9 363.6 906.7 19 7

zchaff 2063.8 738.4 585.4 740.0 16 6

hsat.1 1888.8 783.1 365.7 740.0 17 6

vallst.sh 1454.3 786.1 58.7 609.6 17 5

zchaff rand 1307.9 533.5 17.8 756.7 12 6

Jerusat1.31 B 1245.0 527.6 247.4 470.0 11 4
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Table 7. Scores of all solvers on satisfiable instances (“large size” and “medium size”) which
solved at least one instance, showing the total score and the partial scores according to (13); “#
p” is the number of benchmarks solved (out of 3 · 7 · 5 + 3 · 6 · 10 = 285 benchmarks in total),
and “# s” is the number of series solved (out of 3 · 7 + 3 · 6 = 39 series in total). Altogether 231

benchmarks have been solved and 38 series, and thus the sum over problem and speed purse is
231 · 1000 = 231000, while the sum over the series purse is 38 · 3000 = 114000 (up to rounding
effects).

solver score problem-p speed-p series-p # p # s

ranov 169903.3 66822.0 79054.1 24027.2 209 36

g2wsat 103286.1 35488.7 53270.2 14527.2 178 32

vw 76002.5 33788.7 26936.6 15277.2 170 33

rpaws10 69619.0 20905.4 38186.5 10527.2 151 30

rrsaps 40228.4 12872.0 20379.2 6977.2 116 25

adaptnovelty 21748.0 12388.7 1932.2 7427.2 119 26

saps 15603.9 9238.7 1738.1 4627.2 104 21

kcnfs-2004 14604.9 7536.3 2441.4 4627.2 92 21

Dew Satz 1a 8943.1 4773.2 959.4 3210.5 68 17

march dl 7444.6 3897.6 993.7 2553.3 56 14

wllsatv1 7202.6 3953.6 250.6 2998.4 59 16

Dew Satz 1c 6590.6 3011.1 1080.5 2499.0 50 14

Dew Satz 1b 6187.3 3011.1 677.3 2499.0 50 14

SatELiteGTI 5198.0 2698.5 315.3 2184.3 46 13

minisat static 5147.9 2606.1 321.8 2220.0 45 13

sat4j.jar 3400.7 1862.4 213.4 1324.9 35 9

hsat.5 2162.2 891.9 363.6 906.7 19 7

zchaff 2063.8 738.4 585.4 740.0 16 6

hsat.1 1888.8 783.1 365.7 740.0 17 6

csat 1617.3 942.7 84.7 590.0 20 5

vallst.sh 1454.3 786.1 58.7 609.6 17 5

zchaff rand 1307.9 533.5 17.8 756.7 12 6

Jerusat1.31 B 1152.8 436.7 246.1 470.0 10 4

hsatrr 881.7 196.4 340.3 345.0 5 3

Jerusat1.31 A 673.8 276.4 57.8 339.6 7 3

HaifaSatw 547.4 194.6 18.2 334.6 5 3

lsatv1.1 432.1 137.1 71.5 223.4 3 2

HaifaSat 357.3 116.1 17.7 223.4 3 2

compsat 349.6 112.9 22.1 214.6 3 2
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Table 8. Scores of all solvers on unsatisfiable instances (only “medium size”) which solved at
least one instance, showing the total score and the partial scores according to (13); “# p” is the
number of benchmarks solved (out of 3 · 7 · 5 = 105 benchmarks in total), and “# s” is the number
of series solved (out of 3·7 = 21 series in total). Altogether 75 benchmarks have been solved and 15

series (all by kcnfs-2004), and thus the sum over problem and speed purse is 75 · 1000 = 75000,
while the sum over the series purse is 15 · 3000 = 45000 (up to rounding effects).

