
Journal on Satisfiability, Boolean Modeling and Computation 1 (2007) 209–236

Efficient Solving of Large Non-linear Arithmetic Constraint

Systems with Complex Boolean Structure∗

Martin Fränzle fraenzle@informatik.uni-oldenburg.de

Christian Herde herde@informatik.uni-oldenburg.de

Tino Teige teige@informatik.uni-oldenburg.de

Department of Computing Science,
Carl von Ossietzky Univrsität Oldenburg, Germany

Stefan Ratschan stefan.ratschan@cs.cas.cz

Institute of Computer Science,
Academy of Sciences of the Czech Republic, Prague, Czech Republic

Tobias Schubert schubert@informatik.uni-freiburg.de

Faculty of Applied Sciences,

Albert-Ludwigs-Universität Freiburg, Germany

Abstract

In order to facilitate automated reasoning about large Boolean combinations of non-
linear arithmetic constraints involving transcendental functions, we provide a tight inte-
gration of recent SAT solving techniques with interval-based arithmetic constraint solv-
ing. Our approach deviates substantially from lazy theorem proving approaches in that it
directly controls arithmetic constraint propagation from the SAT solver rather than del-
egating arithmetic decisions to a subordinate solver. Through this tight integration, all
the algorithmic enhancements that were instrumental to the enormous performance gains
recently achieved in propositional SAT solving carry over smoothly to the rich domain of
non-linear arithmetic constraints. As a consequence, our approach is able to handle large
constraint systems with extremely complex Boolean structure, involving Boolean combina-
tions of multiple thousand arithmetic constraints over some thousands of variables.

Keywords: interval-based arithmetic constraint solving; SAT modulo theories

Submitted November 2006; revised April 2007; published May 2007

1. Introduction

Within many application domains, among them the analysis of programs involving arith-
metic operations and the analysis of hybrid discrete-continuous systems, one faces the prob-
lem of solving large Boolean combinations of non-linear arithmetic constraints over the reals,
where solving means to find a satisfying valuation or to prove nonexistence thereof. This
gives rise to a plethora of problems, in particular (a) how to efficiently and sufficiently

∗ This work has been partially supported by the German Research Council (DFG) as part of the Trans-
regional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems”
(SFB/TR 14 AVACS, www.avacs.org).

c©2007 Delft University of Technology and the authors.

M Fräzle et al.

completely solve conjunctive combinations of constraints in the undecidable domain of non-
linear constraints involving transcendental functions and (b) how to efficiently maneuver
the large search spaces arising from the rich Boolean structure of the overall formula.

While promising solutions for these two individual sub-problems exist, it seems that
their combination has hardly been attacked. Arithmetic constraint solving based on interval
constraint propagation (e.g., [7, 4]), on the one hand, has proven to be an efficient means
for solving robust combinations of otherwise undecidable arithmetic constraints [23]. Here,
robustness means that the constraints maintain their truth value under small perturbations
of the constants in the constraints. Modern SAT solvers, on the other hand, can efficiently
find satisfying valuations of very large propositional formulae (e.g., [21, 14]), as well as
—using the SAT modulo theory (SMT) paradigm— of complex propositional combinations
of atoms from various decidable theories (e.g., [12, 9]).

Within this paper, we describe a tight integration of SAT-based proof search with
interval-based arithmetic constraint propagation, thus providing an algorithm that reasons
over the undecidable arithmetic domain of Boolean combinations of non-linear constraints
involving transcendental functions. Within our approach, a DPLL-based propositional sat-
isfiability solver traverses the proof tree originating from the Boolean structure of the con-
straint formula, as is characteristic for SMT. Yet, in contrast to the SMT techniques of lazy
theorem proving and DPLL(T), we do not pass a corresponding conjunctive constraint sys-
tem over the respective theory T to a subordinate decision procedure serving as an oracle
for consistency of the constraint set (as in lazy theorem proving) and providing forward
inferences wrt. implied truth values of other T -atoms occurring in the input formula (the
additional DPLL(T) mechanism). Instead, we exploit the algorithmic similarities between
DPLL-based propositional SAT solving and constraint solving based on constraint propa-
gation for a much tighter integration, where the DPLL solver directly manipulates theory
atoms instead of a propositional abstraction of the input formula. It has full introspection
into and control over constraint propagation within the theory T , and it directly integrates
any new theory atoms generated by the constraint propagation into the search space of the
DPLL solver. This tight integration has a number of advantages. First, by sharing the
common core of the search algorithms between the propositional and the theory-related,
interval-constraint-propagation-based part of the solver, we are able to transfer algorithmic
enhancements from one domain to the other: in particular, we thus equip interval-based
constraint solving with all the algorithmic enhancements that were instrumental to the
enormous performance gains recently achieved in propositional SAT solving, like watched-
literal schemes or conflict-driven learning based on implication-graph analysis. Second, the
introspection into the constraint propagation process allows fine-granular control over the
necessarily incomplete arithmetic deduction process, thus enabling a stringent extension of
SMT to an undecidable theory. Finally, due to the availability of learning, we are able to im-
plement an almost lossless restart mechanism within an interval-based arithmetic constraint
propagation framework.

Related work. From the extensive literature on SMT techniques, the approach coming
closest to ours is the splitting-on-demand technique in SMT of Barett, Nieuwenhuis, Oliv-
eras, and Tinelli [1]. There, the set of theory atoms manipulated by the DPLL solver is made
dynamic by a special split rule extending the formula with a tautologous clause introducing

210

Efficient Solving of Complex-Structured Arithmetic Constraint Systems

new theory atoms. In contrast to this, our tighter integration does not need such helper
mechanisms modifying the formula, allows new theory atoms to be generated by both splits
and constraint propagations in the theory, and due to its direct manipulation of theory
atoms generates atoms on-the-fly and locally to the different branches of the proof-search
tree. We conjecture that the more direct integration and the locality help the algorithm to
perform stably even under enormous numbers of new theory atoms thus being generated. A
further crucial distinction to DPLL(T) is that our algorithm distinguishes between a large
(and undecidable) theory that theory propagation acts on (non-linear arithmetic including
transcendental functions) and a small kernel thereof used in consistency checks (real-valued
inequation systems). In DPLL(T) approaches, the roles are generally reversed: consistency
check has to cover the full theory T , while theory propagation (fwd. inference) may be more
confined, covering a subset of T only, up to being completely missing.

Jussien’s and Lhomme’s dynamic domain splitting technique for numeric constraint sat-
isfaction problems (numeric CSPs) [16] is related to our approach in that both implement
conflict-driven learning and non-chronological backtracking within arithmetic constraint
solving based on domain splitting and arithmetic constraint propagation. Their approach
extends dynamic backtracking (cf. [13]) and provides filtering algorithms for domain re-
ductions (i.e., constraint propagation) enhanced by nogood learning and non-chronological
backtracking. Nevertheless, the algorithm described in [16] is not general enough for our
problem domain, as it focuses on conjunctive constraint systems. Our algorithm relaxes that
limitation and handles non-linear arithmetic constraint systems with an arbitrary, complex
Boolean structure. Another technical difference to [16] is the procedure applied for learning
conflicts and the shape of conflict clauses thus obtained. The explanations of conflicts in
[16] are confined to be sets of splitting constraints, i.e. of choice points decided in branch
steps of the branch-and-reduce algorithm. Our algorithm is able to generate more compact
and more general conflict clauses entailing both splitting constraints and arbitrary deduced
constraints. Like in modern propositional SAT solvers, this is achieved by maintaining and
analyzing an implication graph (cf. Sect. 4.3) storing the immediate reasons for each deduc-
tion. We are thus able to generalize all techniques for determining conflict clauses which
have proven beneficial within propositional SAT, e.g. the 1UIP technique [27].

Sharing our goal of checking satisfiability of large and complex-structured Boolean com-
binations of non-linear arithmetic constraints, Bauer, Pister, and Tautschnig have recently
presented the ABsolver tool [2]. ABsolver is an SMT solver addressing a blend of
Boolean and polynomial arithmetic constraint problems. It is an extensible and modu-
lar implementation of the SMT scheme which permits integration of various subordinate
solvers for the Boolean, linear, and non-linear parts of the input formula. ABsolver it-
self coordinates the overall solving process and delegates the currently active constraint
sets to the corresponding subordinate solvers. The currently reported implementation [2]
uses the numerical optimization tool IPOPT (https://projects.coin-or.org/Ipopt) for
solving the non-linear constraints. Consequently, it may produce incorrect results due to
the local nature of the solver, and due to rounding errors. Nonetheless, even though in
our method we implement strictly correct solving of non-linear constraints, benchmarks re-
ported in Sect. 5.3 show that our tighter integration consistently outperforms ABsolver,
usually by orders of magnitude when formulae with non-trivial Boolean structure are in-
volved. Furthermore, our solver uses interval constraint propagation to address a larger

211

https://projects.coin-or.org/Ipopt

M Fräzle et al.

class of formulae than polynomial constraints, admitting arbitrary smooth functions in the
constraints, including transcendental ones.

Compared to interval constraint solving (ICP, for a survey cf. [4]), our approach is com-
plementary: the interval constraint solving community is primarily concerned with solving
—often in the sense of “paving” the solution set— intricate conjunctive non-linear con-
straint systems, and thus concentrates on powerful constraint propagation operators. Our
focus is on satisfiability tests for extremely large formulae featuring a complex Boolean
structure, which we make feasible by mechanisms for tracking and exploiting the dependen-
cies between sub-formulae within an SMT framework. Thus, our approach could easily be
enhanced by importing more powerful constraint propagation operators, while our mecha-
nisms for maneuvering through large Boolean combinations of non-linear constraint systems
are a contribution to interval constraint solving.

Structure of the paper. In Section 2, we expose the syntax and semantics of the arith-
metic satisfiability problems our algorithm addresses. Section 3 provides a brief introduction
to related technologies that our development builds on. Thereafter, we provide a detailed
explanation of our new algorithm in Sect. 4. After presenting some benchmark results
within Sect. 5, we conclude with an overview of ongoing work and planned extensions.

