
Journal on Satisfiability, Boolean Modeling and Computation 2 (2006) 1-26

Translating Pseudo-Boolean Constraints into SAT

Niklas Eén niklas@cadence.com

Cadence Berkeley Labs, Berkeley, USA.

Niklas Sörensson nik@cs.chalmers.se

Chalmers University of Technology, Göteborg, Sweden.

Abstract

In this paper, we describe and evaluate three different techniques for translating pseudo-
boolean constraints (linear constraints over boolean variables) into clauses that can be
handled by a standard SAT-solver. We show that by applying a proper mix of translation
techniques, a SAT-solver can perform on a par with the best existing native pseudo-boolean
solvers. This is particularly valuable in those cases where the constraint problem of interest
is naturally expressed as a SAT problem, except for a handful of constraints. Translating
those constraints to get a pure clausal problem will take full advantage of the latest im-
provements in SAT research. A particularly interesting result of this work is the efficiency
of sorting networks to express pseudo-boolean constraints. Although tangential to this
presentation, the result gives a suggestion as to how synthesis tools may be modified to
produce arithmetic circuits more suitable for SAT based reasoning.

Keywords: pseudo-Boolean, SAT-solver, SAT translation, integer linear programming

Submitted October 2005; revised December 2005; published March 2006

1. Introduction

SAT-solvers have matured greatly over the last five years and have proven highly applicable
in the Electronic Design Automation field. However, as SAT techniques are being embraced
by a growing number of application fields, the need to handle constraints beyond pure
propositional SAT is also increasing. One popular approach is to use a SAT-solver as the
underlying decision engine for a more high-level proof procedure working in a richer logic;
typically as part of an abstraction-refinement loop [11, 7]. Another common approach is
to extend the SAT procedure to handle other types of constraints [15], or to work on other
domains, such as finite sets or unbounded integers [20, 29].

In this paper we will study how a SAT-solver can be used to solve pseudo-boolean
problems by a translation to clauses. These problems are also known as 0-1 integer linear
programming (ILP) problems by the linear programming community, where they are viewed
as just a domain restriction on general linear programming. From the SAT point of view,
pseudo-boolean constraints (from now on “PB-constraints”) can be seen as a generalization
of clauses. To be precise, a PB-constraint is an inequality on a linear combination of boolean
variables: C0p0+C1p1+. . .+Cn−1pn−1 ≥ Cn, where the variables pi ∈ {0, 1}. If all constants
Ci are 1, then the PB-constraint is equivalent to a standard SAT clause.

Stemming from the ILP community, pseudo-boolean problems often contain an objective
function, a linear term that should be minimized or maximized under the given constraints.

c©2006 Delft University of Technology and the authors.

N. Eén and N. Sörensson

Adding an objective function is also an extension to standard SAT, where there is no ranking
between different satisfiable assignments.

Recently, a number of PB-solvers have been formed by extending existing SAT-solvers
to support PB-constraints natively, for instance PBS [2], PUEBLO [30], GALENA [13], and,
somewhat less recently, OPBDP [8], which is based on pre-Chaff [24] SAT techniques, but
still performs remarkably well.

In this paper we take the opposite approach, and show how PB-constraints can be
handled through translation to SAT without modifying the SAT procedure itself. The tech-
niques have been implemented in a tool called MINISAT+, including support for objective
functions. One of the contributions of our work is to provide a reference to which native
solvers can be compared. Extending a SAT-solver to handle PB-constraints natively is, ar-
guably, a more complex task than to reformulate the constraint problem for an existing tool.
Despite this, a fair number of native solvers have been created without any real exploration
of the limits of the simpler approach.

Furthermore, translating to SAT results in an approach that is particularly suited for
problems that are almost pure SAT. Given a reasonable translation of the few non-clausal
constraints, one may expect to get a faster procedure than by applying a native PB-solver,
not optimized towards propositional SAT. Hardware verification is a potential application
of this category.

2. Preliminaries

The satisfiability problem. A propositional logic formula is said to be in CNF, conjunctive
normal form, if it is a conjunction (“and”) of disjunctions (“ors”) of literals. A literal is
either x, or its negation ¬x, for a boolean variable x. The disjunctions are called clauses.
The satisfiability (SAT) problem is to find an assignment to the boolean variables, such that
the CNF formula evaluates to true. An equivalent formulation is to say that each clause
should have at least one literal that is true under the assignment. Such a clause is then
said to be satisfied. If there is no assignment satisfying all clauses, the CNF is said to be
unsatisfiable.

The pseudo-boolean optimization problem. A PB-constraint is an inequality C0p0 + C1p1 +
. . . + Cn−1pn−1 ≥ Cn, where, for all i, pi is a literal and Ci an integer coefficient. A true
literal is interpreted as the value 1, a false literal as 0; in particular ¬x = (1 − x). The
left-hand side will be abbreviated by LHS, and the right-hand constant Cn referred to as
RHS. A coefficient Ci is said to be activated under a partial assignment if its corresponding
literal pi is assigned to True. A PB-constraint is said to be satisfied under an assignment
if the sum of its activated coefficients exceeds or is equal to the right-hand side constant
Cn. An objective function is a sum of weighted literals on the same form as an LHS. The
pseudo-boolean optimization problem is the task of finding a satisfying assignment to a set
of PB-constraints that minimizes a given objective function.

3. Normalization of PB-constraints

PB-constraints are highly non-canonical in the sense that there are many syntactically
different, yet semantically equivalent, constraints for which the equivalence is non-trivial

2

Translating Pseudo-Boolean Constraints into SAT

to prove. For obvious reasons, it would be practical to get a canonical form of the PB-
constraints before translating them to SAT, but to the best of our knowledge, no efficiently
computable canonical form for PB-constraints has been found. Still, it makes sense to try
to go some of the way by defining a normal form for PB-constraints. Firstly, it simplifies
the implementation by giving fewer cases to handle; and secondly it may reduce some
constraints and make the subsequent translation more efficient. In MINISAT+ we apply the
following straightforward rules during parsing:

• ≤-constraints are changed into ≥-constraints by negating all constants.

• Negative coefficients are eliminated by changing p into ¬p and updating the RHS.

• Multiple occurrences of the same variable are merged into one term Cix or Ci¬x:

• The coefficients are sorted in ascending order: Ci ≤ Cj if i < j.

• Trivially satisfied constraints, such as “x + y ≥ 0” are removed. Likewise, trivially
unsatisfied constraints (“x + y ≥ 3”) will abort the parsing and make MINISAT+
answer Unsatisfiable.

• Coefficients greater than the RHS are trimmed to (replaced with) the RHS.

• The coefficients of the LHS are divided by their greatest common divisor (“gcd”).
The RHS is replaced by “RHS/gcd”, rounded upwards.

Example: 4x + 3y − 3z ≥ −1 would be normalized as follows:

4x + 3y + 3¬z ≥ 2 (positive coefficients)
3y + 3¬z + 4x ≥ 2 (sorting)
2y + 2¬z + 2x ≥ 2 (trimming)
y + ¬z + x ≥ 1 (gcd)

Furthermore, after all constraints have been parsed, trivial conclusions are propagated.
Concluding “x =True” is considered trivial if setting x to False would immediately make
a constraint unsatisfiable. For example “3x + y + z ≥ 4”, would imply “x =True”. Any
assigned variable will be removed from all constraints containing that variable, potentially
leading to new conclusions. This propagation is run to completion before any PB-constraint
is translated into SAT.

Finally, MINISAT+ performs one more transformation at the PB level to reduce the size
of the subsequent translation to SAT. Whenever possible, PB-constraints are split into a PB
part and a clause part. The clause part is represented directly in the SAT-solver, without
further translation. Example:

4x1 + 4x2 + 4x3 + 4x4 + 2y1 + y2 + y3 ≥ 4

would be split into

x1 + x2 + x3 + x4 + ¬z ≥ 1 (clause part)
2y1 + y2 + y3 + 4z ≥ 4 (PB part)

3

N. Eén and N. Sörensson

where z is a newly introduced variable, not present in any other constraint. The rule is
only meaningful to apply if the clause part contains at least two literals, or if the PB part
is empty (in which case the constraint is equivalent to a clause).

For practical reasons, equality constraints (“3x+2y+2z = 5”) are often considered PB-
constraints. To get a uniform treatment of inequalities and equalities, MINISAT+ internally
represents the RHS of a PB-constraint as an interval [lo, hi] (eg. “3x + 2y + 2z ∈ [5, 5]”).
Open intervals are represented by lo = −∞ or hi = +∞. The parser puts some effort
into extracting closed intervals from the input, so larger-than singleton intervals may ex-
ist. During normalization, closed intervals are first split into two constraints, normalized
individually, and then, if the LHS:s are still the same, merged. However, for simplicity of
presentation, only the “LHS ≥ RHS” form of PB constraints is considered in the remainder
of the paper.