solver score problem-p speed-p series-p # p # s

kcnfs-2004 97930.2 29675.0 50795.5 17459.6 75 15

march dl 25228.1 9222.7 10474.4 5531.1 43 9

Dew Satz 1a 19456.8 9675.0 4322.2 5459.6 50 10

wllsatv1 12902.0 7175.0 1767.4 3959.6 45 9

Dew Satz 1c 10283.0 4408.4 2915.0 2959.6 35 8

Dew Satz 1b 10053.5 4265.5 2828.4 2959.6 34 8

minisat static 7370.0 4108.4 802.0 2459.6 33 7

SatELiteGTI 7335.7 4108.4 767.7 2459.6 33 7

sat4j.jar 2794.7 1579.8 308.8 906.1 15 3

csat 1281.0 690.9 17.4 572.7 7 2

Jerusat1.31 B 364.9 90.9 1.3 272.7 1 1

Appendix D. A more detailed analysis

D.1 Unsatisfiable instances

Table 9. Lexicographical order of solvers for clause-length k = 3 on unsatisfiable instances
(all solvers are shown which solved at least one instance); the entry “5 : 1997” at the left top for
example means that 5 instances of the series with 500 variables have been solved, and this using an
average running time of 1997s. All series contain 5 (unsatisfiable) instances, and no solver solved
any (unsatisfiable) instance with n ∈ {550, 600}.

solver n = 500 n = 450 n = 400 n = 360 n = 300

kcnfs-2004 5 : 1997 5 : 465 5 : 71 5 : 22 5 : 3.0

march dl 5 : 2498 5 : 554 5 : 84 5 : 26 5 : 3.4

Dew Satz 1a 0 0 5 : 1052 5 : 228 5 : 19

wllsatv1 0 0 5 : 3657 5 : 1060 5 : 78

Dew Satz 1c 0 0 3 : 879 5 : 241 5 : 19

minisat static 0 0 3 : 3176 5 : 1147 5 : 51

SatELiteGTI 0 0 3 : 4298 5 : 1184 5 : 61

Dew Satz 1b 0 0 2 : 748 5 : 259 5 : 20

sat4j.jar 0 0 0 0 5 : 302

csat 0 0 0 0 4 : 699

Jerusat1.31 B 0 0 0 0 1 : 952
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Table 10. Lexicographical order of solvers for clause-length k = 5 on unsatisfiable instances
(all solvers are shown which solved at least one instance); the entry “5 : 4136” at the left top for
example means that 5 instances of the series with 110 variables have been solved, and this using an
average running time of 4136s. All series contain 5 (unsatisfiable) instances, and no solver solved
any (unsatisfiable) instance with n ∈ {120, 130}.

solver 110 100 90 80 70

kcnfs-2004 5 : 4136 5 : 838 5 : 171 5 : 33 5 : 6.5

Dew Satz 1a 0 5 : 3923 5 : 805 5 : 151 5 : 27

Dew Satz 1c 0 0 5 : 796 5 : 150 5 : 27

Dew Satz 1b 0 0 5 : 796 5 : 151 5 : 27

wllsatv1 0 0 5 : 3181 5 : 533 5 : 86

march dl 0 0 3 : 5787 5 : 992 5 : 164

minisat static 0 0 0 5 : 870 5 : 96

SatELiteGTI 0 0 0 5 : 882 5 : 96

sat4j.jar 0 0 0 0 5 : 277

csat 0 0 0 0 3 : 986

Table 11. Lexicographical order of solvers for clause-length k = 7 on unsatisfiable instances
(all solvers are shown which solved at least one instance); the entry “5 : 3459” at the left top for
example means that 5 instances of the series with 65 variables have been solved, and this using an
average running time of 3459s. All series contain 5 (unsatisfiable) instances, and no solver solved
any (unsatisfiable) instance with n ∈ {70, 75}.