2. Logics

Aiming at automated analysis of programs operating over the reals, our constraint solver
addresses satisfiability of non-linear arithmetic constraints over real-valued variables plus
Boolean variables for encoding the control flow. The user thus may input constraint formu-
lae built from quantifier-free constraints over the reals and from propositional variables using
arbitrary Boolean connectives. The atomic real-valued constraints are relations between po-
tentially non-linear terms involving transcendental functions, like sin(x+ωt)+ye−t ≤ z+5.
By the front-end of our constraint solver, these constraint formulae are rewritten to equi-
satisfiable quantifier-free formulae in conjunctive normal form, with atomic propositions
ranging over propositional variables and arithmetic constraints confined to a form resem-
bling three-address code. This rewriting is based on the standard mechanism of introducing
auxiliary variables for the values of arithmetic sub-expressions and of logical sub-formulae,
thereby also eliminating common sub-expressions and common sub-formulae through re-use
of the auxiliary variables, thus reducing the search space of the SAT solver and enhancing
the reasoning power of the interval contractors used in arithmetic reasoning [4]. Thus, the
internal syntax1. of constraint formulae is as follows:

formula ::= {clause ∧}∗clause
clause ::= ({atom ∨}∗atom)
atom ::= bound | equation

bound ::= variable relation rational const
variable ::= real variable | boolean variable
relation ::= < | ≤ |= | ≥ |>

1. For examples of the user-level syntax, consult the benchmark files on the iSAT web site
http://hysat.informatik.uni-oldenburg.de/

212

http://hysat.informatik.uni-oldenburg.de/

Efficient Solving of Complex-Structured Arithmetic Constraint Systems

equation ::= triplet | pair
triplet ::= real variable = real variable bop real variable

pair ::= real variable = uop real variable

where bop, uop are binary and unary operation symbols, including +, −, ×, sin, etc., and
rational const ranges over the rational constants.

Such constraint formulae are interpreted over valuations σ ∈ (BV
total
−→ B)×(RV

total
−→ R),

where BV is the set of Boolean and RV the set of real-valued variables. B is identified with
the subset {0, 1} of R, so that literals v and ¬v can be encoded by appropriate rational-
valued bounds, e.g. v ≥ 1 or v ≤ 0. The definition of satisfaction is standard: a constraint
formula φ is satisfied by a valuation iff all its clauses are satisfied, that is, iff at least one
atom is satisfied in any clause. Satisfaction of atoms is wrt. the standard interpretation
of the arithmetic operators and the ordering relations over the reals. In order to make
all arithmetic operators total, we extend their codomain (as well as, for compositionality,
their domain) with a special value f 6∈ R such that the operators manipulate values in
Rf = R ∪ {f}. The comparison operations on R are extended to Rf in such a way that
f is incomparable to any real number, that is, c 6∼ f and f 6∼ c for any c ∈ R and any
relation ∼∈ {<,≤,=,≥, >}.

Instead of real-valued valuations of variables, our constraint solving algorithm manipu-

lates interval-valued valuations ρ ∈ (BV
total
−→ IB) × (RV

total
−→ IR), where IB = 2B and IR is

the set of convex subsets of Rf.2. Slightly abusing notation, we write ρ(l) for ρIB
(l) when

ρ = (ρIB
, ρIR

) and l ∈ BV , and similarly ρ(x) for ρIR
(x) when x ∈ RV . In the following,

we occasionally use the term box synonymously for interval valuation. If both σ and η are
interval valuations then σ is called a refinement of η iff σ(v) ⊆ η(v) for each v ∈ BV ∪RV .

In order to lift a binary operation ◦ and its partial inverses to sets, we define

m •1 n = {x | ∃y ∈ m, z ∈ n : x = y ◦ z},
m •2 n = {y | ∃x ∈ m, z ∈ n : (x = y ◦ z ∨ ∀y′ ∈ R : (x 6= y′ ◦ z ∧ y = f))},
m •3 n = {z | ∃x ∈ m, y ∈ n : (x = y ◦ z ∨ ∀z′ ∈ R : (x 6= y ◦ z′ ∧ z = f))},

and similarly for unary ◦:

•1m = {x | ∃y ∈ m : x = ◦y},
•2m = {y | ∃x ∈ m : (x = ◦y ∨ ∀y′ ∈ R : (x 6= ◦y′ ∧ y = f))}.

Note that these are essentially the images of the argument sets under the relation {(x, y, z) |
x = y ◦ z} (or {(x, y) | x = ◦y}, resp.) when substituting the respective arguments. We lift
these set-valued operators to (computer-representable) intervals by assigning to each set-
valued operation • a conservative interval approximation •̂ which satisfies i1•̂i2 ∈ IR and
i1•̂i2 ⊇ i1 • i2 for all intervals i1 and i2 [20]. Note that the definition of an interval extension
does not specify how to exactly lift a set operation • to intervals, but leaves some design
choice by permitting arbitrary overapproximations. For the sake of reasoning power, i1•̂i2
should be chosen such that it provides an as tight as possible overapproximation of i1 • i2.
Thich means that in practice i1•̂i2 is the interval hull of i1•i2, that is,

⋂

i∈IR,i⊇i1•i2
i extended

2. Note that this definition covers the open, half-open, and closed intervals over R, including unbounded
intervals, as well as the union of such intervals with {f}.

213

M Fräzle et al.

by some outward rounding to compensate for the imprecision of computer arithmetic and
the finiteness of the set of floating-point numbers.

For the manipulated interval valuations we adapt the common notion of hull consistency
(cf. [4]) from interval constraint propagation (cf. Sect. 3) which our algorithm will try to
enforce by reasoning steps. We call an interval valuation ρ hull consistently satisfying for
a constraint formula φ, denoted ρ |=hc φ, iff each clause of φ contains at least one hull
consistently satisfied atom. Hull consistent satisfaction of atoms is defined as follows:

ρ |=hc x ∼ c iff ρ(x) ⊆ {u | u ∈ R, u ∼ c} for x ∈ RV ∪ BV , c ∈ Q

ρ |=hc x = y ◦ z iff ρ(x) ⊇ ρ(y)•̂1ρ(z),
ρ(y) ⊇ ρ(x)•̂2ρ(z),
ρ(z) ⊇ ρ(x)•̂3ρ(y) for x, y, z ∈ RV , ◦ ∈ bop

ρ |=hc x = ◦y iff ρ(x) ⊇ •̂1ρ(y),
ρ(y) ⊇ •̂2ρ(x) for x, y ∈ RV , ◦ ∈ uop.

We call a formula φ hull consistently satisfiable, denoted hcsat (φ), iff there is an interval
valuation ρ with ρ |=hc φ and ρ(v) 6= ∅ for all v ∈ BV ∪ RV . Note that hull consistent
satisfiability is a necessary, yet not sufficient condition for real-valued satisfiability. It is in
general not sufficient, as can be seen from the example (x = x ·x)∧ (x > 0)∧ (x < 1), which
is hull consistently satisfied by ρ(x) = (0, 1), yet not satisfiable over the reals.

When solving satisfiability problems of formulae with Davis-Putnam-like procedures,
we will build interval valuations incrementally by successively contracting intervals through
constraint propagation and branching. This may lead to situations where an interval valu-
ation does no longer contain any solution, in which case we have to revert some branching
decisions previously taken. In order to detect this —in general undecidable— situation, we
define a sufficient criterion for non-existence of a solution within the interval valuation: We
say that an interval valuation ρ is inconsistent with an atom a, denoted ρ] a, iff the left-
and right-hand sides of the atom have disjoint valuations under ρ, i.e.

ρ] x ∼ c iff ρ(x) ∩ {u | u ∈ R, u ∼ c} = ∅ for x ∈ RV ∪ BV , c ∈ Q

ρ] x = y ◦ z iff ρ(x) ∩ ρ(y)•̂1ρ(z) = ∅ for x, y, z ∈ RV , ◦ ∈ bop
ρ] x = ◦y iff ρ(x) ∩ •̂1ρ(y) = ∅ for x, y ∈ RV , ◦ ∈ uop

Note that deciding inconsistency of an interval valuation with an atom (and hence, with a
clause or a formula) is straightforward, as is deciding hull consistent satisfaction of an atom
(clause, formula) by an interval valuation. If ρ is neither hull consistently satisfying for φ
nor inconsistent with φ then we call φ inconclusive on ρ, which is again decidable.

3. Algorithmic basis

Our constraint solving approach builds upon the well-known techniques of interval con-
straint propagation (ICP) and of propositional SAT solving by the DPLL procedure plus
its more recent algorithmic enhancements.

Interval constraint propagation is one of the sub-topics of the area of constraint
programming where constraint propagation techniques are studied in various, and often
discrete, domains. For the domain of the real numbers, given a constraint φ and a floating-
point box B, so-called contractors compute another floating-point box C(φ,B) such that

214

Efficient Solving of Complex-Structured Arithmetic Constraint Systems

C(φ,B) ⊆ B and such that C(φ,B) contains all solutions of φ in B (cf. the notion of
narrowing operator [5, 3]).

There are several methods for implementing such contractors. The most basic method
[7, 6] decomposes all atomic constraints (i.e., constraints of the form t ≥ 0 or t = 0, where t
is a term) into conjunctions of so-called primitive constraints resembling three-address code
(i.e., constraints such as x + y = z, xy = z, z ∈ [a, a], or z ≥ 0) by introducing additional
auxiliary variables (e.g., decomposing x + sin y ≥ 0 to sin y = v1 ∧ x + v1 = v2 ∧ v2 ≥ 0).
Then it applies a contractor for these primitive constraints until a fixpoint is reached.

We illustrate contractors for primitive constraints using the example of a primitive
constraint x + y = z with the intervals [1, 4], [2, 3], and [0, 5] for x, y, and z, respectively:
We can solve the primitive constraint for each of the free variables, arriving at x = z − y,
y = z − x, and z = x+ y. Each of these forms allows us to contract the interval associated
with the variable on the left-hand side of the equation: Using the first solved form we
subtract the interval [2, 3] for y from the interval [0, 5] for z, concluding that x can only
be in [−3, 3]. Intersecting this interval with the original interval [1, 4], we know that x
can only be in [1, 3]. Proceeding in a similar way for the solved form y = z − x does
not change any interval, and finally, using the solved form z = x + y, we can conclude
that z can only be in [3, 5]. Contractors for other primitive constraints can be based on
interval arithmetic in a similar way. There is extensive literature [22, 15] providing precise
formulae for interval arithmetic for addition, subtraction, multiplication, division, and the
most common transcendental functions. The floating point results are always rounded
outwards, such that the result remains correct also under rounding errors.

There are several variants, alternatives and improvements of the approach described
above (cf. [4] for a survey of the literature). These do in particular deal with stronger
contractors based on non-decomposed constraints. While such could easily be included into
our approach, the description in the remainder will concentrate on the simple contractors
available on the decomposed form. The reasons for doing so stem from our application
context: while in merely conjunctive constraint systems, non-decomposed constraints are
clearly better due to their stronger contractors, completely different aspects become domi-
nant in large and complex-structured Boolean combinations of arithmetic constraints. Here,
pruning of the intervals is no longer the only forward inference mechanism, but pruning of
the search space originating from the Boolean structure based on inferences from the theory
side becomes at least equally important. There, decomposed constraints have their advan-
tage, as they permit generation of more concise reasons (cf. Sect. 4.3). It would, however,
be feasible to have both the decomposed and non-decomposed forms of the constraints and
their respective contractors coexist in our system, joining their virtues.