A slightly more formal treatment of PB-normalization can be found in [8], and some
more general work on integer linear constraints normalization in [27]. We note that there
exist 22n

constraints over n variables. A clause can only express 2n of these, whereas a PB-
constraint can express strictly more. To determine exactly how many more, which would
give a number on the expressiveness of PB-constraints, and how to efficiently compute a
canonical representation from any given constraint, is interesting future work.

4. Optimization – the objective function

Assume we have a PB minimization problem with an objective function f(x). A minimal
satisfying assignment can readily be found by iterative calls to the solver. First run the
solver on the set of constraints (without considering the objective function) to get an initial
solution f(x0) = k, then add the constraint f(x) < k and run again. If the problem is
unsatisfiable, k is the optimum solution. If not, the process is repeated with the new
smaller solution.

To be efficient, the procedure assumes the solver to provide an incremental interface,
but as we only add constraints, this is almost trivial. A problem with the approach is that
if many iterations are required before optimum is reached, the original set of constraints
might actually become dominated by the constraints generated by the optimization loop.
This will deteriorate performance.

The situation can be remedied by replacing the previous optimization constraint with
the new one. This is sound since each optimization constraint subsumes all previous ones.
In MINISAT+ this is non-trivial, as the constraint has been converted into a number of
clauses, possibly containing some extra variables introduced by the translation. Those
extra variables might occur among the learned clauses [15] of the SAT-solver, and removing
the original clauses containing those variables will vastly reduce the pruning power of the
learned clauses. For that reason MINISAT+ implements the naive optimization loop above
as it stands; but as we shall see, other mechanisms prevent this from hurting us too much.

5. Translation of PB-constraints

This section describes how PB-constraints are translated into clauses. The primary tech-
nique used by MINISAT+ is to first convert each constraint into a single-output circuit, and

4

Translating Pseudo-Boolean Constraints into SAT

then translate all circuits to clauses by a variation of the Tseitin transformation [32]. The
inputs of each circuit correspond 1-to-1 to the literals of the PB-constraints. The single
output indicates whether the constraint is satisfied or not. As part of the translation to
clauses, every output is forced to True. In MINISAT+, there are three main approaches to
how a circuit is generated from a PB-constraint:

• Convert the constraint into a BDD.
• Convert the constraint into a network of adders.
• Convert the constraint into a network of sorters.

As circuit representation, we use RBCs (reduced boolean circuits) [1], meaning that the
constant signals True and False have been eliminated by propagation, and that any two
syntactically identical nodes have been merged by so-called structural hashing.

The structural hashing is important as all constraints are first converted to circuits,
then to clauses. Constraints over similar sets of variables can often generate the same sub-
circuits. Structural hashing also prevents the optimization loop from blowing up the SAT
problem. Because the optimization constraints differ only in the RHS:s, their translations
will be almost identical. Structural hashing will detect this, and few (or no) clauses will
be added after the first iteration of the optimization loop. This is very important, as the
objective function is often very large.

During the translation to clauses, extra variables are introduced in the CNF to get
a compact representation. However, the goal of translating a PB-constraint into clauses
is not only to get a compact representation, but also to preserve as many implications
between the literals of the PB-constraint as possible. This concept is formalized in th CSP
community under the name of arc-consistency. Simply stated, arc-consistency means that
whenever an assignment could be propagated on the original constraint, the SAT-solver’s
unit propagation, operating on our translation of the constraint, should find that assignment
too. More formally:

Definition. Let x = (x1, x2, . . . , xn) be a set of constraint variables, t =
(t1, t2, . . . , tm) a set of introduced variables. A satisfiability equivalent CNF
translation φ(x, t) of a constraint C(x) is said to be arc-consistent under unit
propagation iff for every partial assignment σ, performing unit propagation on
φ(x, t) will extend the assignment to σ′ such that every unbound constraint
variable xi in σ′ can be bound to either True or False without the assignment
becoming inconsistent with C(x) in either case.

It follows directly from this definition that if σ is already inconsistent with C(x) (that is
C(x) restricted to σ is empty), then unit propagation will find a conflict in φ(x, t).

Although it is desirable to have a translation of PB-constraints to SAT that maintains
arc-consistency, no polynomially bound translation is known. Some important special cases
have been studied in [17, 4, 5, 6]. In particular, cardinality constraints, x1+x2+. . .+xn ≥ k,
can be translated efficiently while maintaining arc-consistency. Using the notion of arc-
consistency, the translations of this paper can be categorized as follows:

• BDDs. Arc-consistent but exponential translation in the worst case.

5

N. Eén and N. Sörensson

• Adders. Not arc-consistent, O(n) sized translation.
• Sorters. Not arc-consistent, but closer to the goal. O(n log2n) sized translation.

The parameter n here is the total number of digits1. in all the coefficients. Translation
through sorting networks is closer to the goal than adder networks in the sense that
more implications are preserved, and for particular cases (like cardinality constraints), arc-
consistency is achieved.

5.1 The Tseitin transformation

The first linear transformation of propositional formulas into CNF by means of introducing
extra variables is usually attributed to Tseitin [32], although the construction has been
independently discovered, in different variations, many times since then. For our purposes,
a propositional formula is nothing but a single-output, tree-shaped circuit. The basic idea
of the transformation is to introduce a variable for each output of a gate. For example, if the
input signals of an And-gate have been given names a and b, a new variable x is introduced
for the output, and clauses are added to the CNF to establish the relation (x↔ a ∧ b).

The final step of the transformation is to insert a unit clause containing the variable
introduced for the single output of the circuit (or, equivalently, the top-node of the formula).
It is easy to see that the models (satisfying assignments) of the resulting CNF are also
models of the original propositional formula, disregarding the extra assignments made to
the introduced variables.

As observed in [26], the transformation can be made more succinct by taking the polarity
under which a gate occurs into account. A gate is said to occur positively if the number of
negations on the path from the gate to the output of the circuit is even, and negatively if it is
odd. Depending on the polarity, only the leftwards or rightwards part of the bi-implication
x↔ φ(a1, a2, . . . , an), where φ is the gate being translated, needs to be introduced. When
applying the Tseitin transformation to a DAG-shaped circuit,2. a gate may occur both
positively and negatively, in which case the full bi-implication must be established.

In the PB-translations to follow, the gate types listed below will be used. The inverter
gate is not part of the list as negations can be handled by choosing the appropriate polarity x
or ¬x of a signal, without adding any clauses. In the listed clause representations, variable
x always denotes the output of the gate under consideration. Clauses that need to be
introduced for a positive/negative occurrence of a gate are marked with a (+)/(−). For
brevity, an over-line is used in place of “¬” to denote negation:

• And(a1, a2, . . ., an). N-ary And-gate. Clause representation:

(−) a1 ∧ a2 ∧ . . . ∧ an → x
(+) a1 → x, a2 → x, . . . , an → x

• Or(a1, a2, . . ., an). N-ary Or gate. Converted to And by DeMorgan’s law.

• Xor(a,b). Binary Xor. Clause representation:

1. The radix does not matter for O-notation.
2. Directed Acyclic Graph. A circuit where outputs may feed into more than one gate.

6

Translating Pseudo-Boolean Constraints into SAT

(−) a ∧ b → x (+) a ∧ b → x

(−) a ∧ b → x (+) a ∧ b → x

• ITE(s,t,f). If-then-else node with selector s, true-branch t, false-branch f, and output
x. Semantics: (s ∧ t) ∨ (¬s ∧ f). Clause representation:

(−) s ∧ t → x (−) s ∧ f → x (red−) t ∧ f → x

(+) s ∧ t → x (+) s ∧ f → x (red+) t ∧ f → x

The two “red”-clauses are redundant, but including them will increase the strength
of unit propagation.

• FA sum(a,b,c). Output x is the “sum”-pin of a full-adder.3. Semantics: Xor(a, b, c).
Clause representation:

(−) a ∧ b ∧ c → x (+) a ∧ b ∧ c → x

(−) a ∧ b ∧ c → x (+) a ∧ b ∧ c → x

(−) a ∧ b ∧ c → x (+) a ∧ b ∧ c → x

(−) a ∧ b ∧ c → x (+) a ∧ b ∧ c → x

• FA carry(a,b,c). Output x is the “carry”-pin of a full-adder. Semantics: a + b +
c ≥ 2. Clause representation:

(−) b ∧ c → x (+) b ∧ c → x
(−) a ∧ c → x (+) a ∧ c → x

(−) a ∧ b → x (+) a ∧ b → x

• HA sum. The “sum”-output of a half-adder. Just another name for Xor.

• HA carry. The “carry”-output of a half-adder. Just another name for And.

For the ITE-gate, two redundant clauses (marked by “red”) are added, even though they
are logically entailed by the other four clauses. The purpose of these two clauses is to
allow unit propagation to derive a value for the gate’s output when the two inputs t and f
are the same, but the selector s is still unbound. These extra propagations are necessary
to achieve arc-consistency in our translation through BDDs (section 5.3). In a similar
manner, propagation can be increased for the full-adder by adding the following clauses to
the representation:4.

xcarry ∧ xsum → a xcarry ∧ xsum → a

xcarry ∧ xsum → b xcarry ∧ xsum → b
xcarry ∧ xsum → c xcarry ∧ xsum → c

3. A full-adder is a 3-input, 2-output gate producing the sum of its inputs as a 2-bit binary number. The
most significant bit is called “carry”, the least significant “sum”. A half-adder does the same thing, but
has only 2 inputs (and can therefore never output a “3”).