solver 65 60 55 50 45

kcnfs-2004 5 : 3459 5 : 988 5 : 282 5 : 82 5 : 23

wllsatv1 0 0 5 : 3650 5 : 928 5 : 232

Dew Satz 1a 0 0 5 : 4236 5 : 1210 5 : 351

SatELiteGTI 0 0 0 5 : 3152 5 : 522

minisat static 0 0 0 5 : 3155 5 : 520

Dew Satz 1c 0 0 0 2 : 1161 5 : 352

Dew Satz 1b 0 0 0 2 : 1169 5 : 351

sat4j.jar 0 0 0 0 5 : 381

march dl 0 0 0 0 5 : 2387

D.2 Satisfiable instances
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Table 12. Lexicographical order of solvers for clause-length k = 3 on satisfiable instances (all solvers which solved at least one instance)

solver 12000 10000 8000 6000 4000 2000 600 550 500 450 400 360 300

vw 7 : 1769 5 : 1642 8 : 847 10 : 1243 9 : 61 10 : 700 5 : 1.6 5 : 2.3 5 : 0.6 5 : 2.3 5 : 0.2 5 : 0.3 5 : 0.0

g2wsat 4 : 2050 5 : 1506 8 : 1367 10 : 198 10 : 134 10 : 139 5 : 0.2 5 : 0.6 5 : 0.1 5 : 0.4 5 : 0.0 5 : 0.3 5 : 0.0

rpaws10 1 : 322 0 6 : 60 8 : 181 10 : 88 8 : 85 5 : 0.2 5 : 0.4 5 : 0.1 5 : 0.8 5 : 0.1 5 : 0.1 5 : 0.1

ranov 0 3 : 5283 4 : 2109 8 : 1139 10 : 1084 8 : 458 5 : 0.5 5 : 1.1 5 : 0.2 5 : 0.3 5 : 0.1 5 : 0.2 5 : 0.1

adaptnovelty 0 0 0 1 : 4713 6 : 1998 5 : 725 5 : 63 5 : 86 5 : 12 5 : 87 5 : 2.7 5 : 12 5 : 2.1