Dealing with partial operations, our implementation associates to each constraint x =
y◦z in the three-address decomposition the contractor ρ′(x) := ρ(x)∩ρ(y)•̂1ρ(z) as well as all
the related solved-form contractors ρ′(y) := ρ(y)∩ρ(x)•̂2ρ(z) and ρ′(z) := ρ(z)∩ρ(x)•̂3ρ(y).
Together, this set of contractors is essentially equivalent to the usual contractor for primi-
tive constraints [6], yet we take the different solved forms as being independent contractors
in order to be able to trace the reasons for contractions within conflict diagnosis. Note
that each individual contraction B ′ = C(e,B) can be decomposed into a set of individual
contractions affecting just one face of B each, and each having a subset of the bounds de-
scribing the faces of B as a reason. E.g., in the above example, the first interval contraction

215

M Fräzle et al.

derives the new bound x ≤ 3 from the reasons y ≥ 2 and z ≤ 5, using equation x + y = z
in its solved form x = z − y. In the sequel, we denote such an atomic derivation of ICP by

(y ≥ 2, z ≤ 5)
x+y=z
 (x ≤ 3).

Propositional SAT solving. The Propositional Satisfiability Problem (SAT) is a well-
known NP-complete problem, with extensive applications in various fields of computer sci-
ence and engineering. In recent years a lot of developments in creating powerful SAT
algorithms have been made, leading to state-of-the-art approaches like BerkMin [14], Min-
iSat [10], MiraXT [18], and zChaff [21]. All of them are enhanced variants of the classical
backtrack search DPLL procedure [8].

Given a Boolean formula φ in Conjunctive Normal Form (CNF) and a partial valuation
ρ, which is empty at the beginning of the search process, a backtrack search algorithm
incrementally extends ρ until either ρ |= φ holds or ρ turns out to be inconsistent for φ.
In the latter case another extension of ρ is tried through backtracking. Each decision step
is followed by the deduction phase, involving the search for unit clauses, i.e. clauses that
have only one unassigned literal left while all other literals are assigned incorrectly in the
current valuation ρ. Obviously, unit clauses require certain assignments in order to preserve
their satisfiability, where the execution of the implied assignments itself might force further
assignments. In the context of SAT solving such necessary assignments are also referred to
as implications. To perform the deduction phase in an efficient manner, zChaff introduced
a lazy clause evaluation technique based on Watched Literals (WL): for each clause two
literals are selected in such a way that they either are both unassigned or at least one of
them is satisfying the clause. So, if at some point during the search one of the WLs is
getting assigned incorrectly, a new WL for the corresponding clause has to be found. If
such a literal does not exist and the second WL is still unassigned, the clause is forcing an
implication. As a consequence of this method there is no need to check all clauses after
making a decision step, but only those for which a WL is getting assigned incorrectly.

However, deduction may also yield a conflicting clause which has all its literals assigned
false, indicating the need for backtracking. To avoid repeated conflicts due to the same
reason, modern SAT algorithms incorporate conflict-driven learning to derive a sufficiently
general explanation (a combination of variable assignments) for the actual conflict. Based
on that (ideally minimal) set of assignments that triggered the particular conflict, a conflict
clause is generated and added to the clause set to guide the subsequent search. The conflict
clause is also used to compute the backtrack level, which is defined as the maximum level the
SAT algorithm has to backtrack to in order to solve the conflict. This approach leads to a
non-chronological backtracking operation, often jumping back more than just one level, thus
making conflict-driven learning combined with non-chronological backtracking a powerful
mechanism to prune large parts of the search space [27].

4. Integrating interval constraint propagation and SAT

As can be seen from Table 1, branch-and-prune algorithms based on interval constraint
propagation (ICP) with interval splitting and the core algorithm of DPPL SAT solving
share a similar structure. This similarity motivates a tighter integration of propositional
SAT and arithmetic reasoning than in classical lazy theorem proving. This tight integration

216

Efficient Solving of Complex-Structured Arithmetic Constraint Systems

Table 1. Schematic representation of the algorithms underlying interval constraint solving (left)
vs. basic DPLL SAT (right). The close analogy suggests a tight integration into a DPLL-style algo-
rithm manipulating large Boolean combinations of arithmetic formulae via a homogeneous treat-
ment of Boolean and arithmetic parts.

Interval Constraint Solving DPLL SAT

Given: Constraint set C = {c1, . . . , cn}, Clause set C = {c1, . . . , cn},

initial box B ⊆ R|free(C)| initial box B ⊆ B|free(C)|

Goal: Find box B′ ⊆ B containing satisfying valuations throughout
or show non-existence of such B′.

Alg.: 1. L := {B}
2. If L 6= ∅ then take

some vs. most recently added

box b :∈ L, otherwise report “unsatisfiable” and stop.
3. To determine subbox b′ ⊆ b containing all solutions in b, use

contractor C vs. unit propagation.

4. If b′ = ∅ then set L := L \ {b}, goto 2.
5. Check whether b′ satisfies all

constraints vs. clauses

in C; if so then report b′ as satisfying and stop.
6. If b′ ⊂ b then set L := L \ {b} ∪ {b′}, goto 2.
7. Split b into subintervals b1 and b2, set L := L \ {b} ∪ {b1, b2}, goto 2.

shares the common algorithmic parts, thereby providing the SAT solver with full control
over and full introspection into the ICP process. This way, recent algorithmic enhance-
ments of propositional SAT solving, like lazy clause evaluation, conflict-driven learning,
and non-chronological backjumping carry over to ICP-based arithmetic constraint solving.
In particular, we are able to learn forms of conflicts that are considerably more general than
classical as well as generalized nogoods [17] in search procedures for constraint solving.

4.1 Introductory example

Before providing a formal exposition of our satisfiability solving algorithm in the next
section, we explain it by means of an example. Given the formula ψ = (x = cos(y) ∨ y =
sin(x)) ∧ (x < 0 ∨ x2 = −3 · y), where x and y are real-valued variables with ranges
x ∈ [−10, 30] and y ∈ [−8, 25], the algorithm first rewrites ψ into an equisatisfiable CNF

ϕ = (x = cos(y) ∨ y = sin(x)) ∧ (x < 0 ∨ b) ∧ (¬b ∨ h = −3 · y) ∧ (¬b ∨ h = x2)

of linear size (cf. Sect. 2), where h ∈ R and b ∈ B are fresh auxiliary variables. Note that b
and ¬b are just abbreviations for the numeric constraints b ≥ 1 and b ≤ 0, respectively.

Each atom of the formula is inconclusive under the initial interval valuation ρ of the
variables given by ρ(x) = [−10, 30], ρ(y) = (−8, 25], ρ(h) = R, and ρ(b) = B. Thus, the
whole formula ϕ is inconclusive. To start reasoning, we branch the search space, as known
from DPLL and ICP: we split the interval of y and decide y > 1, thus opening decision
level 1. Under this new interval assignment ρ1, where ρ1(y) = (1, 25] and ρ1(v) = ρ(v) for

217

M Fräzle et al.

x ≥ 0

y ≤ 16

x ≤ 0.6

y > 1

h < −3

h ≥ 0

x ≥ −1

x ≤ 1

x = cos(y)

h = −3 · y

h = x2b ≥ 1

decision level 2

decision level 3

decision level 1

decision level 4

Figure 1. Decided and implied bounds depicted as a graph structure. Bounds in the blue boxes
imply the conflict (red boxes).

v 6= y, the atom y = sin(x) becomes inconsistent since

ρ1(y) ∩ sin(ρ1(x))
= (1, 25] ∩ [−1, 1]
= ∅

.

Therefore, the first clause becomes unit in analogy to DPLL-style SAT solving, as all atoms
but one in this clause are inconsistent. To satisfy the whole formula ϕ under (a refinement
of) ρ1, the atom x = cos(y) thus has to hold. From x = cos(y) we conclude x ≥ −1 and
x ≤ 1, which leads to a refined interval valuation ρ2 with ρ2(x) = [−1, 1]. No further
deductions are possible.

Thus, another split of an interval is performed by deciding x ≤ 0.6 (decision level 2).
This split does not cause any deduction. The same holds for the next decision y ≤ 16 at
decision level 3.

After deciding x ≥ 0 (opening decision level 4), we obtain the interval valuation ρ3 with
ρ3(x) = [0, 0.6], ρ3(y) = (1, 16]. The atom x < 0 in the second clause becomes inconsistent
under ρ3. Thus b is implied. From b ≥ 1 and the third and fourth clause becoming unit, it
follows that the equations h = −3·y and h = x2 have to be satisfied. Thus, we can derive new
interval borders for the variables from these equations by ICP. We do not call a subordinate
interval constraint solver for this issue, but instead apply the corresponding contractor
for each equation (cf. Sect. 3) locally in order to be able to combine interval constraint
propagations and unit propagations in a single implication queue and implication graph,
permitting their uniform treatment within conflict detection and conflict-driven learning.

The atoms y > 1 and h = −3 · y together imply h < −3 by interval constraint propaga-
tion. The corresponding bound h < −3 is thus asserted and ρ3 narrowed accordingly. On
the other hand, h = x2 yields h ≥ 0, also by ICP. Performing the corresponding narrowing,

218

Efficient Solving of Complex-Structured Arithmetic Constraint Systems

we encounter an empty interval valuation, as the models of h < −3 and of h ≥ 0 have an
empty intersection. As in propositional SAT solving, we analyze that conflict by scanning
its reasons. When we trace back the reasons for this conflict situation, we find that our first
decision y > 1 and the bound b ≥ 1 deduced on decision level 4 are reasons for the conflict
(as illustrated in Fig. 1). (More formally, determining the reasons for a conflict is done by
conflict analysis involving an implication graph like in DPLL SAT solvers, cf. Sect. 4.3.) In
order to investigate another part of the search space not considered so far, we jump back
to the second largest decision level d contributing to the conflict and undo all decisions and
deductions up to there (excluding d). In our example we jump back to decision level 1, and
after undoing the corresponding decisions and deductions, the current interval valuation
again is ρ2.

Moreover, similar to DPLL learning mechanisms we add a disjunction of the negated
reasons as a conflict clause to the formula, in order to avoid visiting the same branch again.
Hence, we add the conflict clause (y ≤ 1 ∨ ¬b). We use an approach guaranteeing that the
conflict clause is always unit after undoing decisions and deductions as mentioned above,
e.g. the unique implication point technique from [27] (cf. Sect. 4.3). Hence, we deduce the
Boolean literal ¬b on decision level 1 based on our first decision y > 1. The bound b ≤ 0
implies that the second clause becomes unit and propagates x < 0. From x < 0, y > 1, and
x = cos(y) ICP deduces y > 1.57. The current interval valuation ρ4 thus is ρ4(x) = [−1, 0),
ρ4(y) = (1.57, 25], ρ4(b) = [0, 0], and ρ4(h) = R.