4. Since we have split the full-adder into two single-output gates, we need to keep track of what sums and
carries belong together to implement this.

7

N. Eén and N. Sörensson

In general, one wants the propagation of the SAT-solver to derive as many unit facts as
possible. The alternative is to let the solver make an erroneous assumption, derive a conflict,
generate a conflict-clause and backtrack—a much more costly procedure. If we can increase
the number of implications made by the unit propagation (the implicativity 5. of the CNF)
without adding too many extra clauses, which would slow down the solver, we should expect
the SAT-solver to perform better. In general it is not feasible (assuming P 6= NP) to make
all implications derivable through unit propagation by adding a sub-exponential number
of clauses; that would give a polynomial algorithm for SAT. However, two satisfiability
equivalent CNFs of similar size may have very different characteristics with respect to their
implicativity. This partially explains why different encodings of the same problem may
behave vastly differently. It should be noted that implicativity is not just a matter of
“much” or “little”, but also a matter of what cascading effect a particular choice of CNF
encoding has. For a specific problem, some propagation paths may be more desirable than
others, and the clause encoding should be constructed to reflect this.

5.2 Pseudo-code Conventions

In the pseudo-code of subsequent sections, the type “signal” represents either a primary
input, or the output of a logical gate. The two special signals “True” and “False” can be
viewed as outputs from pre-defined, zero-input gates. They are automatically removed by
simplification rules whenever possible. For brevity, we will use standard C operators “&,
|,ˆ” (also in contracted form “&=”) to denote the construction of an And, Or, and Xor

gates respectively. The datatype “vec” is a dynamic vector, and “map” is a hash-table. In
the code, we will not make a distinction between word-sized integers and so-called big-ints.
In a practical implementation, one may need to use arbitrary precision integers for the
coefficients of the PB-constraints.

5.3 Translation through BDDs

A simple way of translating a PB-constraint into clauses is to build a BDD representation
[12] of the constraint, and then translate that representation into clauses. The BDD con-
struction is straightforward, and provided that the final BDD is small, a simple dynamic
programming procedure works very efficiently (see Figure 3). In general, the variable order
can be tuned to minimize a BDD, but a reasonable choice is to order the variables from the
largest coefficient to the smallest. A rule of thumb is that important variables, most likely
to affect the output, should be put first in the order. In principle, sharing between BDDs
originating from different constraints may be improved by a more globally determined order,
but we do not exploit that option.

Once the BDD is built, it can simply be treated as a circuit of ITEs (if-then-else gates)
and translated to clauses by the Tseitin transformation. This is how MINISAT+ works.
An example of a BDD translation, before and after reduction to the constant-free RBC
representation, is shown in Figure 2. An alternative to using the Tseitin transformation,
which introduces extra variables for the internal nodes, is to translate the BDD directly to
clauses without any extra variables. This is done in [3], essentially by enumerating all paths

5. This terminology is introduced in [25], but the concept is studied in the CSP community as different
consistency criteria (and methods to maintain them).

8

Translating Pseudo-Boolean Constraints into SAT

to the False terminal of the BDD. Yet another way to generate clauses from a decision
diagram is to synthesize a multi-level And-Inverter graph, for instance by weak-division
methods suggested by [23], and then apply the Tseitin transformation to that potentially
much smaller circuit.

Analysis. BDDs can be used to translate cardinality constraints

a

1 0

b

1

c

1

d

1

b

0

c

d

e

c

0

d

e

f

Figure 1. BDD for
the cardinality constraint
a+ b+ c+d+ e+ f ≥ 3.

to a polynomially sized circuit. More precisely, x1+x2+. . .+xn ≥
k results in a BDD with (n − k + 1) × k nodes, as illustrated in
Figure 1. It is proven that in general a PB-constraint can gen-
erate an exponentially sized BDD [6]. Hence, in practice, a limit
on the size must be imposed during the BDD construction. How-
ever, if the BDD is successfully built and translated by the Tseitin
transformation, the resulting CNF preserves arc-consistency.

Proof: For simplicity, consider the ITE circuit without com-
paction by RBC rules. The result generalizes to RBCs in a
straightforward manner. The BDD terminals are translated to
literals fixed to True and False. Now, consider a translation
of constraint C under the partial assignment σ. Let pk be the
unbound literal of C with the highest index. Observation: Since
pk is toggling the biggest coefficient, either C, σ |= pk, or no im-
plications exist. A smaller coefficient cannot be necessary if a
bigger one is not. By the Tseitin transformation, the single out-
put of the top-node is forced to True. For any node, if the
BDD-variable (“selector”) is bound, a True on the output will
propagate down to the selected child. Because all literals pi,
where i > k, are bound and appear above pk in the BDD (due
to the variable order we use), True will propagate down to a
unique BDD-node, call it N , branching on pk. Furthermore, if a BDD-variable is bound,
and the selected child is False, it will propagate upwards. Similarly, if both children are
bound to False, it will propagate upwards by the redundant “red” clauses of our ITE

translation (section 5.1). Inductively, if a BDD-node is equivalent to False under σ, the
variable introduced for its output will be bound to False by unit propagation. Thus, if
C, σ |= pk, the variable introduced for the false-branch of N is False, and the output of N
is True, which together will propagate pk =True. �

Related Work. The PB-solver PB2SAT [6] also translates PB-constraints to clauses via
BDDs. The authors observe that the false-branch always implies the true-branch if the
BDD is generated from a PB-constraint (or indeed any unate function). Using this fact, the
Tseitin transformation can be improved to output two 3-clauses and two 2-clauses instead
of six 3-clauses,6. and still maintain arc-consistency.

The translation in [3] produces a minimal CNF under the assumption that no extra vari-
ables may be introduced. However, even polynomially sized BDDs can have an exponential
translation to clauses under that assumption.

6. Although only half of the clauses will be instantiated if the BDD node occurs with only one polarity.

9

N. Eén and N. Sörensson

a

1 0

b

1

c

1

d

1

e

1

f

1

g

1

h

1

b

0

c

1

d

1

e

1

f

1

c

0

d

0

e

f

g

e

0

f

g

h

i

a b

&c

&d

&e

&f

&g

&h

&

&

&

&

&

&

&

&

ITE

ITE

ITE

&

ITE

ITE

ITE i

ITE

Figure 2. The BDD, and corresponding RBC, for the constraint “a + b + 2c + 2d + 3e +
3f + 3g + 3h + 7i ≥ 8”. The BDD terminals are denoted by “0” and “1”. A circle (“o”) marks
the false-branch of a BDD-node, a dash (“-”) marks the true-branch. In the RBC representation
on the right, the unmarked edge is the selector (written, as customary, inside the node for the
BDD). A solid circle (“•”) denotes negation. Variables are ordered from the largest coefficient to
the smallest, which has as consequence that no edge skips a variable in the BDD. Because the
false-branch implies the true-branch of each node (assuming only positive coefficients, as in this
example), no edge to the False terminal comes from a true-branch.

5.4 Translation through Adder Networks

This section describes the translation of PB-constraints into clauses through half- and full-
adders. First let us introduce some notation:

Definition. A k-bit is a signal whose interpretation in the current context is
the numeric value k. We will simply say that the bit has the value k.

The concept of k-bits is useful when manipulating bits representing numbers, or sums of
numbers. Example: When adding two binary numbers “a3a2a1a0” and “b1b0”, we call a3

an 8-bit (it contributes 8 to the sum if set). Signals a1 and b1 are the two 2-bits of the sum.

10

Translating Pseudo-Boolean Constraints into SAT

signal buildBDD(vec〈int〉 Cs, vec〈signal〉 ps, int rhs,
int size, int sum, int material left, map〈pair〈int ,int〉, signal〉 memo)

{
if (sum ≥ rhs) return True

else if (sum + material left < rhs) return False

key = (size, sum)
if (memo[key] == Undef) {

size−−
material left −= Cs[size]
hi sum = sign(ps[size]) ? sum : sum + Cs[size]
lo sum = sign(ps[size]) ? sum + Cs[size] : sum
hi result = buildBDD(Cs, ps, rhs, size, hi sum, material left, memo)
lo result = buildBDD(Cs, ps, rhs, size, lo sum, material left, memo)
memo[key] = ITE (var(ps[size]), hi result, lo result)

}

return memo[key]
}

Figure 3. Building a BDD from the PB-constraint “Cs·ps ≥ rhs”. The functions used in the
code do the following: “sign(p)” returns the sign of a literal (True for ¬x, False for x); “var (p)”
returns the underlying variable of a literal (i.e. removes the sign, if any); and “ITE (cond,hi,lo)” con-
structs an if-then-else gate. The types vec〈·〉” (a dynamic vector) and “map〈·, ·〉” (a hash table)
are assumed to be passed-by-reference (the reasonable thing to do), whereas primitive datatypes,
such as “int”, are assumed to be passed-by-value. The BDD construction is initiated by calling
“buildBDD ()” with “size” set to the number of coefficients in the LHS, “sum” set to zero, “mate-
rial left” set to the sum of all coefficients in the LHS, and “memo” to an empty map.

