
Journal on Satisfiability, Boolean Modeling and Computation 1 (2007) 147–167

Recording and Minimizing Nogoods from Restarts

Christophe Lecoutre lecoutre@cril.univ-artois.fr
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Abstract

In this paper1., nogood recording is investigated for CSP within the randomization and
restart framework. Our goal is to avoid the same situations to occur from one run to the
next ones. More precisely, nogoods are recorded when the current cutoff value is reached,
i.e. before restarting the search algorithm. Such a set of nogoods is extracted from the
last branch of the current search tree and exploited using the structure of watched literals
originally proposed for SAT. We prove that the worst-case time complexity of extracting
such nogoods at the end of each run is only O(n2d) where n is the number of variables of the
constraint network and d the size of the greatest domain, whereas for any node of the search
tree, the worst-case time complexity of exploiting these nogoods to enforce Generalized Arc
Consistency (GAC) is O(n|B|) where |B| denotes the number of recorded nogoods. As
the number of nogoods recorded before each new run is bounded by the length of the
last branch, the total number of recorded nogoods is polynomial in the number of restarts.
Interestingly, we show that when the minimization of the nogoods is envisioned with respect
to an inference operator φ, it is possible to directly identify some nogoods that cannot be
minimized. For φ = AC (i.e. for MAC), the worst-case time complexity of extracting
minimal nogoods is slightly increased to O(en2d3) where e is the number of constraints of
the network. Experimentation over a wide range of CSP instances using a generic state-
of-the-art CSP solver demonstrates the effectiveness of this approach. Recording nogoods
(and in particular, minimal nogoods) from restarts significantly improves the robustness of
the solver.
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1. Introduction

Nogood recording (or learning) has been suggested as a technique to enhance CSP (Con-
straint Satisfaction Problem) solving in [10]. The principle is to record a nogood whenever
a conflict occurs during a backtracking search. Such nogoods can then be exploited later

1. This paper extends [27] by exploiting a nogood minimization technique and providing further experi-
ments.
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to prevent the exploration of useless parts of the search tree. The first experimental results
obtained with learning were given in the early 90’s [10, 14, 37].

Contrary to CSP, the recent impressive progress in SAT (Boolean Satisfiability Prob-
lem) has been achieved using nogood recording (clause learning) under a randomization and
restart policy enhanced with a very efficient lazy data structure [32]. Indeed, the interest of
clause learning has arisen with the availability of large instances (encoding practical appli-
cations) which contain some structures and exhibit heavy-tailed phenomenon. Learning in
SAT is a typical successful technique obtained from the cross fertilization between CSP and
SAT: nogood recording [10] and conflict directed backjumping [34] have been introduced
for CSP and later imported into SAT solvers [2, 28].

Recently, a generalization of nogoods, as well as an elegant learning method, have been
proposed in [23, 24] for CSP. While standard nogoods correspond to variable assignments,
generalized nogoods also involve value refutations. These generalized nogoods benefit from
nice features. For example, they can compactly capture large sets of standard nogoods and
are proved to be more powerful than standard ones to prune the search space.

As the set of nogoods that can be recorded might be of exponential size, one needs to
achieve some restrictions. For example, in SAT, learned nogoods are not minimal and are
limited in number using the First Unique Implication Point (First UIP) concept. Different
variants have been proposed (e.g. relevance bounded learning [2]), all of them attempt to
find the best trade-off between the overhead of learning and performance improvements.
Consequently, the recorded nogoods cannot lead to a complete elimination of redundancy
in search trees. An original alternative [41] to combine search scattering and redundancy
avoidance involves performing random jumps in the search space. It is particularly relevant
when an allotted time is given.