Assume that by further decisions and deductions the intervals of x and y were narrowed
down to [−1,−0.65] and [3, 4], resp., while all other intervals remaining unchanged. Let ρ5

be the according interval valuation. We reached a state of the search space where we know
that clauses two, three, and four are definitely satisfiable because at least one atom of each of
these clauses is definitely satisfiable. The latter is true as each value of the current interval
ρ5(x) = [−1,−0.65) assigned to x (resp. ρ5(b) = [0, 0] assigned to b) satisfies the bound
x < 0 (resp. ¬b). However, the same does not hold for x = cos(y). In general, we can only
deduce from an interval valuation that equation e is satisfiable over the reals if all intervals
of the variables occurring in e are point intervals in the interval valuation. Reaching point
intervals cannot be expected by naive splitting and ICP. Therefore, in general, our algorithm
may output the result “unknown” in addition to “satisfiable” and “unsatisfiable”.

In section 4.5 we discuss approaches for finding satisfying valuations. In our example,
we know that for each value vy ∈ ρ5(y) = [3, 4] there is a value vx ∈ ρ5(x) = [−1,−0.65]
s.t. vx = cos(vy). The value for x of a solution depends on the value for y and the equation
x = cos(y). However, the value for x does not depend on any other values or equations.
Hence, we can assert that ϕ, and thus ψ, is satisfiable.

4.2 Interval constraint solving as a multi-valued SAT problem.

The underlying idea of our algorithm is that the two central operations of ICP-based arith-
metic constraint solving —interval contraction by constraint propagation and by interval
splitting— correspond to asserting bounds on real-valued variables v ∼ c with v ∈ RV ,
∼∈ {<,≤,≥, >} and c ∈ Q. Likewise, the decision steps and unit propagations in DPLL
proof search correspond to asserting literals. A unified DPLL- and ICP-based proof search
on a formula φ from the formula language of Sect. 2 can thus be based on asserting or re-

219

M Fräzle et al.

tracting atoms of the formula language, thereby in lockstep refining or widening an interval
valuation ρ that represents the current set of candidate solutions.

In our algorithm we use the letter M to denote the list of asserted atoms. In order
to allow backtracking on this data-structure, in addition, we intersperse a special marker
symbol | into this list M . Since M may contain several atoms with bounds on the same
variable, it is costly to re-construct from M the tightest of these bounds for a given variable.
Hence, in addition to M , we maintain a stack of interval assignments Σ, where each element
of Σ stores the collected information about the bounds in M up to a marker | and the
top element ρ of Σ stores the information about all the bounds currently in M . The
algorithm thus maintains a 3-tuple (Σ,M, φ) as its proof state, where Σ is a stack of interval
assignments, M a list of asserted atoms 3. cut by a special marker symbol |, and φ a formula.
For the basic procedure, φ will remain constant and always be equal to the formula to be
solved. It is not before introducing conflict-driven learning that we will see changes to φ.

The procedure searching for satisfying valuations then proceeds as follows:
Step 1. Proof search on the input formula φ starts with an empty set of asserted atoms
and the stack Σ of interval valuations just containing a single interval valuation ρ being the
minimal element ρ⊥ wrt. the refinement relation on interval valuations, that is, all intervals
being maximal wrt. the value domains of the individual variables. I.e.,

ρ⊥(v) =

B if v ∈ BV ,

R ∪ {f} if v ∈ RV is an auxiliary variable introduced by

rewriting to three-address form,

X if v ∈ RV is a problem variable with range X ∈ IR.

The start state of the search procedure thus is (〈ρ⊥〉, ε, φ)
Step 2. Proof search continues with searching for unit clauses in φ, that is, clauses that
have all but one atoms being inconsistent with the current interval valuation ρ. If such a
clause is found then the remaining atom is asserted:

φ = φ′ ∧ (a1 ∨ . . . ∨ an), j ∈ N≤n, ∀i ∈ N≤n . (i 6= j ⇒ (ρ] ai)), aj /∈M

(Σ · 〈ρ〉,M, φ) −→ (Σ · 〈ρ〉,M · 〈aj〉, φ)
(1)

Step 2 is repeated until all unit clauses have been processed.
Step 3. If there is an asserted atom a that yields contractions narrowing the current
interval valuation ρ, then the contractors corresponding to a are applied to ρ. In the case
where the asserted atom is a bound, this is straightforward.

(v ∼ c) ∈M,ρ 6|=hc v ∼ c

(Σ · 〈ρ〉,M, φ) −→ (Σ · 〈updateρ(v ∼ c)〉,M, φ)
(2)

where updateρ(v ∼ c)(v′) = ρ(v) ∩ {x | x ∼ c}, if v′ = v, and ρ(v′), otherwise.
In the case of triplets and pairs, these contractors are the usual contractors for the primitive

3. Note that we are allowing arbitrary theory atoms here, whereas SMT maintains a list of asserted Boolean
literals some of which abbreviate theory atoms occurring in the formula. This generalization permits
asserting freshly generated theory atoms at any time, without the need to generate fresh clauses intro-
ducing fresh theory atoms, as necessary in direct extensions of DPLL(T) supporting generation of fresh
arithmetic atoms on demand [1].

220

Efficient Solving of Complex-Structured Arithmetic Constraint Systems

constraints of ICP, as explained in Sect. 3.4. Beyond contracting ρ, the contractions obtained
from triplets and pairs are in turn asserted as bounds (this is redundant for contractions
stemming from bounds, as the asserted atoms would be equal to the already asserted bound
which effected the contraction).

e, b1, . . . , bn ∈M, (b1, . . . , bn)
e
 (v ∼ c) , ρ 6|=hc v ∼ c

(Σ · 〈ρ〉,M, φ) −→ (Σ · 〈updateρ(v ∼ c)〉,M · 〈v ∼ c〉, φ)
(3)

where e is an equation and the bi are bounds. For efficiency reasons, b1 to bn are in practice
inferred from ρ, which when viewed as a polytope has faces reflecting these bounds, rather
than retrieving them from the list M .

Note that rule (3) is different in spirit from theory-related rules in lazy theorem proving
and DPLL(T), as it does neither analyze consistency of the currently asserted set of theory
atoms (as in lazy TP and DPLL(T)) nor implicative relations between these and other
theory atoms occurring in the input formula (as in DPLL(T)). Instead, it applies purely
local reasoning with respect to the single theory atom e and the bounds (i.e., domain
restrictions) b1 to bn, generating a fresh bound atom v ∼ c not present in the original
formula. Consistency of asserted theory atoms is never tested on the full set of (non-linear)
theory atoms, but only within the extremely simple sub-theory of bound atoms through
rules (5) and (6), based on the bookkeeping pursued by rule (2). The massive generation of
fresh bound atoms not occurring in the input formula is crucial to this process, providing
its delayed consistency check in the theory of bounds with the full power of ICP-based
consistency checks, but more fine-granular conflict analysis (cf. rule (7)).

Step 3 is repeated until contraction detects a conflict in the sense of some interval ρ(v)
becoming empty, which is handled by continuing at step 5, or until no further contraction
is obtained.5. In the latter case, the algorithm checks if contraction of ρ has yielded new
unit clauses, in which case it re-enters step 2.

Step 4. Otherwise, it applies a splitting step: it selects a variable v ∈ BV ∪ RV that
is interpreted by a non-point interval (i.e., |ρ(v) ∩ R| > 1) and splits its interval ρ(v) by
asserting a bound that contains v as a free variable and which is inconclusive on ρ. Note
that the complement of such an assertion also is a bound and is inconclusive on ρ too. In
our current implementation, we use the usual strategy of bisection, i.e., the choice of c as
the midpoint of ρ(v).

v ∼ c inconclusive on ρ, v occurs in φ

(Σ · 〈ρ〉,M, φ) −→ (Σ · 〈ρ, updateρ(v ∼ c)〉,M · 〈|, v ∼ c〉, φ)
(4)

Note that the topmost environment ρ in the stack is duplicated before splitting s.t. ρ can
easily be retrieved upon backtracking. After the split, the algorithm continues at 2.

Step 5. In case of a conflict, some previous splits (cf. step 4) have to be reverted, which is
achieved by backtracking —thereby undoing all assertions being consequences of the split via
retrieval of the previous interval valuation in the stack— and by asserting the complement

4. Note that these contractors are defined on floating point intervals, ensuring correctness due to outward
rounding. Hence we also use floating point intervals throughout the algorithm.

5. In practice, one stops as soon as the changes become negligible.

221

M Fräzle et al.

of the previous split. In M , the split is marked by the special symbol | preceding the atom
asserted by the split.

ρ′(w) = ∅ for some w ∈ BV ∪ RV , |6∈M ′

(Σ · 〈ρ, ρ′〉,M · 〈|, v ∼ c〉 ·M ′, φ) −→ (Σ · 〈updateρ(v 6∼ c)〉,M · 〈v 6∼ c〉, φ)
(5)

Later (Sect. 4.3 below) we will see that, beyond backtracking, information about the reason
for the conflict can be recorded in the formula φ, thus pruning the remaining search space.
If rule (5) is applicable, i.e. if there is an open backtracking point marked by the split marker
“|” in the list of asserted atoms, then we apply the rule and proceed to step 2. Otherwise,
i.e. if there is no previous split with a yet unexplored alternative, then the algorithm stops
with result “unsatisfiable”.

ρ(w) = ∅ for some w ∈ BV ∪ RV , |6∈M

(Σ · 〈ρ〉,M, φ) −→ unsat
(6)

The correctness of the algorithm rests on the following two invariance properties preserved
by rules (1) to (5):

Lemma 1. Assume (〈ρ⊥〉, ε, φ) −→∗ (Σ · 〈ρ〉,M, φ) −→ (Σ′,M ′, φ). Then

1. η |=hc
∧

a∈M a implies that η is a (not necessarily proper) refinement of ρ,

2. hcsat
(

φ ∧
(

∧

a∈M a ∨ ¬
∧

b∈CM
b
))

implies hcsat
(

φ ∧
(

∧

a′∈M ′ a′ ∨ ¬
∧

b′∈C
M′
b′

))

hold, where CN = {x ∼ c | N = N1 · 〈|, x ∼ c〉 ·N2} is the set of choice points in N .

Proof. Property 1 follows from the fact that for each contraction applied to ρ, a corre-
sponding bound can be found in M (including bounds added within the same step that the
contraction occurs). Hence, if ρ(v) = [a, b] and if [a, b] is a proper subset of the original
range of v then there is a bound x ≥ a ∈ M and a bound x ≤ b ∈ M , and analogously
for half-open intervals ρ(v) = (a, b] or ρ(v) = [a, b) or open intervals ρ(v) = (a, b). Conse-
quently, η |=hc M implies η(v) ⊆ [a, b] = ρ(v) in case of ρ(v) = [a, b], and similarly for the
other cases. I.e., η is a refinement of ρ whenever η |=hc M .