Definition. A bucket is a bit-vector where each bit has the same value. A
k-bucket is a bucket where each bit has the value k.

Definition. A binary number is a bit-vector where the bits have values in
ascending powers of 2 (the standard representation of numbers in computers).

The translation of PB-constraints to clauses is best explained through an example. Consider
the following constraint:

2a + 13b + 2c + 11d + 13e + 6f + 7g + 15h ≥ 12

One way to enforce the constraint is to synthesize a circuit which adds up the activated
coefficients of the LHS to a binary number. This number can then be compared with the
binary representation of the RHS (just a lexicographical comparison). The addition and
the corresponding buckets for the above constraint look as follows:

11

N. Eén and N. Sörensson

00a0

bb0b

00c0

d0dd

ee0e

0ff0

0ggg

+ hhhh

Bucket: Content:

1-bits: [b,d,e,g,h]
2-bits: [a,c,d,f,g,h]
4-bits: [b,e,f,g,h]
8-bits: [b,d,e,h]

The goal is to produce the sum as a binary number. It can be done as follows: Repeatedly
pick three 2n-bits from the smallest non-empty bucket and produce, through a full-adder,
one 2n+1-bit (the carry) and one 2n-bit (the sum). The new bits are put into their respective
buckets, possibly extending the set of buckets. Note that each iteration eliminates one bit
from the union of buckets. When a bucket only has two bits left, a half-adder is used instead
of a full-adder. The last remaining bit of the 2n-bucket is removed and stored as the nth

output bit of the binary sum. It is easy to see that the number of adders is linear in the
combined size of the initial buckets.

Pseudo-code for the algorithm is presented in Figure 5. We note that the buckets can
be implemented using any container, but that choosing a (FIFO) queue—which inserts and
removes from different ends—will give a balanced, shallow circuit, whereas using a stack—
which inserts and removes from the same end—will give an unbalanced, deep circuit. It is
not clear what is best for a SAT-solver, but MINISAT+ uses a queue.

For the lexicographical comparison between the LHS sum and the RHS constant, it is
trivial to create a linear sized circuit. However, as we expect numbers not to be exceedingly
large, we synthesize a comparison circuit that is quadratic in the number of bits needed to
represent the sum (Figure 6). It has the advantage of not introducing any extra variables
in the SAT-solver, as well as producing fewer (although longer) clauses.

Analysis. Adder networks provide a compact, linear (both in

FA

FA

FA

HA

c s

c s

sc

c s

y2 y1 y0

x5 x4 x3 x2 x1 x0

Figure 4. Adder circuit
for the sum x0 + ... + x5.

time and space) translation of PB-constraints. However, the gen-
erated CNF does not preserve arc-consistency under unit propa-
gation. Consider the cardinality constraint x0 + x1... + x5 ≥ 4.
The adder network synthesized for the LHS is shown in Figure 4.
The RHS corresponds to asserting y2. Now, assume x0 and x3

are both False. In this situation, the remaining inputs must all
be True, but no assignment will be derived by unit propagation.

Another drawback of using adder networks is the carry prop-
agation problem. Assume that x0 and x3 are now True instead.
The two lower full-adders and the half-adder are summing 1-bits.
Ideally, feeding two True-signals should generate a carry-out to
the top full-adder, which is summing 2-bits. But because it can-
not be determined which of the three outputs to the top full-adder
is going to generate the carry, no propagation takes place.

Related Work. The algorithm described in this section is very
similar to what is used for Dadda Multipliers to sum up the par-
tial products [14]. A more recent treatment on multipliers and

12

Translating Pseudo-Boolean Constraints into SAT

adder networks can be found in [10]. Using adder networks to implement a linear transla-
tion of PB-constraint to circuits has been done before in [33, 3, 31], but the construction
presented here uses fewer adders.

5.5 Translation through Sorting Networks

Empirically it has been noted that SAT-solvers tend to perform poorly in the presence of
parity constraints. Because all but one variable must be bound before anything can prop-
agate, parity constraints generate few implications during unit propagation. Furthermore,
they tend to interact poorly with the resolution based conflict-clause generation of contem-
porary SAT-solvers. Because full-adders contain Xor (a parity constraint) we might expect
bad results from using them extensively. In the previous section it was shown that translat-
ing cardinality constraints to adder networks does not preserve arc-consistency, which gives
some theoretical support for this claim. Furthermore, the interpretation of a single bit in
a binary number is very weak. If, for example, the third bit of a binary number is set, it
means the number must be ≥ 8. But if we want to express ≤ 8, or ≥ 6 for that matter,
a constraint over several bits must be used. This slows down the learning process of the
SAT-solver, as it does not have the right information entities to express conflicts in.

To alleviate the problems inherent to full-adders we propose, as in [4], to represent
numbers in unary instead of in binary. In a unary representation, all bits are counted
equal, and the numerical interpretation of a bit-vector is simply the number of bits set to
True. A bit-vector of size 8, for example, can represent the numbers n ∈ [0, 8]. Each such
number will in the construction to follow be connected to a sorting network,7. which allows
the following predicates to be expressed by asserting a single bit: n ≥ 0, n ≥ 1, . . ., n ≥ 8,
and n ≤ 0, n ≤ 1, . . ., n ≤ 8. Although the unary representation is more verbose than
the binary, we hypothesize that the Xor-free sorters increase the implicativity, and that
the SAT-solver benefits from having better information entities at its disposal for conflict-
clause generation. The hypothesis is to some extent supported by our experiments, and we
furthermore prove that the sorter-based translation of this section is arc-consistent for the
special case of cardinality constraints.

To demonstrate how sorters can be used to translate PB-constraints, consider the fol-
lowing example:

x1 + x2 + x3 + x4 + x5 + x6 + 2y1 + 3y2 ≥ 4

The sum of the coefficients is 11. For this constraint one could synthesize a sorting network
of size 11, feeding y1 into two of the inputs, y2 into three of the inputs, and all the signals
xi into one input each. To assert the constraint, one just asserts the fourth output bit of
the sorter.

Now, what if the coefficients of the constraint are bigger than in this example? To
generalize the above idea, we propose a method to decompose the constraint into a number
of interconnected sorting networks. The sorters will essentially play the role of adders on
unary numbers. Whereas the adder networks of the previous section worked on binary
numbers—restricting the computation to buckets of 1-bits, 2-bits, 4-bits, and so on for each
power of 2— the unary representation permits us the use of any base for the coefficients,

7. MINISAT+ uses odd-even merge sorters [9].

13

N. Eén and N. Sörensson

adderTree(vec〈queue〈signal〉〉 buckets, vec〈signal〉 result)
{

for (i = 0; i < buckets.size(); i++) {

while (buckets[i].size() ≥ 3) {
(x,y,z) = buckets[i].dequeue3 ()
buckets[i].insert(FA sum(x,y,z))
buckets[i+1].insert(FA carry(x,y,z)) }

if (buckets[i].size() == 2) {
(x,y) = buckets[i].dequeue2 ()
buckets[i].insert(HA sum(x,y))
buckets[i+1].insert(HA carry(x,y)) }

result[i] = buckets[i].dequeue()
}

}

Figure 5. Linear-sized addition tree for the coefficient bits. The bits of “buckets[]” are
summed up and stored in the output vector “result[]” (to be interpreted as a binary number). Each
vector is dynamic and extends automatically when addressed beyond its current last element. The
“queue” could be any container type supporting “insert ()” and “dequeue()” methods. The par-
ticular choice will influence the shape of the generated circuit. Abbreviations “FA” and “HA” stand
for full-adder and half-adder respectively.

// Generates clauses for “xs ≤ ys”, assuming one of them has only constant signals.

lessThanOrEqual(vec〈signal〉 xs, vec〈signal〉 ys, SatSolver S)
{

while (xs.size() < ys.size()) xs.push(False) // Make equal-sized by padding
while (ys.size() < xs.size()) ys.push(False)

for (i = 0; i < xs.size(); i++) {
c = False

for (j = i+1; j < xs.size(); j++)
c |= (xs[j]ˆys[j]) // “c = OR(c, XOR(xs[j], ys[j]))”

c |= ¬xs[i] | ys[i] // Note, at this point “c 6= False”
S.addClause(c)

}
}

Figure 6. Compare a binary number “xs” to the RHS constant “ys”. One of the input vectors
must only contain the constant signals True and False. If not, the function still works, except
that “c” is not necessarily a clause when reaching “addClause()”, so the call has to be replaced
with something that can handle general formulas. Notation: the method “push()” appends an
element to the end of the vector. In practice, as we put signals into the clause “c”, we also apply
the Tseitin transformation to convert the transitive fan-in (“all logic below”) of those signals into
clauses. Those parts of the adder network that are not necessary to assert “xs≤ ys” will not be put
into the SAT-solver.