In this paper, nogood recording is investigated for CSP within the randomization and
restart framework. The principle of our approach is to learn nogoods from the last branch
of the search tree before each restart, discarding already explored parts of the search tree in
subsequent runs. Remark that a related approach has been proposed in [1, 15] for SAT in
order to obtain a complete restart strategy while reducing the number of recorded nogoods.
Roughly speaking, in our approach, we manage nogoods by introducing a global constraint
with a dedicated filtering algorithm which exploits watched literals [32]. Interestingly, this
algorithm that allows to enforce Generalized Arc Consistency (GAC) on the base of recorded
nogoods can be easily integrated to any constraint propagation engine (e.g. see [38]) but
also to any generic GAC algorithm. The simplicity and the good worst-case time complexity
(only O(n|B|) where n denotes the number of variables of the constraint network and |B|
the number of nogoods in the base B) render this approach attractive. As the number of
nogoods recorded before each new run is bounded by the length of the last branch of the
search tree, the total number of recorded nogoods is polynomial in the number of restarts.
Besides, we show that it is possible to directly identify some nogoods that cannot be subject
to minimization with respect to an inference operator φ.

The paper is organized as follows. After some technical background, we introduce so-
called reduced nld-nogoods and the principle of nogood recording from restarts. Then
we present a detailed description of how such nogoods are extracted and exploited in the
context of a backtrack search algorithm. Next, we address the issue of minimizing reduced
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nld-nogoods. Finally, we give the results of a vast experimentation that we have conducted
before concluding.

2. Technical Background

A Constraint Network (CN) P is a pair (X ,C ) where X is a set of variables and C a
set of constraints. Each variable X ∈ X has an associated domain, denoted dom(X),
which contains the set of values allowed for X. Each constraint C ∈ C involves a subset
of variables of X , denoted vars(C), and has an associated relation, denoted rel(C), which
contains the set of tuples allowed for vars(C). The number of variables of a CN will be
denoted by n, the number of constraints by e, the greatest domain size by d and the greatest
constraint arity by r. Also, for any given set E, |E| will denote the number of elements in
E.

A solution to a CN is an assignment of values to all the variables such that all the
constraints are satisfied. A CN is said to be satisfiable if and only if it admits at least one
solution. The Constraint Satisfaction Problem (CSP) is the NP-complete task of determin-
ing whether a given CN is satisfiable. A CSP instance is then defined by a CN, and solving
it involves either finding one (or more) solution or determining its unsatisfiability. To solve
a CSP instance, one can modify the CN by using inference or search methods [11].

The backtracking algorithm (BT) is a central algorithm for solving CSP instances. It
performs a depth-first search in order to instantiate variables and a backtrack mechanism
when dead-ends occur. Many works have been devoted to improve its forward and backward
phases by introducing look-ahead and look-back schemes [11]. Today, MAC [36] is the (look-
ahead) algorithm considered as the most efficient generic approach to solve CSP instances.
It maintains a property called Arc Consistency (AC) during search. When mentioning MAC,
it is important to indicate which branching scheme is employed. Indeed, it is possible to
consider binary (2-way) branching or non binary (d-way) branching. These two schemes
are not equivalent as it has been shown that binary branching is more powerful (to refute
unsatisfiable instances) than non-binary branching [20]. With binary branching, at each
step of search, a pair (X,a) is selected where X is an unassigned variable and a a value in
dom(X), and two cases are considered: the assignment X = a and the refutation X 6= a.
The MAC algorithm (using binary branching) can then be seen as building a binary tree.
Classically, MAC always starts by assigning variables before refuting values. Generalized
Arc Consistency (GAC) (e.g. [4]) extends AC to non binary constraints, and MGAC is the
search algorithm that maintains GAC.

Although sophisticated look-back algorithms such as CBJ (Conflict Directed Backjump-
ing) [34] and DBT (Dynamic Backtracking) [16] exist, it has been shown [3, 5, 25] that
MGAC combined with a good variable ordering heuristic often outperforms such techniques.

3. Reduced nld-Nogoods

From now on, we will consider a search tree built by a backtracking search algorithm (e.g.
MGAC) that is based on the 2-way branching scheme, positive decisions being performed
first, and that maintains a consistency (e.g. Generalized Arc Consistency) at each node.
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Each branch of the search tree can then be seen as a sequence of positive and negative
decisions, defined as follows:

Definition 1. Let P = (X ,C ) be a CN and (X,a) be a pair such that X ∈ X and
a ∈ dom(X). The assignment X = a is called a positive decision whereas the refutation
X 6= a is called a negative decision. ¬(X = a) is equivalent to X 6= a and ¬(X 6= a) is
equivalent to X = a.