Property 2 requires a case analysis wrt. the changes applied to M : Within rules (1) to
(3), M is expanded by deduced atoms a′ that the different contractors (unit propagation,
interval contraction) permit to be drawn from φ ∧

∧

a∈M a with respect to refinements of
ρ. Each such atom a′ satisfies the contractor soundness condition η |=hc φ ∧

∧

a∈M a iff
η |=hc φ ∧

∧

a∈M a ∧ a′ for each refinement η of ρ. As property 1 shows that φ ∧
∧

a∈M a
can only be satisfied by refinements of ρ, the conjectured implication follows for rules
(1) to (3) from the fact that M ′ = M ∪ {a′} and CM ′ = CM . The splitting rule (4)
adds a split bound x ∼ c which occurs in both M ′ and CM ′ such that the conjectured
implication holds due to absorption. For rule (5) we observe that due to the premise
ρ(w) = ∅ of the rule, property 1 of the Lemma gives η(w) = ∅ for each interval valuation η
with η |=hc

∧

a∈M a. I.e.,
∧

a∈M a is not hull consistently satisfiable. Consequently, either

φ∧
(

∧

a∈M a ∨ ¬
∧

b∈CM
b
)

is not hull consistently satisfiable (in which case the implication

trivially follows), or φ ∧ ¬
∧

b∈CM
b is hull consistently satisfiable. The latter implies hull

222

Efficient Solving of Complex-Structured Arithmetic Constraint Systems

consistent satisfiability of φ ∧
(

∧

a′∈M ′ a′ ∨ ¬
∧

b′∈C
M′
b′

)

, as CM ′ = CM \ {v ∼ c} and

v 6∼ c ∈ M ′ for some bound v ∼ c. Rule (6), finally, does not yield a configuration of the
form (Σ′,M ′, φ) such that it trivially satisfies the conjecture.

Corollary 1. If (〈ρ⊥〉, ε, φ) −→∗ (Σ · 〈ρ〉,M, φ) −→ unsat then φ is unsatisfiable over R.

Proof. We assume that (〈ρ⊥〉, ε, φ) −→∗ (Σ · 〈ρ〉,M, φ) −→ unsat. Then, according to
the premises of rule (6), ρ(w) = ∅ for some w ∈ BV ∪ RV and, furthermore, |6∈ M . By
induction over the length of the derivation sequence and Lemma 1, property 2, we obtain

that hcsat (φ) implies hcsat
(

φ ∧
(

∧

a∈M a ∨ ¬
∧

b∈CM
b
))

. As |6∈M and thus CM = ∅, this

in turn gives: hcsat (φ) implies hcsat
(

φ ∧
∧

a∈M a
)

. According to Lemma 1, property 1,
any interval valuation η with η |=hc φ∧

∧

a∈M a is a refinement of ρ, i.e. has η(w) = ∅. Thus,
φ ∧

∧

a∈M a is not hull consistently satisfiable, which implies that φ is not hull consistently
satisfiable. As hull consistent satisfiability is a necessary condition for satisfiability over the
reals, it follows that φ is unsatisfiable.

4.3 Algorithmic enhancements

By its similarity to DPLL algorithms, this base algorithms lends itself to all the algorithmic
enhancements and sophisticated data structures that were instrumental to the impressive
recent gains in propositional SAT solver performance.

Lazy clause evaluation. In order to save costly visits to and evaluations of disjunctive
clauses, we extend the lazy clause evaluation scheme of zChaff [21] to our more general class
of atoms: within each clause, we select two atoms which are inconclusive wrt. the current
valuation ρ, called the “watched atoms” of the clause. Instead of scanning the whole clause
set for unit clauses in step 2 of the base algorithm, we only visit the clause if a free variable of
one of its two watched atoms is contracted, that is, a tighter bound than recorded in top(Σ)
is asserted. In this case, we evaluate the atom’s truth value. If found to be inconsistent
wrt. the new interval assignment, the algorithm tries to substitute the atom by a currently
unwatched and not yet inconsistent atom to watch in the future. If this substitution fails
due to all remaining atoms in the clause being inconsistent, the clause has become unit and
the second watched atom has to be propagated using rule (1).

Maintaining an implication graph. In order to be able to tell reasons for conflicts (i.e.,
empty interval valuations) encountered, our solver maintains an implication graph IG akin
to that known from propositional SAT solving [27]. As all asserted atoms are recorded in
the stack-like data structure M (cf. Sect. 4.2), the implication graph is implemented by way
of pointers providing backward references within M . Each asserted atom in M then has a
set of pointers naming the reasons (if any) for its assertion. That is, after application of rule
(1), the entry aj in M is decorated with pointers to the reasons for the entries ai with i 6= j
being inconsistent. These reasons are bounds already asserted in M : if ai in rule (1) is a
bound v ∼ c then M contains another bound v ∼′ c′ with v ∼ c∧ v ∼′ c being unsatisfiable,
in which case v ∼′ c′ can serve as a reason. If ai is an equation x = y ◦ z then M contains
a set of at most 6 bounds for x, y, and z that shows inconsistency of the equation; the
bounds in this set then constitute the reasons for ai being inconsistent. When applying rule
(3), the reasons are apparent from the contraction enforced, as explained in Sect. 3: in the

223

M Fräzle et al.

contraction (b1, . . . , bn)
e
 (v ∼ c), b1, . . . , bn are the reasons for the bound v ∼ c. The other

rules do not record reasons because they either do not assert atoms, as in rule (2), or as the
asserted atoms originate in choices (rules 4 and 5), which is recorded by attaching an empty
set of reasons to the asserted atom. Note how the homogeneous treatment of Boolean and
theory-related reasoning in our framework simplifies extraction of the implication graph:
as both Boolean constraint propagations and theory-related constraint propagations are
bound assignments in the same list M of asserted atoms, rather than deferring the theory
reasoning to a subordinate theory solver checking theory consistency, the implication graph
can be maintained via links in M only.

The aforementioned pointer structure is in one-to-one correspondence to an implication
graph IG ⊂ AM × AM relating reasons to consequences, where AM is the set of atoms in
M . IG collects all references to reasons occurring in M as follows: (a, a′) ∈ IG iff the
occurrence of a′ in M mentions a as its reason. Figure 2 provides an example. Given the
implication graph IG, the set RIG(a) of sufficient reasons for an atom a in M is defined
inductively as the smallest set satisfying the following three conditions.

1. {a} ∈ RIG(a).

2. Let r ∈ R ∈ RIG(a) and S = {q | (q, r) ∈ IG}. If S 6= ∅ then (R \ {r}) ∪ S ∈ RIG(a).

3. If R ∈ RIG(a) and S ⊃ R then S ∈ RIG(a).

The rationale of this definition is that (1.) a itself is a sufficient reason for a being true,
(2.) a sufficient reason of a can be obtained by replacing any reason r of a with a sufficient
reason for r, (3.) any superset of a sufficient reason of a is a sufficient reason of a.

Conflict-driven learning and non-chronological backtracking. In case of a conflict
encountered during the search, we can record a reason for the conflict preventing us from
constructing other interval valuations provoking a similar conflict. Therefore, we traverse
the implication graph IG to derive a reason for the conflict encountered, and add this reason
in negated form to the input formula. We use the unique implication point technique [27] to
derive a conflict clause which is general in that it contains few atoms. This clause becomes
asserting upon backjumping to the second largest decision level contributing to the conflict,
i.e. upon undoing all decisions and constraint propagations younger than the chronologically
youngest but one decision among the antecedents of the conflict.

ρ′(v) = ∅,M = M ′ · 〈|〉 ·M ′′, b, b′ are bounds, b, b′ ∈M, |= ¬(b ∧ b′), |Σ| = ‖M ′‖,
a1, . . . , an are bounds, a1 ∈M ′′, a2, . . . , an ∈M ′, {a1, . . . , an} ∈ RIG(b) ∩RIG(b′)

(Σ · 〈ρ〉 · Σ′ · 〈ρ′〉,M, φ) −→ (Σ · 〈updateρ(¬a1)〉,M ′ · 〈¬a1〉, φ ∧ (¬a1 ∨ . . . ∨ ¬an))
(7)

where |Σ| gives the length of sequence Σ and ‖M‖ the number of markers | in M . Note
that the application conditions of the rule are always satisfied when the conditions of the
backtrack rule (5) apply, as ρ′(v) = ∅ can only arise if there are two contradicting bounds
b = v ∼ c and b′ = v ∼′ c′ in M , and as deduction sequences can, by following IG long
enough, always be traced back to bounds as reasons. Hence, the learning rule (7) can fully
replace the backtrack rule (5). An application of the rule is shown in Fig. 2.

Note that, while adopting the conflict detection techniques from propositional SAT
solving, our conflict clauses are more general than those generated in propositional SAT

224

Efficient Solving of Complex-Structured Arithmetic Constraint Systems

(x > 4 ∨ y ≤ 0 ∨ b)c1 :

(¬b ∨ h1 = x · x)∧c2 :

(¬b ∨ h2 = −2 · y)∧c3 :

(¬b ∨ h3 = h1 + h2)∧c4 :

b ≥ 1

h2 = −2 · y
h3 ≥ 6.2

h1 ≤ 9

h3 = h1 + h2
h1 = x · x

(¬b ∨ h3 ≥ 6.2)∧c5 : h2 ≤ −8

h2 ≥ −2.8
x ≤ 3

x ≥ −2

y ≥ 4

Figure 2. Conflict analysis: Let (x > 4 ∨ y ≤ 0 ∨ x2 − 2y ≥ 6.2) be a fragment of a formula
to be solved. Rewriting this fragment into our internal syntax yields the clauses c1, . . . , c5 to the
left. Assume x ≥ −2 and y ≥ 4 have been asserted on decision levels k1 and k2, resp., and
another decision level is opened by asserting x ≤ 3. Clause c1 becomes unit since the atoms x > 4
and y ≤ 0 are inconsistent. By rule 1, we assert b ≥ 1 due to the atoms x ≤ 3 and y ≥ 4.
By b ≥ 1 the clauses c2, . . . , c5 become unit, implying the equations h1 = x · x, h2 = −2 · y,
h3 = h1 + h2, and the bound h3 ≥ 6.2. By equation h2 = −2 · y and y ≥ 4 we compute
the new upper bound h2 ≤ −8. The remaining deduction process is indicated by the resulting
implication graph on the right, ending in a conflict on h2 (red boxes). Edges relate implications to
their antecedents. Following the implication chains (blue edges) from the conflict yields the bounds
causing the conflict (blue boxes). The added conflict clause ¬(x ≥ −2) ∨ ¬(x ≤ 3) ∨ ¬(y ≥ 4)
becomes unit after backjumping to decision level max(k1, k2), propagating x > 3.

solving: as the antecedents of a contraction may involve arbitrary arithmetic bounds, so do
the conflict clauses. Furthermore, in contrast to nogood learning in constraint propagation,
we are not confined to learning forbidden combinations of value assignments in the search
space, which here would amount to learning disjunctions of interval disequations x 6∈ I with
x being a problem variable and I an interval. Instead, our algorithm may learn arbitrary
combinations of atoms x ∼ c, which provides stronger pruning of the search space: while a
nogood x 6∈ I would only prevent a future visit to any subinterval of I, a bound x ≥ c, for
example, blocks visits to any interval whose left endpoint is at least c, no matter how it is
otherwise located relative to the current interval valuation.