14

Translating Pseudo-Boolean Constraints into SAT

including a mixed radix representation. The first part of our construction will be to find a
natural base in which the constraint should be expressed.

Definition. A base B is a sequence of positive integers Bi, either finite
〈B0, . . . , Bn−1〉 or infinite.

Definition. A number d in a base B is a finite sequence 〈d0, . . . , dm−1〉 of digits
di ∈ [0, Bi − 1]. If the base is finite, the sequence of digits can be at most one
element longer than the base. In that case, the last digit has no upper bound.

Definition. Let tail(s) be the sequence s without its first element. The value
of a number d in base B is recursively defined through:

value(d, B) = d0 + B0 × value(tail(d), tail(B))

with the value of an empty sequence d defined as 0.

Example: The number 〈2, 4, 10〉 in base 〈3, 5〉 should be interpreted as 2 + 3 × (4 + 5 ×
10) = 2×1+4×3+10×15 = 164 (bucket values in boldface). Note that numbers may
have one more digit than the size of the base due to the ever-present bucket of 1-bits. Let
us outline the decomposition into sorting networks:

• Find a (finite) base B such that the sum of all the digits of the coefficients written in
that base, is as small as possible. The sum corresponds to the number of inputs to
the sorters we will synthesize, which in turn roughly estimates their total size.8.

• Construct one sorting network for each element Bi of the base B. The inputs to the
ith sorter will be those digits d (from the coefficients) where di is non-zero, plus the
potential carry bits from the i-1th sorter.

We will explain the details through an example. Consider the constraint:

a + b + 2c + 2d + 3e + 3f + 3g + 3h + 7i ≥ 8

Assume the chosen base B is the singleton sequence 〈3〉, meaning we are going to compute
with buckets of 1-bits and 3-bits. For the constraint to be satisfied, we must either have
at least three 3-bits (the LHS ≥ 9), or we must have two 3-bits and two 1-bits (the LHS
= 8). Our construction does not allow the 1-bits to be more than two; that would generate
a carry bit to the 3-bits.

In general, let di be the number in base B representing the coefficient Ci, and drhs the
number for the RHS constant. In our example, we have:

8. In MINISAT+, the base is an approximation of this: the best candidate found by a brute-force search
trying all prime numbers < 20. This is an ad-hoc solution that should be improved in the future. Finding
the optimal base is a challenging optimization problem in its own right.

15

N. Eén and N. Sörensson

Figure 7. Sorting networks for the constraint “a+ b+2c+2d+3e+3f +3g +3h+7i ≥ 8”
in base 〈3〉. Sorters will output 0:s at the top and 1:s at the bottom. In the figure, “lhs” is the
value of the left-hand side of the PB-constraint, and “%” denotes the modulo operator. In base
〈3〉, 8 becomes 〈2, 2〉, which means that the most significant digit has to be either > 2 (which
corresponds to the signal “lhs ≥ 9” in the figure), or it has to be = 2 (the “lhs ≥ 6” signal) and at
the same time the least significant digit≥ 2 (the “(lhs % 3)≥ 2” signal). For clarity this logic is left
out of the figure; adding it will produce the single-output circuit representing the whole constraint.

d0, d1 = 〈1, 0〉 (digits for the a and b terms)
d2, d3 = 〈2, 0〉 (digits for the c and d terms)
d4.. d7 = 〈0, 1〉 (digits for the e, f, g, and h terms)
d8 = 〈1, 2〉 (digits for the i term)
drhs = 〈2, 2〉 (digits for the RHS constant)

The following procedure, initiated by “genSorters(0, ∅)”, recursively generates the sorters
implementing the PB-constraint:

genSorters(n, carries)
- Synthesize a sorter of size: (

∑
i d

i
n)+|carries|. Inputs are taken from the elements

of carries and the pi:s of the constraint: signal pi is fed to di
n inputs of the sorter.9.

- Unless n = |B|: Pick out every Bn:th output bit and put in new carries (the
outputs: out [Bn], out [2Bn], out [3Bn] etc.). Continue the construction with gen-
Sorters(n + 1, new carries).

Figure 7 shows the result for our example. Ignore for the moment the extra circuitry for
modulo operation (the “lhs % 3 ≥ 2” signal). We count the output pins from 1 instead of 0
to get the semantics out [n] = “at least n bits are set”.

On the constructed circuit, one still needs to add the logic that asserts the actual
inequality LHS ≥ RHS. Just like in the case of adder networks, a lexicographical comparison
is synthesized, but now on the mixed radix base. The most significant digit can be read
directly from the last sorter generated, but to extract the remaining digits from the other
sorters, bits contributing to carry-outs have to be deducted. This is equivalent to computing
the number of True bits produced from each sorter modulo Bi. Figure 8 shows pseudo-code
for the complete lexicographical comparison synthesized onto the sorters. In our running

9. Implementation note: The sorter can be improved by using the fact that the carries are already sorted.

16

Translating Pseudo-Boolean Constraints into SAT

// Does the sorter output “out[1..size]” represent
a number ≥ “lim” modulo “N”?

signal modGE (vec〈signal〉 out, int N, int lim)
if (lim == 0) return True

result = False

for (j = 0; j < out.size(); j += N)
result |= out[j + lim] & ¬out[j+N]
// let out[n] = False if n is out-of-bounds

return result

signal lexComp(int i)
if (i == 0)

return True

else
i−−
out = “output of sorters[i]”
gt = modGE (out, Bi, drhs

i
+ 1)

ge = modGE (out, Bi, drhs

i
)

return gt | (ge & lexComp(i))

Figure 8. Adding lexicographical comparison. In the code, “sorters” is the vector of sorters
produced by “genSorters()”—at most one more than |B|, the size of the base used. The procedure
is initialized by calling “lexComp(sorters.size())”. Let Bi = +∞ for i = |B| (in effect removing the
modulus part of “modGE ()” for the most significant digit). The drhs is the RHS constant written
in the base B. Operators “&” and “|” are used on signals to denote construction of And and Or

gates.

example, the output would be the signal “(lhs ≥ 9) ∨ ((lhs ≥ 6) ∧ (lhs % 3 ≥ 2))” (again,
see Figure 7), completing the translation.

Analysis. In base 〈2∗〉 = 〈2, 2, . . .〉, the construction of this section becomes congruent
to the adder based construction described in the previous section. Sorters now work as
adders because of the unary number representation, and as an effect of this, the carry
propagation problem disappears. Any carry bit that can be produced will be produced
by unit propagation. Moreover, the unary representation provides the freedom to pick any
base to represent a PB-constraint, which recovers some of the space lost due to the more
verbose representation of numbers.

Let us study the size of the construction. An odd-even merge sorter contains n · log n ·
(1 + log n) ∈ O(n log2n) comparators,10. where n is the number of inputs. Dividing
the inputs between two sorters cannot increase the total size, and hence we can get an
upper bound by counting the total number of inputs to all sorters and pretend they were
all connected to the same sorter. Now, the base used in our construction minimizes the
number of inputs, including the ones generated from carry-ins, so choosing the specific base
〈2∗〉 can only increase the number of inputs. In this base, every bit set to 1 in the binary
representation of a coefficient will generate an input to a sorter. Call the total number
of such inputs N . On average, every input will generate 1/2 a carry-out, which in turn
will generate 1/4 a carry-out and so forth, bounding the total number of inputs, including
carries, to 2N . An upper limit on the size of our construction is thus O(N log 2N), where N
can be further bound by dlog2(C0)e+ dlog2(C1)e+ . . . + dlog2(Cn−1)e, the number of digits
of the coefficient in base 2. Counting digits in another base does not affect the asymptotic
bound.

10. A comparator is a two-input, two-output gate which sorts two elements. For boolean inputs, the outputs,
called “min” and “max”, corresponds to an And-gate and an Or-gate respectively.

17

N. Eén and N. Sörensson

p7 → 0

p5 → 0

p3 → 0

p2 → 0

1← q4

0 q8

0 q7

0 q6

0 q5

p8 1

p6 1

p4 1

p1 1

q3

q2

q1

Figure 9. Propagation trough an 8-sorter. Forced values are denoted by an arrow; four inputs
are set to 0 and one output is set to 1. The thick solid lines show how the 0 s propagate towards
the outputs, the thin dashed lines show how 1 propagate backwards to fill the unassigned inputs.

By our construction, the cardinality constraint p1 + . . . + pn ≥ k translates into a single
sorter with n inputs, p1, . . . , pn, and n outputs, q1, . . . , qn (sorted in descending order), where
the kth output is forced to True. We claim that unit propagation preserves arc-consistency.
First we prove a simpler case:

Theorem: Assume exactly n−k of the inputs pi are set to 0, and that all of the outputs
q1, . . . , qk are set to 1 (not just qk), then the remaining unbound inputs will be assigned
to 1 by unit propagation.