Definition 2. Let Σ = 〈δ1, . . . , δi, . . . , δm〉 be a sequence of decisions. The sequence
〈δ1, . . . , δi〉, where δi is a negative decision, is called a nld-subsequence (negative last de-
cision subsequence) of Σ. The set of positive and negative decisions of Σ are denoted by
pos(Σ) and neg(Σ), respectively.

Definition 3. Let P be a CN and ∆ be a set of decisions. P |∆ is the CN obtained from
P such that, for any positive decision (X = a) ∈ ∆, dom(X) is restricted to {a}, and, for
any negative decision (X 6= a) ∈ ∆, a is removed from dom(X).

Definition 4. Let P be a CN and ∆ be a set of decisions. ∆ is a nogood of P iff P |∆ is
unsatisfiable.

From any branch of the search tree, from the root to a leaf, a nogood can be extracted
from each negative decision (also mentioned in [35]). This is stated by the following prop-
erty:

Proposition 1. Let P be a CN and Σ be the sequence of decisions taken along a branch
of the search tree. For any nld-subsequence 〈δ1, . . . , δi〉 of Σ, the set ∆ = {δ1, . . . ,¬δi} is a
nogood of P (called nld-nogood)2..

Proof. As positive decisions are taken first, when the negative decision δi is encountered,
the subtree corresponding to the opposite decision ¬δi has been refuted. 2

These nogoods contain both positive and negative decisions and then correspond to the
definition of generalized nogoods [13, 24]. In the following, we will show that nld-nogoods
can be reduced in size by considering positive decisions only.

Propositional resolution can be extended to directly deal with CSP nogoods, e.g. in
[31] where it is called Constraint Resolution (C-Res for short). Note that we can safely use
C-Res since, in the search tree, two opposite decisions, e.g. both X = a and X 6= a, cannot
occur in the same branch and consequently, cannot occur in any nogood. It can be defined
as follows:

Definition 5. Let P be a CN, and ∆1 = Γ ∪ {X = a} and ∆2 = Λ ∪ {X 6= a} be two
nogoods of P . We define Constraint Resolution as C-Res(∆1,∆2) = Γ ∪ Λ.

It is immediate that C-Res(∆1,∆2) is a nogood of P .

Proposition 2. Let P be a CN and Σ be the sequence of decisions taken along a branch of
the search tree. For any nld-subsequence Σ′ = 〈δ1, . . . , δi〉 of Σ, the set ∆ = pos(Σ′)∪{¬δi}
is a nogood of P (called reduced nld-nogood).

2. The notation {δ1, . . . ,¬δi} corresponds to {δj ∈ Σ | j < i} ∪ {¬δi} reduced to {¬δ1} when i = 1.
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Proof. Σ′ = 〈δ1, . . . , δi〉 is a nld-subsequence, so it contains k ≥ 1 negative decisions, de-
noted by δg1

, . . . , δgk
, in the order that they appear in Σ. Remark that we have δgk

= δi.
Let us show by recurrence that ∀j ∈ [1, k], the following hypothesis h(j) is true : ∆′

j =
pos(Σ′) ∪ {δg1

, . . . , δgj−1
} ∪ {¬δi} is a nogood of P .

First, we show that h(k) holds. From Proposition 1, we know that ∆′
k = pos(Σ′) ∪

{δg1
, . . . , δgk−1

} ∪ {¬δi} is a nogood since ∆′
k is the nogood corresponding to the nld-

subsequence Σ′.
Next, we show that if h(j+ 1) holds, then h(j) holds too. By hypothesis, ∆′

j+1 is a nogood
of P . Let Σj be the nld-subsequence corresponding to the prefix of Σ′ such that δgj

is its last
(negative) decision (we have pos(Σj) ⊆ pos(Σ′) and neg(Σj) = {δg1

, . . . , δgj
}), and ∆j be

its corresponding nogood according to Proposition 1. By applying Constraint Resolution,
we have:

∆′
j+1 = pos(Σ′) ∪ {δg1

, . . . , δgj−1
, δgj
} ∪ {¬δi}

∆j = pos(Σj) ∪ {δg1
, . . . , δgj−1

} ∪ {¬δgj
}

C-Res(∆′
j+1,∆j) = pos(Σ′) ∪ pos(Σj) ∪ {δg1

, . . . , δgj−1
} ∪ {¬δi}

= pos(Σ′) ∪ {δg1
, . . . , δgj−1

} ∪ {¬δi}
since pos(Σj) ⊆ pos(Σ′), ¬δgj

∈ ∆j and δgj
∈ ∆′

j+1. ∆′
j = C-Res(∆′

j+1,∆j) is then proved
to be a nogood of P . As a consequence, we have just proved that h(j) holds.
For j = 1, we obtain that ∆ = pos(Σ′) ∪ {¬δi} is a nogood of P . 2

As an illustration, let Σ = 〈W = a,X 6= b, Y 6= c, Z = d〉 be a sequence of decisions
taken along a branch of the search tree. We have then:

• Σ′ = 〈W = a,X 6= b, Y 6= c〉 is a nld-subsequence

• ∆1 = 〈W = a,X 6= b, Y = c〉 is a nld-nogood

• ∆2 = 〈W = a, Y = c〉 is a reduced nld-nogood

One interesting aspect is that the space required to store all nogoods corresponding to
any branch of the search tree is polynomial with respect to the number of variables and the
greatest domain size.

Proposition 3. Let P be a CN and Σ be the sequence of decisions taken along a branch of
the search tree. The worst-case space complexity to record all nld-nogoods of Σ is O(n2d2)
while the worst-case space complexity to record all reduced nld-nogoods of Σ is O(n2d).

Proof. First, the number of negative decisions in any branch is O(nd). For each negative
decision, we can extract a (reduced) nld-nogood. As the size of any (resp. reduced) nld-
nogood is O(nd) (resp. O(n) since it only contains positive decisions), we obtain an overall
space complexity of O(n2d2) (resp. O(n2d)). 2

It is important to note that reduced nld-nogoods extracted from a branch admit a
better pruning capability than nld-nogoods extracted from the same branch since for each
nld-subsequence, the corresponding nld-nogood is subsumed by the reduced nld-nogood.
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¬δ3

¬δ2

δ1

¬δ6

¬δ4 δ7 ¬δ7 δ8

¬δ10δ10

δ6

δ2

δ3

δ9 ¬δ9δ5 ¬δ5

δ4

δ11 ¬δ11

Figure 1. Partial search tree and nld-nogoods

4. Nogood Recording from Restarts

In [17], it has been shown that the runtime distribution produced by a randomized search
algorithm is sometimes characterized by an extremely long tail with some infinite moment.
For some instances, this heavy-tailed phenomenon can be avoided by using randomization
and restarts, i.e. by restarting search several times while randomizing the employed search
heuristic. For constraint satisfaction, restarts have been shown productive on some prob-
lems. However, when learning is not exploited (as it is currently the case for most of the
academic and commercial solvers), the average performance of the solver is damaged (cf.
Section 7).

Nogood recording has not yet been shown to be quite convincing for CSP and further,
it is a technique that leads, when uncontrolled, to an exponential space complexity. We
propose to address this issue by combining nogood recording and restarts in the following
way: reduced nld-nogoods are extracted (to be recorded in a nogood base) from the current
branch of the search tree at the end of each run. Our aim is to benefit from both restarts
and learning capabilities without sacrificing solver performance and space complexity.

Figure 1 depicts the partial search tree explored when the solver is about to restart.
Positive decisions being taken first, a δi (resp. ¬δi) corresponds to a positive (resp. neg-
ative) decision. Here, search has been stopped after refuting δ11 and taking the deci-
sion ¬δ11. The nld-nogoods of P are the following: ∆1 = {δ1,¬δ2,¬δ6, δ8,¬δ9, δ11},
∆2 = {δ1,¬δ2,¬δ6, δ8, δ9}, ∆3 = {δ1,¬δ2, δ6} and ∆4 = {δ1, δ2}.