rrsaps 0 0 0 0 0 2 : 657 5 : 9.7 5 : 3.4 5 : 0.8 5 : 3.9 5 : 0.1 5 : 0.2 5 : 0.1

saps 0 0 0 0 0 0 5 : 376 5 : 549 5 : 54 5 : 217 5 : 5.7 5 : 15 5 : 2.2

kcnfs-2004 0 0 0 0 0 0 5 : 726 3 : 3972 5 : 575 5 : 108 5 : 6.8 5 : 3.3 5 : 0.6

march dl 0 0 0 0 0 0 4 : 666 3 : 999 5 : 707 5 : 231 5 : 15 5 : 2.5 5 : 0.5

Dew Satz 1a 0 0 0 0 0 0 1 : 1342 0 1 : 332 3 : 3768 5 : 139 5 : 39 5 : 2.6

wllsatv1 0 0 0 0 0 0 1 : 1413 0 1 : 4059 1 : 5745 5 : 688 5 : 237 5 : 31

minisat static 0 0 0 0 0 0 1 : 922 0 0 1 : 2434 5 : 175 5 : 71 5 : 9.7

SatELiteGTI 0 0 0 0 0 0 0 0 1 : 1658 2 : 2999 5 : 234 5 : 190 5 : 5.8

Dew Satz 1c 0 0 0 0 0 0 0 0 1 : 773 0 5 : 269 5 : 37 5 : 7.9

Dew Satz 1b 0 0 0 0 0 0 0 0 1 : 791 0 5 : 282 5 : 40 5 : 8.4

sat4j.jar 0 0 0 0 0 0 0 0 0 0 4 : 580 4 : 267 5 : 31

csat 0 0 0 0 0 0 0 0 0 0 4 : 325 3 : 480 5 : 130

zchaff 0 0 0 0 0 0 0 0 0 0 3 : 213 3 : 12 4 : 82

hsat.5 0 0 0 0 0 0 0 0 0 0 2 : 529 5 : 286 5 : 29

hsat.1 0 0 0 0 0 0 0 0 0 0 2 : 454 4 : 163 5 : 43

Jerusat1.31 B 0 0 0 0 0 0 0 0 0 0 2 : 224 1 : 0.2 5 : 330

zchaff rand 0 0 0 0 0 0 0 0 0 0 1 : 393 3 : 352 2 : 87

hsatrr 0 0 0 0 0 0 0 0 0 0 1 : 0.1 1 : 0.0 3 : 0.0

vallst.sh 0 0 0 0 0 0 0 0 0 0 0 3 : 158 4 : 78

Jerusat1.31 A 0 0 0 0 0 0 0 0 0 0 0 2 : 308 4 : 92

HaifaSatw 0 0 0 0 0 0 0 0 0 0 0 2 : 758 2 : 15

compsat 0 0 0 0 0 0 0 0 0 0 0 1 : 320 2 : 451

HaifaSat 0 0 0 0 0 0 0 0 0 0 0 0 2 : 15

lsatv1.1 0 0 0 0 0 0 0 0 0 0 0 0 1 : 3.2
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Table 13. Lexicographical order of solvers for clause-length k = 5 on satisfiable instances (all solvers which solved at least one instance)

solver 1000 900 800 700 600 500 130 120 110 100 90 80 70

ranov 3 : 3425 3 : 2355 7 : 1153 10 : 1230 10 : 404 10 : 119 5 : 2.5 5 : 0.7 5 : 0.3 5 : 0.2 5 : 0.3 5 : 0.5 5 : 0.1

vw 0 0 1 : 5060 2 : 1836 2 : 3483 7 : 653 5 : 3.8 5 : 2.6 5 : 7.5 5 : 1.2 5 : 0.6 5 : 0.9 5 : 0.9

g2wsat 0 0 0 0 0 4 : 1673 5 : 1.4 5 : 0.7 5 : 1.0 5 : 0.1 5 : 0.1 5 : 0.2 5 : 0.1

adaptnovelty 0 0 0 0 0 3 : 1793 5 : 303 5 : 60 5 : 81 5 : 17 5 : 12 5 : 20 5 : 11

rpaws10 0 0 0 0 0 1 : 302 5 : 2.3 5 : 0.6 5 : 0.9 5 : 0.4 5 : 0.3 5 : 0.3 5 : 0.1