Proof: First note that the clauses generated for a single comparator locally preserve
arc-consistency. It allows us to reason about propagation more easily. Further note that
unit propagation has a unique result, so we are free to consider any propagation order. For
brevity write 1, 0, and X for True, False and unbound signals.

Start by considering the forward propagation of 0 s. A comparator receiving two 0 s will
output two 0 s. A comparator receiving a 0 and an X will output a 0 on the min-output
and an X on the max-output. Essentially, the X s are behaving like 1 s. No 0 is lost, so
they must all reach the outputs. Because the comparators comprise a sorting network, the
0 s will appear contiguously at the highest outputs (see Figure 9).

Now all outputs are assigned. Consider the comparators in a topologically sorted order,
from the outputs to the inputs. We show that if both outputs of a comparator are assigned,
then by propagation both inputs must be assigned. From this follows by necessity that the
1 s will propagate backwards to fill the X s of the inputs. For each comparator, there are
two cases (i) both outputs have the same value, in which case propagation will assign both
inputs to that value, and (ii) the min-output of the comparator is 0 and the max-output
is 1. In the latter case, the 0 must have been set during the forward propagation of 0 s, so
one of the comparator’s inputs must be 0, and hence, by propagation, the other input will
be assigned to 1. �

To show the more general case—that it is enough to set only the output qk to 1—takes
a bit more work, but we outline the proof (Figure 9 illustrates the property):

− Consider the given sorter where some inputs are forced to 0. Propagate the 0 s to
the outputs. Now, remove any comparator (disconnecting the wires) where both

18

Translating Pseudo-Boolean Constraints into SAT

inputs and outputs are 0. For any comparator with both 0 and X inputs (and
outputs), connect the X signals by a wire and remove the comparator. Do the same
transformation if X is replaced by 1. Keep only the network reachable from the
primary inputs not forced to 0. In essence: remove the propagation paths of the 0 s.

− Properties of the construction: (a) propagations in the new network correspond 1-to-1
with propagations in the original network, (b) the new network is a sorter.

− The original problem is now reduced to show that for a sorter of size k, forcing its top
output11. will propagate 1 s to all of its inputs (and hence all signals of the network).

− Assume the opposite, that there exists an assignment of the signals that cannot propa-
gate further, but which contains X. From the set of such assignments, pick a maximal
element, containing as many 1 s as possible. An X can only appear in one of the
following four configurations:

x x

1 1

1 x

x 1

x x

x 1

x x

x x

(1) (2) (3) (4)

Assume first that (3) and (4) do not exist. In such a network, X behaves exactly as
a 0 would do, which means that if we put 0 s on the X inputs, they would propagate
to the outputs beneath the asserted 1 at the top, which violates the assumption that
the network is sorting.

− One of the situations (3) or (4) must exist. Pick a comparator with such a configura-
tion of X s and set the lower input to 1. A detailed analysis, considering the four ways
X s can occur around a comparator, shows that unit propagation can never assign
a value to the X of the upper output of the selected comparator, contradicting the
assumption of the assignment being maximal and containing X. To see this, divide the
possible propagations into forward propagations (from inputs to outputs) and non-
forward propagations (from outputs to inputs/outputs). A non-forward propagation
can only propagate 1 s leftwards or downwards. A forward-propagation can never
initiate a non-forward propagation. �

Unfortunately, arc-consistency is broken by the duplication of inputs, both to the same
sorter and between sorters. Duplication within sorters can be avoided by using base 〈2∗〉, but
duplication between sorters will remain. Potentially some improvement to our translation
can re-establish arc-consistency in the general case, but it remains future work.

Related Work. Sorting networks is a well-studied subject, treated thoroughly by Knuth
in [18]. For a brief tutorial on odd-even merge sorters, the reader is referred to [28]. In
[4] an arc-consistent translation of cardinality constraints based on a O(n2) sized sorter
(or “totalizer” by the authors terminology) is presented. The proof above shows that any
sorting network will preserve arc-consistency when used to represent cardinality constraints.
More generally, the idea of using sorting networks to convert non-clausal constraints into
SAT has been applied in [19]. The authors sort not just bits, but words, to be able to
more succinctly express uniqueness between them. Without sorting, a quadratic number
of constraints must be added to force every word to be distinct, whereas the bitonic sorter

11. Assume the orientation of Figure 9 for “up” and “down”.

19

N. Eén and N. Sörensson

used in that work is O(n log2n). In [16] a construction similar to the one presented in
this section is used to produce a multiplier where the partial products are added by sorters
computing on unary numbers. Although the aim of the paper is to remove Xors, which may
have a slow implementation in silicon, the idea might be even better suited for synthesis
geared towards SAT-based verification. Finally, in [34], the carry propagation problem of
addition networks is also recognized. The authors solve the problem a bit differently, by
preprocessing the netlist and extending the underlying SAT-solver, but potentially sorters
can be used in this context too.

6. Evaluation

This section will report on two things:

• The performance of MINISAT+ compared to other PB-solvers.
• The effect of the different translation techniques.

It is not in the scope of this paper to advocate that PB-solving is the best possible solution
for a particular domain specific problem, and no particular application will be studied.

6.1 Relative performance to other solvers

In conjunction with the SAT 2005 Competition, a pseudo-boolean evaluation track was
also arranged.12. MINISAT+ participated in this evaluation together with 7 other solvers.
Because not all solvers could handle arbitrary precision integers, the benchmark set was
divided into small, medium and big integers. From the results, it seems that only the big
category was problematic (greater than 30-bit integers), so we have merged the other two
categories here. Not all problems had an objective function, so problems were also divided
into optimization and pseudo-boolean satisfiability problems.

Small/medium ints. (577 benchmarks)

Solver #solved-to-opt.

bsolo 187
minisat+ 200
PBS4 166
Pueblo 194
sat4jpseudo 139
pb2sat+zchaff 150

Big integers (482 benchmarks)

Solver #solved-to-opt.

bsolo 9
minisat+ 26
PBS4 (buggy)
Pueblo N/A
sat4jpseudo 3
pb2sat+zchaff 11

Figure 10. PB-evaluation 2005. Problems with objective function, solved to optimality.

Out of the the 8 solvers, 3 was found to be unsound, reporting “UNSAT” for problems
where other solvers found verifiable models. However, one of these solver, PBS4, seemed
only to be incorrect for big integers, so we still consider this solver. But the other two,
GALENA and VALLST are excluded from our tables, as they have multiple erroneous “UN-
SAT” answers, even in the small integer category. The results of the remaining solvers can
be found in Figure 10 and Figure 11. In the evaluation, MINISAT+ selected translation

12. http://www.cril.univ-artois.fr/PB05/ (see also [22, 21, 6, 2, 30, 13])

20

http://www.cril.univ-artois.fr/PB05/

Translating Pseudo-Boolean Constraints into SAT

method using the following ad-hoc heuristic, applied to each constraint: If the BDD trans-
lation is really compact, use that; otherwise, if the sorting network is not extremely large,
use that; otherwise, fall back on adder networks (which are compact).

From the results we conclude No optimization function (113 benchmarks)

Solver #solved (sat/unsat)

bsolo 44 (8/36)
minisat+ 78 (35/43)
PBS4 89 (28/61)
Pueblo 103 (42/61)
sat4jpseudo 69 (17/52)
pb2sat+zchaff 78 (36/42)

Figure 11. PB-evaluation 2005. No objective func-
tion, just satisfiability (on small integers).

that MINISAT+ and PUEBLO were
the two strongest solvers partici-
pating in the evaluation. Although
it would be interesting to compare
these solvers to commercial LP solvers
such as CPLEX, for practical rea-
sons this has not been done—no
LP solver was part of the evalua-
tion, and CPLEX requires a license.

6.2 Efficiency of different
translation techniques

In this section, the three different translation techniques are evaluated on a random sample
of benchmarks, drawn from the PB-evaluation set. Each benchmark is evaluated over 9
different parameters to MINISAT+:

• All constraints are translated using one and the same technique (3 choices).
• The objective function is translated using any of the techniques (3 choices).

The reason for treating the objective function separately, is that the optimization constraints
generated from it are often very different from the problem constraints. The benchmarks
were selected by the following procedure:

• Pick one of the 9 settings for MINISAT+.
• Pick one of the 1176 benchmarks from the evaluation set.
• If MINISAT+ could solve it within 10 minutes, keep it.
• Repeat until 40 benchmarks have been accumulated.

The procedure should give a reasonably unbiased benchmark set.13. Run-times and trans-
lation sizes (relative to the PB-formulation) are presented in Figure 12. The experiments
were carried out on a cluster of AMD Athlon XP 2800+ machines, each with 1 GB of RAM.