4.4 Enforcing progress and termination

The naive base algorithm described above would apply unbounded splitting, thus risking
non-termination due to the density of the order on R. It traverses the search tree until
either no further splits are possible due to the search space being fully covered by conflict
clauses or until a solution of the problem is witnessed (cf. Sect. 4.5). In contrast to purely
propositional SAT solving, where the split depth is bounded by the number of variables in
the SAT problem, this entails the risk of non-termination due to infinite sequences of splits
being possible on each real-valued interval. Even worse, by pursuing depth-first search, the
algorithm risks infinite descent into a branch of the search tree even if other branches may
yield definite, satisfying results.

225

M Fräzle et al.

We tackle this problem by selecting a heuristics for application of the rules which guar-
antees a certain progress with respect to decided and deduced bounds. Therefore, we fix a
progress bound ε > 0 (to be refined iteratively later on) and demand that the rule applica-
tions satisfy the following condition.

Condition 1. Rules (3), (5), and (7) are only applied if their asserted bound v ∼ c narrows
the remaining range of v by at least ε, i.e. if ∀c′ ∈ R : (v ∼ c′) ∈ N ⇒ |c − c′| ≥ ε, where
N = M for rules (3) and (5) and N = M ′ for rule (7).

Rule (4) is only applied if both the split bound v ∼ c and its negation v 6∼ c narrow the
remaining range of v by at least ε.

We now define a strict partial ordering � on the list of asserted atoms M . For that
purpose we denote by B(M) the largest interval box satisfying each bound in M . Let

M = M1| . . . |Mn and M ′ = M ′
1| . . . |M

′
m s.t. | /∈

(

⋃n
i=1Mi ∪

⋃m
j=1M

′
j

)

. Then M � M ′ if

∃k : 1 ≤ k ≤ n,m : B(M1) = B(M ′
1), . . . , B(Mk−1) = B(M ′

k−1), and B(M ′
k) is a proper

refinement of B(Mk), i.e. B(M ′
k) ⊂ B(Mk).

Lemma 2. If (Σ,M, φ) −→ (Σ′,M ′, φ′) then the following propositions hold.

1. M �M ′ or B(M) = B(M ′) if rule (1) was applied.

2. Rule (2) does not change the list of asserted atoms, i.e. B(M) = B(M ′).

3. M �M ′ if rule (3), (4), (5), or (7) was applied.

One can easily check that propositions 2 and 3 of lemma 2 hold. For proposition 1 note
that if a bound v ∼ c where M 6|=hc v ∼ c is added to the list of atoms then M � M ′.
Otherwise, B(M) = B(M ′) holds by adding a bound v ∼ c with M |=hc v ∼ c or an
equation.

By Lemma 2, we are able to prove termination of our algorithm when started with the
initial intervals of both auxiliary and problem variables being bounded (where the bounded
intervals may contain the special value f). Let I be an interval. If I is bounded, i.e.
∃lb, ub ∈ R : inf(I) = lb ∧ sup(I) = ub, then the width of I is defined as width(I) = ub− lb,
else width(I) = ∞. Note that the bounds may well be the biggest and smallest numbers
representable on our computer.

Lemma 3 (Termination). Let (〈ρ⊥〉,M, φ) be the initial state of the algorithm where | /∈M
and ∀v ∈ BV ∪RV : width(M(v)) 6= ∞. Then the algorithm reaches a state S after finitely
many applications of the rules (1) to (7) subject to condition 1 s.t.

1. S = unsat, or

2. S = (Σ,M ′, φ′) where ∀v ∈ BV ∪ RV : width(M ′(v)) ≤ 2 · ε and ε is the constant
progress parameter of condition 1.

Proof. If the state unsat will eventually be reached the algorithm stops. Therefore assume
that state unsat will not be reached. Observe that rules (1) and (2) can be applied only
finitely often in consecution. Therefore, each possible infinite execution path of the algo-
rithm applies the rules (3), (4), (5), or (7) infinfitely often, yielding an infinitely decreasing

226

Efficient Solving of Complex-Structured Arithmetic Constraint Systems

(wrt. �) sequence of (Mi)i∈N according to Lemma 2. Let (Nj)j∈N be its infinite subse-
quence of Mi originating from application of rules (3), (4), (5), or (7). Due to condition 1,

the length of this subsequence is bounded by O
(

∏

v∈RV∪BV

width(M(v))
ε

)

< ∞, yielding a

contradiction.

Observe, that the rules 5 and 7 are always applicable: For rule 5, v ∼ c was added
by rule 4 and, thus, v 6∼ c narrows the remaining range of v by at least ε (condition 1).
Concerning rule 7, we are always able to find a bound a1 ∈ M ′′ s.t. ¬a1 narrows the
remaining range by at least ε. (The rightmost bound in M added by rule 4 is always
adequate.) The condition for M ′ then follows from the fact that application of rule 4 failed.

Thus, given a progress bound ε > 0, the algorithm will always terminate. Termination
could, however, be enforced by the progress bound before a conclusive result has been found.
We compensate for that by performing restarts with refined progress bound ε′ > 0. Note
that such an iterative refinement of the progress bound is considerably different from not
using a progress bound, as it still prevents infinite digression into a single branch of the
search space, adding some breadth-first flavor.

Achieving almost-completeness through restarts. With a given progress parame-
ter ε of condition 1, the above procedure may terminate with inconclusive result: it may
fail to terminate with an “unsat” result, yet undecided branches in the search space —
corresponding to inconclusive interval interpretations— remain. In this case, the solver
simply is restarted with a smaller progress parameter. As all the conflict clauses are pre-
served from the previous run, the new run essentially only visits those interval interpre-
tations that were previously left in an inconclusive state, and it extends the proof tree
precisely at these inconclusive leaves.

By iterating this scheme for incrementally smaller progress parameter converging to zero,
we obtain an “almost complete” procedure being able to refute (and, with the extensions
of Sect. 4.5, verify) all robustly unsatisfiable (robustly satisfiable, resp.) formulae, where
robustness here means that the corresponding property is stable under small perturbation
of the constants in the problem.

4.5 Finding satisfying valuations

The notion of hull consistency, while being a necessary condition for real-valued satisfiability,
fails to be a sufficient condition for real-valued satisfiability. Current interval based solvers
usually take the mid-point of a (e.g., hull consistent) valuation as a starting point for an
iterative local search method (e.g., Newton’s method). If the search converges, the result-
ing point contains an approximate solution of the input constraints. For a mathematically
correct proof of satisfiability one then usually generates boxes around the approximate solu-
tion (cf. ε-inflation [19]), and verifies the existence of a solution to the equality constraints
within the box using fixpoint arguments (cf. Newton operator, Miranda’s theorem [22]).
The inequality constraints can be verified using simple interval arithmetic. For the whole
process the original, un-decomposed input constraints are used.

In our field of application, we can actually do much better, as the formulae tend to have
a specific structure facilitating generation of witnesses from tight enough interval valuations.

227

M Fräzle et al.

In the formulae generated from hybrid transition systems, equations usually stem from two
sources only: either they are introduced by rewriting complex expressions to three-address
form, or they stem from translating assignment operations associated to transitions of the
hybrid system into constraints. In the first case, the left-hand sides of the equations are
auxiliary variables which occur exactly once on a left-hand side of an equation, and those
equations form an acyclic graph. In the latter case, multiple left-hand occurrences of the
same variable may appear in the constraint system, but these stem from mutually exclusive
transitions such that satisfying the overall formula does not require to satisfy the conjunction
of two or more equations with the same left-hand side. Under these circumstances, a certain
form of interval satisfiability by tight intervals is sufficient for real-valued satisfiability.

We call an interval valuation ρ strongly satisfying for φ, denoted ρ |=s φ, iff there is a
finite set A = {a1, . . . , an} of atoms such that the following four conditions hold:

1. Each clause in φ contains at least one atom a ∈ A.

2. If ai is an equation x = y ◦ z or x = ◦y then x is interpreted by a point interval (i.e.,
|ρ(x)| = 1), or x does neither occur in any aj with j > i nor on the right-hand side of
ai (i.e., x 6= y and x 6= z).

3. ρ̌ assigns purely real-valued intervals to all variables v ∈ RV , i.e. f 6∈ ρ̌(v), where ρ̌ is
the smallest interval valuation satisfying

(a) ∀v ∈ BV ∪ RV : ρ(v) ⊆ ρ̌(v),

(b) for each equation (x = y ◦ z) ∈ A or (x = ◦y) ∈ A with |ρ(x)| > 1, the inclusion
ρ̌(x) ⊇ ρ̌(y)•̂1ρ̌(z) or ρ̌(x) ⊇ •̂1ρ̌(y), resp., holds.6.

4. All atoms a ∈ A are interval satisfied by ρ̌ in the following sense:

a = (x ∼ c) implies ρ̌(x) ⊆ {u | u ∈ R, u ∼ c},
a = (x = y ◦ z) implies ρ̌(x) ⊇ ρ̌(y)•̂1ρ̌(z),
a = (x = ◦y) implies ρ̌(x) ⊇ •̂1ρ̌(y).

Due to the ordering condition on equality constraints that are satisfied by non-point inter-
vals, we obtain the following tight correspondence between strong interval satisfiability and
real-valued satisfiability:

Lemma 4. If ρ |=s φ then there exists a real-valued valuation σ such that σ |= φ.

Proof. If ρ |=s φ then we can recursively define a real-valued valuation σ exploiting the
structure of the family of witnesses ai ∈ A as follows:

1. For each v ∈ BV and for each v ∈ RV not occurring on the left-hand side of any
equation in {a1, . . . , an}, select σ(v) ∈ ρ̌(v) arbitrarily;

6. Note that the interval valuation ρ̌ is well-defined due to condition (2). Furthermore, ρ̌ is easily computable
by a recursive procedure that sets ρ̌(x) = ρ(x) for all x with |ρ(x)| = 1 or which do not occur on the left
hand side of some ai. The remaining values are then computed by solving the equations ρ̌(x) = ρ̌(y)•̂1ρ̌(z)
or ρ̌(x) = •̂1ρ̌(y), respectively.