rrsaps 0 0 0 0 0 0 5 : 2.2 5 : 1.5 5 : 0.8 5 : 0.3 5 : 0.3 5 : 0.3 5 : 0.2

saps 0 0 0 0 0 0 5 : 337 5 : 77 5 : 76 5 : 19 5 : 13 5 : 13 5 : 6.9

kcnfs-2004 0 0 0 0 0 0 2 : 753 2 : 3289 5 : 1384 5 : 218 5 : 14 5 : 13 5 : 3.3

Dew Satz 1a 0 0 0 0 0 0 2 : 1141 0 2 : 1796 5 : 754 5 : 253 5 : 62 5 : 7.3

Dew Satz 1b 0 0 0 0 0 0 1 : 1169 0 1 : 958 3 : 241 5 : 221 5 : 64 5 : 7.1

Dew Satz 1c 0 0 0 0 0 0 1 : 1188 0 1 : 954 3 : 238 5 : 220 5 : 64 5 : 7.0

wllsatv1 0 0 0 0 0 0 0 0 0 4 : 2115 5 : 1488 5 : 317 5 : 15

march dl 0 0 0 0 0 0 0 0 0 1 : 3585 5 : 2151 5 : 348 5 : 51

minisat static 0 0 0 0 0 0 0 0 0 0 3 : 3557 5 : 609 5 : 34

SatELiteGTI 0 0 0 0 0 0 0 0 0 0 3 : 3573 5 : 613 5 : 34

sat4j.jar 0 0 0 0 0 0 0 0 0 0 2 : 786 4 : 374 5 : 48

hsat.5 0 0 0 0 0 0 0 0 0 0 0 2 : 372 2 : 72

hsat.1 0 0 0 0 0 0 0 0 0 0 0 2 : 388 2 : 73

vallst.sh 0 0 0 0 0 0 0 0 0 0 0 1 : 27 5 : 156

zchaff 0 0 0 0 0 0 0 0 0 0 0 1 : 6.5 3 : 84

csat 0 0 0 0 0 0 0 0 0 0 0 0 5 : 574

zchaff rand 0 0 0 0 0 0 0 0 0 0 0 0 3 : 375

lsatv1.1 0 0 0 0 0 0 0 0 0 0 0 0 2 : 4.8

HaifaSatw 0 0 0 0 0 0 0 0 0 0 0 0 1 : 196

HaifaSat 0 0 0 0 0 0 0 0 0 0 0 0 1 : 199
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Table 14. Lexicographical order of solvers for clause-length k = 7 on satisfiable instances (all solvers which solved at least one instance)

solver 200 180 160 140 120 75 70 65 60 55 50 45

ranov 1 : 4393 0 8 : 2228 9 : 1179 10 : 127 5 : 21 5 : 11 5 : 5.8 5 : 5.8 5 : 6.0 5 : 4.1 5 : 3.0

g2wsat 0 1 : 667 2 : 5478 9 : 2253 10 : 375 5 : 9.8 5 : 5.8 5 : 2.0 5 : 4.3 5 : 3.9 5 : 1.6 5 : 1.1

rrsaps 0 0 2 : 210 1 : 384 6 : 123 5 : 19 5 : 8.1 5 : 7.3 5 : 5.1 5 : 6.2 5 : 3.9 5 : 2.7

rpaws10 0 0 1 : 799 2 : 221 9 : 373 5 : 25 5 : 8.0 5 : 6.8 5 : 5.3 5 : 5.7 5 : 3.3 5 : 2.7

vw 0 0 0 1 : 4688 3 : 1414 5 : 515 5 : 64 5 : 12 5 : 92 5 : 97 5 : 16 5 : 4.9

adaptnovelty 0 0 0 0 1 : 5048 3 : 1541 5 : 586 5 : 249 5 : 534 5 : 774 5 : 169 5 : 52

saps 0 0 0 0 0 4 : 2138 5 : 451 5 : 138 5 : 243 5 : 241 5 : 87 5 : 23

kcnfs-2004 0 0 0 0 0 1 : 5322 4 : 1485 5 : 433 5 : 329 5 : 150 5 : 43 5 : 12

wllsatv1 0 0 0 0 0 1 : 1223 0 2 : 3996 4 : 2248 5 : 1166 5 : 437 5 : 71

Dew Satz 1a 0 0 0 0 0 0 0 5 : 2020 4 : 2993 5 : 1640 5 : 637 5 : 173

Dew Satz 1c 0 0 0 0 0 0 0 2 : 437 0 2 : 808 5 : 643 5 : 172

Dew Satz 1b 0 0 0 0 0 0 0 2 : 441 0 2 : 793 5 : 639 5 : 173

minisat static 0 0 0 0 0 0 0 1 : 2473 2 : 864 2 : 2373 5 : 1273 5 : 187

SatELiteGTI 0 0 0 0 0 0 0 1 : 2479 2 : 881 2 : 2382 5 : 1253 5 : 188

sat4j.jar 0 0 0 0 0 0 0 0 1 : 113 0 5 : 603 5 : 179

march dl 0 0 0 0 0 0 0 0 0 1 : 2722 2 : 2397 5 : 930

zchaff rand 0 0 0 0 0 0 0 0 0 0 1 : 334 2 : 565

hsat.5 0 0 0 0 0 0 0 0 0 0 1 : 1178 2 : 200

vallst.sh 0 0 0 0 0 0 0 0 0 0 0 4 : 612

csat 0 0 0 0 0 0 0 0 0 0 0 3 : 726

hsat.1 0 0 0 0 0 0 0 0 0 0 0 2 : 244

zchaff 0 0 0 0 0 0 0 0 0 0 0 2 : 634

Jerusat1.31 B 0 0 0 0 0 0 0 0 0 0 0 2 : 759

Jerusat1.31 A 0 0 0 0 0 0 0 0 0 0 0 1 : 224
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