The results indicate that the translation through adders does not work well, either for
the constraints or the objective function. This is particularly interesting as the adder-
translation is the most compact one on average. For the objective function, it seems best
to use the sorter-translation. If it is best combined with BDDs or sorters for the problem
constraints cannot be concluded from the table, but there are instances where the result
of using BDDs differ widely from the result of using sorters. In the table, the translation
blow-up includes the objective function which can be dominating, as seen by comparing the
results of optimization problems with the results of pure satisfiability problems.

13. One benchmark was later detected as a duplicate, and therefore removed.

21

N. Eén and N. Sörensson

Some remarks about the table: (i) The lower part (below the line) contains problems
without objective function. As conversion of the non-existent objective does not affect the
result, the same figures occur in three places, modulo timing fluctuation. (ii) The relative
blow-up is given in logarithmic scale (the x of 10x), and so −∞ means that the problem
was solved by the parser and pre-processor, producing zero clauses.

7. Conclusions and Future Work

Coding integer arithmetic into boolean operations in a manner well suited for hardware im-
plementation is a thoroughly studied topic. Contrary to this the focus of this paper lies on
coding arithmetic, in particular the constructs present in PB-constraints, in ways that are
suitable for a SAT-solver. One of the results shown herein is that the compact implemen-
tation of adder networks operating on binary numbers works poorly for SAT compared to
the more verbose implementation using unary numbers. By change of representation SAT
solving could be leveraged into PB solving with very reasonable results, which should have
implications on, for example, how SAT-based circuit verification is carried out on designs
containing arithmetic. Although making domain specific modification to a SAT-solver is an
approach likely to outperform translation based methods in many cases, our belief is that
translation is particularly well suited for the kind of problems where SAT-solvers are already
successful. An example of such a problem might be finding error-traces in circuits with as
many X s on the inputs as possible. The pragmatics of the approach is also appealing, as
encoding into SAT is often much easier than modifying the core solver.

A theoretical result of our study is a proven better bound on the smallest arc-consistent
translation of cardinality constraints. Furthermore, our studies reinforce the common opin-
ion that lack of carry propagation in adders are bad for SAT solving, and that more generally
high implicativity or arc-consistency is desirable for the subcomponents of a SAT encoding.
In the translation using BDDs, arc-consistency was achieved by adding redundant clauses
to strengthen unit propagation, which further shows that “small” does not necessarily mean
“good” when it comes to CNF encodings. In fact, an interesting branch of future research
would be to study how a circuit can be partitioned into chunks that lend themselves to
clausification with high implicativity or arc-consistency, such that (a) the encoding is still
compact, and (b) the interaction of the components still preserves high implicativity. A
more direct future work is to explore the freedom of base-selection in the translation using
sorters, in particular by minimizing the number of duplicated inputs rather than the total
number of inputs, to increase the implicativity.

8. Acknowledgments

The authors wish to express their gratitude to Alan Mishchenko, Armin Biere, Reiner
Hähnle, Mary Sheeran and the reviewers for their careful reading and helpful suggestions
for improvements of the manuscript. We would also like to thank Christian Szegedy who
came up with the generalized version of the proof of arc-consistency of sorters, something
we had hitherto only verified experimentally.

22

Translating Pseudo-Boolean Constraints into SAT

Constraints: Adders BDDs Sorters Adders BDDs Sorters Adders BDDs Sorters
(Obj func.): (Adder) (Adder) (Adder) (BDD) (BDD) (BDD) (Sorter) (Sorter) (Sorter)

afiro 293 (2.8) 299 (5.4) 190 (3.3) 936 (4.4) 447 (5.4) 975 (4.8) 470 (2.9) 765 (5.4) 373 (3.5)

sc205 166 (2.4) 3 (2.7) 86 (2.8) 166 (2.4) 3 (2.7) 86 (2.8) 166 (2.4) 3 (2.7) 86 (2.8)

bk4x3 7 (2.4) 4 (2.4) 10 (2.6) 21 (3.9) 32 (4.1) 15 (3.9) 9 (2.9) 6 (2.9) 3 (2.9)

neos1 – (1.2) – (1.2) – (0.8) – (1.4) – (1.5) 90 (1.3) 705 (1.2) 195 (1.2) 23 (0.9)

neos20 8 (1.3) 3 (1.3) 14 (1.5) 9 (1.3) 2 (1.3) 13 (1.5) 8 (1.3) 3 (1.3) 14 (1.5)

lseu – (2.6) – (3.0) – (2.9) – (4.2) – (4.2) – (4.2) 235 (3.1) 203 (3.3) 331 (3.4)

misc03 30 (2.2) – (4.8) 33 (2.8) 24 (2.1) – (4.8) 26 (2.8) 27 (2.1) – (4.8) 32 (2.8)

sample2 4 (2.6) 3 (2.7) 6 (2.9) 7 (3.9) 8 (4.1) 5 (3.8) 21 (3.6) 17 (3.5) 17 (3.5)

stein45 20 (0.5) 25 (0.9) 21 (0.7) 16 (0.8) 18 (1.0) 16 (0.9) 20 (0.7) 20 (0.9) 14 (0.7)

enigma 5 (2.3) 122 (4.8) 9 (2.9) 5 (2.3) 122 (4.8) 9 (2.9) 5 (2.3) 123 (4.8) 9 (2.9)

noswot – (3.4) 119 (2.7) – (−∞) – (3.4) 131 (2.7) – (−∞) – (3.4) 64 (2.7) – (−∞)

p0282 – (2.4) – (2.5) – (2.7) 360 (2.1) 355 (2.3) 368 (2.6) – (3.1) 732 (3.3) 281 (3.2)

vpm1 – (2.4) 830 (3.4) – (2.9) – (2.4) 375 (3.4) – (2.9) – (2.4) 176 (3.4) – (2.9)

sc50b – (2.6) 147 (2.7) 147 (2.8) – (2.6) 39 (2.7) 143 (2.8) – (2.6) 108 (2.7) 139 (3.0)

neos8 – (1.6) 359 (1.3) 20 (−∞) – (1.7) 263 (1.8) 20 (−∞) – (1.6) 266 (1.4) 20 (−∞)

maros 12 (3.0) 3 (3.2) 5 (3.2) 77 (4.5) 57 (4.5) 96 (4.6) 10 (3.1) 7 (3.3) 6 (3.4)

l152lav – (2.8) 429 (3.2) 704 (3.2) – (2.8) 110 (3.4) 43 (3.6) – (2.8) 139 (4.4) 324 (4.7)

mod008 570 (3.6) 378 (3.6) 355 (3.7) 30 (5.4) 47 (5.4) 356 (5.9) 28 (4.6) 20 (4.6) 67 (4.6)

clip-b 245 (0.9) 245 (0.9) 245 (0.9) 51 (1.4) 51 (1.4) 51 (1.4) 6 (1.4) 6 (1.4) 6 (1.4)

hanoi5 9 (0.5) 9 (0.5) 9 (0.5) 414 (2.6) 426 (2.6) 426 (2.6) 12 (1.2) 12 (1.2) 12 (1.2)

ii32b3 – (0.5) – (0.5) – (0.5) 720 (1.8) 720 (1.8) 721 (1.8) 25 (0.9) 25 (0.9) 25 (0.9)

ii32e4 – (0.7) – (0.7) – (0.7) – (1.8) – (1.8) – (1.8) 40 (0.8) 40 (0.8) 40 (0.8)

par16-3 1 (0.7) 1 (0.7) 1 (0.7) 44 (2.5) 44 (2.5) 43 (2.5) 1 (1.4) 1 (1.4) 1 (1.4)

ssa7552-159 – (1.0) – (1.0) – (1.0) – (3.0) – (3.0) – (3.0) 21 (1.6) 21 (1.6) 21 (1.6)

s4-4-3-2pb – (1.2) – (1.3) – (1.2) – (2.2) 942 (2.2) 393 (2.2) 131 (1.5) 320 (1.6) 8 (1.4)

s4-4-3-9pb 26 (1.2) 150 (1.2) 23 (1.2) 454 (2.3) 684 (2.2) 153 (2.1) 14 (1.6) 61 (1.7) 9 (1.8)

frb30-15-3 – (0.1) – (0.1) – (0.1) 761 (0.7) 761 (0.7) 761 (0.7) 164 (0.3) 164 (0.3) 164 (0.3)

frb35-17-5 – (0.1) – (0.1) – (0.1) – (0.5) – (0.5) – (0.5) 811 (0.1) 811 (0.1) 809 (0.1)

woodw 55 (−∞) 54 (−∞) 55 (−∞) 55 (−∞) 54 (−∞) 55 (−∞) 55 (−∞) 55 (−∞) 55 (−∞)

chnl10-11 60 (1.5) 20 (1.4) 32 (1.5) 60 (1.5) 20 (1.4) 32 (1.5) 60 (1.5) 20 (1.4) 32 (1.5)

chnl10-20 24 (1.8) 87 (1.5) 24 (1.6) 24 (1.8) 87 (1.5) 24 (1.6) 24 (1.8) 87 (1.5) 24 (1.6)

fpga35-35 – (1.0) 74 (0.9) 3 (1.3) – (1.0) 75 (0.9) 3 (1.3) – (1.0) 75 (0.9) 3 (1.3)

fpga40-40 – (1.0) 701 (0.9) 2 (1.1) – (1.0) 700 (0.9) 2 (1.1) – (1.0) 700 (0.9) 2 (1.1)