228

Efficient Solving of Complex-Structured Arithmetic Constraint Systems

2. For i = n down to 1, process the constraints an to a1 in reverse sequence as follows:
if ai is an equation v = x ◦ y or v = ◦x then take σ(v) = σ(x) ◦ σ(y) or σ(v) = ◦σ(x),
respectively.

Note that solutions to the equation system in (2.) exist because the hierarchical order of
variable dependencies in a1 to an enforces that each σ(v) either is subject to at most one
defining equation or is picked from a point interval ρ̌(v) ⊇ ρ̌(x)•̂1ρ̌(y) or ρ̌(v) ⊇ •̂1ρ̌(y),
respectively. Furthermore, σ(v) 6= f as f 6∈ ρ̌(v) ⊇ ρ̌(x)•̂1ρ̌(y) 3 σ(x) ◦ σ(y) and f 6∈
ρ̌(v) ⊇ •̂1ρ̌(y) 3 ◦σ(y), respectively. It is straightforward to check that σ |= φ.

Example. Let

φ = (x > 0 ∨ y ≥ 0 ∨ c < 0) ∧ (x > 4 ∨ y ≤ −3 ∨ b) ∧ (¬b ∨ x = y + z)∧
(¬b ∨ y = sin(c)) ∧ (¬b ∨ c = 2 · z)

be a formula, x, y, z, c be real-valued variables and b a Boolean variable. Let ρ be the current
interval valuation, where ρ(x) = (1.54, 1.65), ρ(y) = (−0.06, 0.05), ρ(z) = [1.55, 1.6], ρ(c) =
[3.1, 3.2], ρ(b) = [1, 1](= {true}).
Let A = {a1 = (x > 0), a2 = (b), a3 = (x = y + z), a4 = (y = sin(c)), a5 = (c = 2 · z)} be a
set of atoms. Obviously, conditions 1 and 2 are satisfied by A for φ. Condition 3 leads to
ρ̌, where

ρ̌(z) = ρ(z) = [1.55, 1.6],
ρ̌(c) = 2 ·̂ ρ̌(z) = [3.1, 3.2],

ρ̌(y) = ˆsin(ρ̌(c)) = (−0.06, 0.05),
ρ̌(x) = ρ̌(y) +̂ ρ̌(z) = (1.49, 1.65),
ρ̌(b) = ρ(b) = [1, 1].

By an easy check, condition 4 can be verified. Thus, ρ strongly satisfies φ which implies that
there is a real-valued solution of φ, e.g. z = 1.6, c = 3.2, y = sin(3.2), x = sin(3.2) + 1.6,
and b = true. �

This motivates extending the base algorithm from Sect. 4 with the following additional
rule for termination:

ρ |=s φ

(Σ · 〈ρ〉,M, φ) −→ sat
(8)

Note that ρ |=s φ is decidable. For the sake of efficiency, our implementation checks appli-
cability of rule (8) only if all clauses are unit (in the sense of containing at most one atom
that is not yet inconsistent) and width(ρ(v)) ≤ 2 · ε for each v ∈ RV , where ε is the the
progress parameter of condition 1.

The correctness of rule (8) wrt. real-valued satisfiability follows directly from Lemma 4,
providing the following correctness property for the extended algorithm.

Corollary 2. If (〈ρ⊥〉, ε, φ) −→∗ sat then φ is satisfiable over R.

We conjecture that our algorithm enhanced by rule (8) will eventually, after sufficiently
refining the progress parameter ε of condition 1, find a satisfying solution to each satisfi-
able formula of the aforementioned syntactic structure arising in our domain, provided the
formula φ has at least one non-isolated model. Here, a model σ of φ is non-isolated iff it

229

M Fräzle et al.

satisfies a set {a1, . . . , an} = A of atoms such that each clause in φ contains at least one
ai and for the vector (x1, . . . , xm) of variables not occurring on the left-hand side of an
equation e ∈ A there exists a neighborhood U~x of (σ(x1), . . . , σ(xm)) such that there is a
model σ′ with σ′(xi) = ui for each ~u ∈ U~x. Confer [23, 24] for a more complete discussion
of such robustness issues.

5. Benchmark results

In this section we provide experimental results obtained from benchmarking our tool iSAT.7.

The benchmarks mentioned in sections 5.1 and 5.2 were performed on a 2.5 GHz AMD
Opteron machine with 4 GByte physical memory while those of Sect. 5.3 were pursued on
a 1.83 GHz Intel Core 2 Duo machine with 1 GByte physical memory, both running Linux.

5.1 Impact of conflict-driven learning

In order to demonstrate the potential of our approach, in particular the benefit of conflict-
driven learning adapted to interval constraint solving, we compare the performance of iSAT
to a stripped version thereof, where learning and backjumping are disabled (but the opti-
mized data structures, in particular watched atoms, remain functional).

We considered bounded model checking problems, that is, proving a property of a hybrid
discrete-continuous transition system for a fixed unwinding depth k. Without learning, the
interval constraint solving system failed on every moderately interesting hybrid system due
to complexity problems exhausting memory and runtime. This could be expected because
the expected number of boxes to be visited grows exponentially in the number of variables in
the constraint formula, which in turn grows linearly in both the number of problem variables
in the hybrid system and in the unwinding depth k. When checking a model of an elastic
approach to train distance control [11], the version without learning exhausts the runtime
limit of 3 days already on unwinding depth 1, where formula size is 140 variables and 30
constraints. In contrast, the version with conflict-driven learning solves all instances up to
depth 10 in less than 3 minutes, thereby handling instances with more than 1100 variables,
a corresponding number of triplets and pairs, and 250 inequality constraints. For simpler
hybrid systems, like the model of a bouncing ball falling in a gravity field and subject to
non-ideal bouncing on the surface, the learning-free solver works due to the deterministic
nature of the system. Nevertheless, it fails for unwinding depths > 11, essentially due to
enormous numbers of conflicting assignments being constructed (e.g., > 348 · 106 conflicts
for k = 10), whereas learning prevents visits to most of these assignments (only 68 conflicts
remain for k = 10 when conflict-driven learning is pursued). Consequently, the learning-
enhanced solver traverses these problems in fractions of a second; it is only from depth
40 that our solver needs more than one minute to solve the bouncing ball problem (2400
variables, 500 constraints). Similar effects were observed on chaotic real-valued maps, like
the gingerbread map. Without conflict-driven learning, the solver ran into approx. 43 · 106,
291 ·106, and 482 ·106 conflicts for k = 9 to 11, whereas only 253, 178, and 155 conflicts were
encountered in the conflict-driven approach, respectively. This clearly demonstrates that
conflict-driven learning is effective within interval constraint solving: it dramatically prunes

7. The benchmarks and an iSAT executable can be found on http://hysat.informatik.uni-oldenburg.de

230

http://hysat.informatik.uni-oldenburg.de

Efficient Solving of Complex-Structured Arithmetic Constraint Systems

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

[s
]

with learning [s]

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 10m:1

time out

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.1 1 10 100 1000

w
ith

ou
t l

ea
rn

in
g

with learning

> 1:1

> 10:1

> 100:1

> 1k:1

> 10k:1

> 100k:1

> 1m:1

> 5m:1

Figure 3. Performance impact of conflict-driven learning and non-chronological backtracking:
runtime in seconds (left) and number of conflicts encountered (right)

the search space, as witnessed by the drastic reduction in conflict situations encountered
and by the frequency of backjumps of non-trivial depth, where depths of 47 and 55 decision
levels were observed on the gingerbread and bouncing ball model, respectively. Similar
effects were observed on two further groups of benchmark examples: an oscillatory logistic
map and some geometric decision problems dealing with the intersection of n-dimensional
geometric objects. On random formulae, we even obtained backjump distances of more
than 70000 levels. The results of the aforementioned benchmarks, excluding the random
formulae, are presented in Fig. 3.

5.2 Phase transition

As our algorithm performs a backtrack search, we also investigated the phase transition
behavior on scalable problems featuring a satisfiability threshold (cf. Fig. 4). Within these
experiments, we have unwound bounded model-checking problems over successively larger
depths such that the problem undergoes a phase transition from being unsatisfiable to sat-
isfiability, forcing our algorithm to adapt its search strategy from refutation to construction
of satisfying assignments. The strong satisfaction test (rule (8)) in our implementation
tries to construct a (point) solution as mentiond in the proof of lemma 4 and, if successfull,
returns this solution.

The models where three small to medium-sized hybrid systems (two bouncing balls and
a high-lift system in avionics), featuring a relatively low amount of nondeterminism in the
transition selection, as well as the chaotic Duffing map extended by some target region to
be reached through iterated application of the deterministic map. While we had expected
an extremely high computational cost of actually finding satisfying valuations due to deep
digression into the search lattice, at least for these relatively deterministic systems, the
computational cost of actually finding satisfying valuations over the reals turned out to be
comparable to that of refuting the unsatisfiable cases. The sizes here were up to 18119
variables, encountered on the satisfiable unwinding of depth 78 of the high-lift model. The

231

M Fräzle et al.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

ru
nt

im
e

[s
]

unwinding depth [scaled]

Unsat Sat

 0.001

 0.01

 0.1

 1

 10

 100

 1000

ru
nt

im
e

[s
]

unwinding depth [scaled]

Unsat Sat
high-lift system
bouncing ball 1
bouncing ball 2

Duffing map

Figure 4. Transition between refutation algorithm and construction of satisfying valuations:
runtime of bounded model-checking problems when unwound across the satisfiability threshold

other models were considerably smaller, with the Duffing map being by far the smallest
with up to 714 variables.

5.3 Comparison to ABsolver

Finally, we provide a comparison to ABsolver [2], which, to the best of our knowledge, is
the only other SMT-based solver addressing the domain of large Boolean combinations of
non-linear arithmetic constraints over the reals. The currently reported implementation [2]
uses the numerical optimization tool IPOPT [26] for solving the non-linear constraints.
IPOPT is a highly efficient tool for numerical local optimization. However, in contrast to
global optimization methods, it only searches for local solutions, and hence may incorrectly
claim a satisfiable set of constraints inconsistent. Moreover, IPOPT may also produce
incorrect results due to rounding errors. Note that solving non-linear constraints globally
and without rounding errors is considered a problem that is harder to solve by orders of
magnitude.

The current implementation of ABsolver8. supports the arithmetic operations of ad-
dition (and subtraction) and multiplication (and division) only. Therefore, the respective
benchmarks are restricted to polynomial arithmetic. We performed the experiments on
ABsolver with options sat:zchafflib, l:coin, nl:ipopt. Table 2 lists the experimen-
tal results. Its second column states the unwinding depth of bounded model checking
problems, the third column the number of arithmetic operators in the benchmark.