22s-smv 3 (1.0) 1 (0.7) 20 (1.2) 3 (1.0) 1 (0.7) 20 (1.2) 3 (1.0) 1 (0.7) 20 (1.2)

cache-inv12 36 (0.1) 14 (0.0) 19 (0.2) 36 (0.1) 14 (0.0) 19 (0.2) 36 (0.1) 14 (0.0) 19 (0.2)

burch-dill 16 (0.8) 3 (0.4) 16 (0.9) 16 (0.8) 3 (0.4) 16 (0.9) 16 (0.8) 3 (0.4) 16 (0.9)

ex-br-mem 101 (0.9) 117 (0.6) 407 (1.1) 101 (0.9) 116 (0.6) 407 (1.1) 101 (0.9) 117 (0.6) 407 (1.1)

rf10 28 (0.4) 15 (0.2) 18 (0.4) 28 (0.4) 15 (0.2) 18 (0.4) 28 (0.4) 15 (0.2) 18 (0.4)

tag10 96 (0.5) 5 (0.3) 16 (0.6) 96 (0.5) 5 (0.3) 16 (0.6) 96 (0.5) 5 (0.3) 16 (0.6)

Solv. 100s: 18 17 22 18 19 23 23 24 29
Solv. 1000s: 23 29 28 26 33 33 31 38 37

Figure 12. Runtime of MINISAT+ on a random selection of benchmarks. The upper part
contains optimization problems with an objective function; in the lower part are pure satisfiability
problems. The numbers state runtime in seconds. A dash indicates timeout at 1000 seconds. The
super-script numbers give the translation blow-up, written as log10(clauses / pb-constraints). A
value of “3” means each constraint was translated to 1000 clauses on average. The two top lines
show what translation method was used for the constraints and objective function respectively.
The two bottom lines show the total number of problems solved at a timeout of 100/1000 seconds.

23

N. Eén and N. Sörensson

References

[1] P.A. Abdulla, P. Bjesse, and N. Een. Symbolic Reachability Analysis Based on SAT-
Solvers. In Proceedings of the 6th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’2000), 2000.

[2] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: A Backtrack Search Pseudo-
Boolean Solver. In Symposium on the Theory and Applications of Satisfiability Testing
(SAT’2002), 2002.

[3] F.A. Aloul, A. Ramani, I.L. Markov, and K.A. Sakallah. Generic ILP versus Specialized
0-1 ILP: An Update. In Proceedings of International Conference on Computer Aided
Design (ICCAD’2002), 2002.

[4] O. Bailleux and Y. Boufkhad. Efficient CNF encoding of boolean cardinality con-
straints. In Proceedings of the 9th International Conference on Principles and Practice
of Constraint Programming, CP 2003, volume 2833. LNCS, 2003.

[5] O. Bailleux and Y. Boufkhad. Problem encoding into SAT : the counting constraints
case. In Proceedings of The Seventh International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT’2004), 2004.

[6] O. Bailleux, Y. Boufkhad, and O. Roussel. A Translation of Pseudo Boolean Con-
straints to SAT. In Journal on Satisfiability, Boolean Modeling and Computation
(JSAT’06), issue 2, pages 183–192, 2006.

[7] C.W. Barret, D.L. Dill, and A. Stump. Checking Satisfiability of First-Order Formulas
by Incremental Translation to SAT. In Proc. of the 14th Int. Conf. on Computer Aided
Verification (CAV’02), volume 2404 of LNCS, 2002.

[8] Peter Barth. A Davis-Putnam Based Enumeration Algorithm for Linear pseudo-
Boolean Optimization. Research Report MPI-I-95-2-003, Max-Planck-Institut für In-
formatik, Im Stadtwald, D-66123 Saarbrücken, Germany, January 1995.

[9] K.E. Batcher. Sorting Networks and their Applications. In Proceedings of AFIPS
Spring Joint Computer Conference, volume 32, pages 307–314, 1968.

[10] K.C. Bickerstaff, E.E. Swartzlander, and M.J. Schulte. Analysis of Column Compres-
sion Multipliers. In Proceedings of 15th IEEE Symposium on Computer Arithmetic
(ARITH-15’01), 2001.

[11] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. v. Rossum, S. Schulz, and
R. Sebastiani. The MathSAT 3 System. In Conference on Automated Deduction
(CADE-20), Springer Verlag, 2005.

[12] Randy E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. In
IEEE Transactions on Computers, C-35(8), pages 677–691, 1986.

[13] D. Chai and A. Kuehlmann. A Fast Pseudo-Boolean Constraint Solver. In Proceedings
of Design Automation Conference (DAC’03), pages 830–835, 2003.

24

Translating Pseudo-Boolean Constraints into SAT

[14] L. Dadda. Some Schemes for Parallel Multipliers. In Alta Frequenza, volume 34, pages
14–17, 1964.

[15] Niklas Een and Niklas Sörensson. An extensible SAT solver. In Proceedings of the 6th

Int. Conference on Theory and Applications of Satisfiability Testing, 2003.

[16] P.D. Fiore. Parallel Multiplication Using Fast Sorting Networks. In IEEE Transactions
on Computers, volume 48, 1999.

[17] I.P. Gent. Arc Consistency in SAT. In Proceedings of the Fifteenth European Conference
on Artificial Intelligence (ECAI 2002), 2002.

[18] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.
Addison Wesley, 1973.

[19] Daniel Kroening and Ofer Strichman. Efficient Computation of Recurrence Diame-
ters. In 4th International Conference on Verification, Model Checking, and Abstract
Interpretation, volume 2575 of LNCS, 2003.

[20] Cong Liu, Andreas Kuehlmann, and Matthew W. Moskewicz. CAMA: A Multi-Valued
Satisfiability Solver. In Int. Conf. on Computer Aided Design, 2003.

[21] Vasco M. Manquinho and João Marques-Silva. On Using Cutting Planes in Pseudo-
Boolean Optimization. Journal on Satisfiability, Boolean Modeling and Computation
(JSAT), 2:207–217, 2006. Research Note.

[22] Vasco M. Manquinho and Olivier Roussel. The First Evaluation of Pseudo-Boolean
Solvers. Journal on Satisfiability, Boolean Modeling and Computation (JSAT), 2:103–
141, 2006.

[23] S. Minato. Fast Factorization Method for Implicit Cube Representation. In IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume
15, pages 377–384, 1996.

[24] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an Efficient SAT Solver. In Proceedings of 12th International Conference on Computer
Aided Verification, volume 1855 of LNCS, 2001.

[25] Y. Novikov and R. Brinkmann. Foundations of Hierarchical SAT-Solving. In 6th

Intl. Workshop on Boolean Problems, (extended ver.: ZIB-Report 05-38, 2005), 2004.

[26] D. Plaisted and S. Greenbaum. A Structure-preserving Clause Form Translation. In
Journal on Symbolic Computation, volume 2, 1986.

[27] William Pugh. The Omega Test: a fast and practical integer programming algorithm
for dependence analysis. In Supercomputing, pages 4–13, 1991.

[28] Mary Sheeran. Describing and reasoning about sorting networks. In slides from invited
talk at the Nordic Workshop on Programming Theory, 2003.

25

N. Eén and N. Sörensson

[29] Hossein M. Sheini and Karem A. Sakallah. A SAT-based Decision Procedure for Mixed
Logical/Integer Linear Problems. In International Conference on Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems
(CP-AI-OR’05), volume 3524 of LNCS, 2005.

[30] Hossein M. Sheini and Karem A. Sakallah. Pueblo: A Hybrid Pseudo-Boolean SAT
Solver. Journal on Satisfiability, Boolean Modeling and Computation (JSAT), 2:163–
187, 2006.

[31] Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.
In 11th Int. Conf. on Principles and Practice of Constraint Prog., 2005.

[32] G. Tseitin. On the complexity of derivation in propositional calculus. Studies in
Constr. Math. and Math. Logic, 1968.

[33] J.P. Warners. A linear-time transformation of linear inequalities into conjunctive nor-
mal form. volume 68 of Inf. Proc. Letters, 1996.

[34] M. Wedler, D. Stoffel, and W. Kunz. Arithmetic reasoning in DPLL-based SAT solving.
In Design, Automation and Test in Europe Conference, 2004.

26

	Introduction
	Preliminaries
	Normalization of PB-constraints
	Optimization -- the objective function
	Translation of PB-constraints
	The Tseitin transformation
	Pseudo-code Conventions
	Translation through BDDs
	Translation through Adder Networks
	Translation through Sorting Networks

	Evaluation
	Relative performance to other solvers
	Efficiency of different translation techniques

	Conclusions and Future Work
	Acknowledgments