The first benchmark is described in [16, p. 5]. Benchmarks 2 to 4 can be found in [2] as
well as on ABsolver’s web page. The industrial case study of a mixed-signal circuit in a
car-steering control system (benchmark 5) is described in [2], yet is not publicly available
due to protection of intellectual property. The remaining benchmarks are bounded model
checking problems of hybrid systems and of iterated chaotic maps. Except for the car-
steering control system, all benchmarks are available from the iSAT web site.

8. Available from http://absolver.sourceforge.net/

232

http://absolver.sourceforge.net/

Efficient Solving of Complex-Structured Arithmetic Constraint Systems

Table 2. Performance of iSAT relative to ABsolver.
Benchmark BMC depth]arith op iSAT ABsolver speedup

nonlinear CSP — 44 0m0.032s 0m0.072s 2.2
esat n11 m8 nonlinear — 7 0m0.028s 0m0.012s 0.4

nonlinear unsat — 2 0m0.004s 0m0.032s 8.0
div operator — 1 0m0.004s 0m0.028s 7.0

car steering — 138 0m0.268s 2m11.032s 488.9

h3 train 2 102 0m0.244s 0m2.968s 12.2
h3 train 3 153 0m0.304s 0m6.480s 21.3
h3 train 4 204 0m0.344s 0m10.401s 30.2
h3 train 5 255 0m0.348s 0m15.981s 45.9
h3 train 17 867 0m30.718s 3m22.769s 6.6
h3 train 18 918 0m33.346s 3m39.374s 6.6
h3 train 30 1530 0m46.519s 10m55.965s 14.1

renault clio 2 132 0m0.020s 0m0.764s 38.2
renault clio 3 198 0m0.024s 0m1.628s 67.8
renault clio 30 1980 0m0.300s 3m48.158s 760.5
renault clio 31 2046 0m0.344s 4m9.528s 725.4

aircraft 5 132 0m0.044s 2m30.113s 3,411.7
aircraft 6 157 0m0.056s 5m47.182s 6,199.7
aircraft 10 257 0m1.496s 50m43.594s 2,034.5

duffing map 3 21 0m0.004s 0m4.904s 1,226.0
duffing map 4 28 0m0.004s 1m58.571s 29,642.7
duffing map 5 35 0m0.004s 3m35.117s 53,779.2
duffing map 6 42 0m0.004s 5m52.822s 88,205.5
duffing map 7 49 0m0.001s 0m22.313s 22,313.0
duffing map 8 56 0m0.004s 1m16.849s 19,212.2
duffing map 20 140 0m0.008s 6m15.675s 46,959.4
duffing map 30 210 0m0.012s > 60m > 300,000

tinkerbell map 1 22 0m0.004s 0m1.292s 323.0
tinkerbell map 2 38 0m0.008s 3m12.052s 24,006.5
tinkerbell map 3 54 0m0.048s 7m58.210s 9,962.7
tinkerbell map 4 70 0m0.676s 15m49.495s 1,404.6
tinkerbell map 5 86 0m1.080s 27m37.548s 1,534.8
tinkerbell map 6 102 0m0.644s 46m42.739s 4,352.1
nonlinear ball 2 52 0m0.008s 9m8.538s 68,567.2
nonlinear ball 3 78 0m0.008s > 60m > 450,000
nonlinear ball 4 104 0m0.012s > 60m > 300,000

For the first 4 benchmarks, which are very small numeric CSPs without complex Boolean
structure, the runtimes are almost equal. For all other benchmarks, iSAT yields orders
of magnitude of speedup compared to ABsolver, no matter whether the benchmarks
feature moderately complex Boolean structure, like the mixed-signal circuit in car-steering,
feature extremely complex Boolean structure, as in bounded model-checking of the linear
hybrid automata h3 train, renault clio, and aircraft and the non-linear bouncing ball, or are
almost conjunctive (basically, one disjunction per unwinding step), like the iterated duffing
and tinkerbell maps. The comparable performance on purely conjunctive problems, which

233

M Fräzle et al.

is indicative of the relative performance of the underlying arithmetic reasoning engines,
together with the huge performance gap on problems with more complex Boolean structure
shows that the tight integration of Boolean and arithmetic constraint propagation pursued in
iSAT saves overhead incurred in an SMT approach deferring theory problems to subordinate
theory solvers.

6. Discussion

Within this article, we have demonstrated how a tight integration of DPLL-style SAT
solving and interval constraint propagation can reconcile the strengths of the SAT-modulo-
theory (SMT) approach with those of interval constraint propagation (ICP). The particular
strength of SMT in manipulating large and complex-structured Boolean combinations of
constraints over a (in general decidable) theory is thus lifted to the undecidable domain of
non-linear arithmetic involving transcendental functions. In particular, we were thus able to
canonically lift to interval-based arithmetic constraint solving of massively disjunctive con-
straint problems the crucial algorithmic enhancements of modern propositional SAT solvers,
especially lazy clause evaluation, conflict-driven learning, and non-chronological backtrack-
ing. Our benchmarks demonstrate significant performance gains up to multiple orders of
magnitude compared to a pure backtrack SMT+ICP algorithm. Equally important, the
performance gains were consistent throughout our set of benchmarks, with only one trivial
instance incurring a negligible performance penalty due to the more complex algorithms.
Similar results were observed in comparison with a non-linear SMT solver (ABsolver) em-
ploying classical deferring of theory problems to subordinate solvers, which substantiates
the argument that tighter integration of DPLL and ICP is beneficial.

Plans for future extensions deal with three major topics: first, we will extend the base
engine with specific optimizations for bounded model checking of hybrid systems, akin to
the optimizations discussed in [11] for the case of linear hybrid automata. Second, we will
use linear programming on the linear subset of the asserted atoms, that is, on bounds and
linear equations, to obtain stronger forward and backward inferences, including additional
size reduction of conflicts to be learned. This would lower the overhead when reasoning
over timed and (partially) linear hybrid automata, where polyhedral sets provide a more
concise description of state sets than the rectangular regions provided by intervals. Finally,
we are currently implementing native support for ordinary differential equations via ICP-
based reasoning over safe numerical approximations of the solution in the interval domain,
as pursued in [25].

References

[1] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on Demand in
SAT Modulo Theories. In M. Hermann and A. Voronkov, editors, 13h International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR’06,
volume 4246 of LNCS, pages 512–526. Springer, 2006.

[2] A. Bauer, M. Pister, and M. Tautschnig. Tool-support for the analysis of hybrid systems
and models. In Proceedings of the 2007 Conference on Design, Automation and Test
in Europe (DATE’07), Los Alamitos, CA, April 2007. IEEE Computer Society.

234

Efficient Solving of Complex-Structured Arithmetic Constraint Systems

[3] F. Benhamou. Heterogeneous constraint solving. In Proc. of the Fifth International
Conf. on Algebraic and Logic Programming, volume 1139 of LNCS. Springer, 1996.

[4] F. Benhamou and L. Granvilliers. Continuous and interval constraints. Foundations
of Artificial Intelligence, chapter 16, pages 571–603. Elsevier, Amsterdam, 2006.

[5] F. Benhamou, D. McAllester, and Pascal Van Hentenryck. CLP(Intervals) revisited.
In Int. Symp. on Logic Progr., pages 124–138, Ithaca, NY, USA, 1994. MIT Press.

[6] J. G. Cleary. Logical arithmetic. Future Computing Systems, 2(2):125–149, 1987.

[7] E. Davis. Constraint propagation with interval labels. Artif. Intell., 32(3):281–331,
1987.

[8] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394–397, 1962.

[9] L. de Moura, S. Owre, H. Ruess, J. Rushby, and N. Shankar. The ICS decision proce-
dures for embedded deduction. In 2nd International Joint Conference on Automated
Reasoning (IJCAR), volume 3097 of LNCS, pages 218–222, Cork, Ireland, July 2004.
Springer-Verlag.

[10] N. Eén and N. Sörensson. An extensible SAT-solver. In Proceedings of SAT’03, pages
502–518, 2003.

[11] M. Fränzle and C. Herde. Efficient proof engines for bounded model checking of hybrid
systems. Formal Methods in System Design, 2006.

[12] H. Ganzinger. Shostak light. In A. Voronkov, editor, Automated Deduction – CADE-18,
volume 2392 of LNCS, pages 332–346. Springer-Verlag, 2002.

[13] M.L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research,
1:25–46, 1993.

[14] E. Goldberg and Y. Novikov. BerkMin: A Fast and Robust SAT-Solver. In Design,
Automation, and Test in Europe, 2002.

[15] T.J. Hickey, Qun Ju, and M.H. van Emden. Interval arithmetic: from principles to
implementation. Journal of the ACM, 48(5):1038–1068, 2001.

[16] N. Jussien and O. Lhomme. Dynamic domain splitting for numeric CSPs. In European
Conference on Artificial Intelligence, pages 224–228, 1998.

[17] G. Katsirelos and F. Bacchus. Unrestricted nogood recording in CSP search. In
Francesca Rossi, editor, Principles and Practice of Constraint Programming — CP
2003, volume 2833 of LNCS, pages 873–877. Springer-Verlag, 2003.

[18] M. Lewis, T. Schubert, and B. Becker. Multithreaded SAT Solving. In 12th Asia and
South Pacific Design Automation Conference, 2007.

235

M Fräzle et al.

[19] G. Mayer. Epsilon-inflation in verification algorithms. Journal of Computational and
Applied Mathematics, 60:147–169, 1994.

[20] R.E. Moore. Interval Analysis. Prentice Hall, NJ, 1966.

[21] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an Efficient SAT Solver. In Proc. of the 38th Design Automation Conference (DAC’01),
June 2001.

[22] A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univ. Press,
Cambridge, 1990.

[23] S. Ratschan. Efficient solving of quantified inequality constraints over the real numbers.
ACM Transactions on Computational Logic, 7(4):723–748, 2006.

[24] Stefan Ratschan. Quantified constraints under perturbations. Journal of Symbolic
Computation, 33(4):493–505, 2002.

[25] O. Stauning. Automatic Validation of Numerical Solutions. PhD thesis, Danmarks
Tekniske Universitet, Kgs. Lyngby, Denmark, 1997.

[26] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical Programming,
pages 25–57, 2006.

[27] L. Zhang, C.F. Madigan, M.W. Moskewicz, and S. Malik. Efficient Conflict Driven
Learning in a Boolean Satisfiability Solver. In IEEE/ACM International Conference
on Computer-Aided Design, 2001.

236

	Introduction
	Logics
	Algorithmic basis
	Integrating interval constraint propagation and SAT
	Introductory example
	Interval constraint solving as a multi-valued SAT problem.
	Algorithmic enhancements
	Enforcing progress and termination
	Finding satisfying valuations

	Benchmark results
	Impact of conflict-driven learning
	Phase transition
	Comparison to ABsolver

	Discussion