The first reduced nld-nogood is obtained as follows:

∆′
1 = C-Res(C-Res(C-Res(∆1,∆2),∆3),∆4)

= C-Res(C-Res({δ1,¬δ2,¬δ6, δ8, δ11},∆3),∆4)
= C-Res({δ1,¬δ2, δ8, δ11},∆4)
= {δ1, δ8, δ11}

Applying the same principle to the other nld-nogoods, we obtain:
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∆′
2 = C-Res(C-Res(∆2,∆3),∆4) = {δ1, δ8, δ9}

∆′
3 = C-Res(∆3,∆4) = {δ1, δ6}

∆′
4 = ∆4 = {δ1, δ2}

In order to avoid exploring the same parts of the search space during subsequent runs,
recorded nogoods can be exploited. Indeed, it suffices to control that the set of decisions
of the current branch does not contain all the decisions of any recorded nogood. Moreover,
the negation of the last undetermined decision of any nogood can be inferred as described
in the next section. For example, whenever the decision δ1 becomes true, we can infer ¬δ2
from nogood ∆′

4 and ¬δ6 from nogood ∆′
3.

Finally, we want to emphasize that reduced nld-nogoods extracted from the last branch
subsume all reduced nld-nogoods that could be extracted from any branch previously explored.
This follows from the fact that each subtree completely explored (and, thus, all nld-nogoods
that could be built from all branches of this subtree) is prefixed by at least one nld-nogood
of the last branch.

5. Managing Nogoods

In this section, we show how to efficiently exploit reduced nld-nogoods by using the SAT
technique of watched literals [32, 42, 12]. Reduced nld-nogoods, which correspond to sets
(conjunctions) of positive decisions, will be recorded as disjunctions of negative decisions
which can be seen as new constraints to be satisfied. We then present an efficient propaga-
tion algorithm enforcing GAC on all learned reduced nld-nogoods that can be collectively
considered as a global constraint.

5.1 Nogood Base and Watched Literals

Reduced nld-nogoods that are extracted from the last branch only contain positive decisions
and can be recorded in a base of nogoods B. To exploit them, it suffices, each time a decision
is taken during search, to check if the set of current decisions is compatible with all nogoods
of B.

In order to provide an efficient access to these nogoods we use the lazy data structure
of watched literals [32, 42, 12] depicted by Figure 2. The principle is to select two decisions
per nogood in order to ensure that the nogood is not violated (one watched decision would
be sufficient) and no inference can be performed (using the second watched decision). These
decisions are called watched literals (referenced by w1 and w2 in Figure 2). As long as both
watched literals are not falsified, inference is not possible. Note that, in our case, watched
literals correspond to negative decisions since reduced nld-nogoods only contain positive
decisions and we represent each nogood as a disjunction of negative decisions. When a
decision X = a is performed, we have then to check for each nogood which contains X 6= a
as watched literal, if another valid decision can be found. If this is the case, this decision
becomes the new watched one (replacing X 6= a), and otherwise, we have to infer the second
watched decision in order to satisfy the nogood.

In practice, when a decision X = a is performed, only nogoods where X 6= a appears
as watched are checked. We maintain for each negative decision the list of nogoods which
includes this decision as watched literal. The required data structures can be defined as
follows. First, we need an array of nd entries. Each entry corresponds to a negative decision
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δ and represents the head of a linked list allowing the access to the nogoods of B which
contain δ as watched literal. We can access to such a list, denoted Bδ, in constant time.
Each nogood which is an array of (at most n) negative decisions is associated with two
watched literals. In Figure 2, one can observe a nogood base with two recorded nogoods.
The first is watched by X 6= a and Z 6= c whereas the second one is watched by X 6= a and
W 6= d.

5.2 Recording Nogoods

Reduced nld-nogoods derived from the current branch of the search tree when the current
run is stopped can be recorded by calling the storeNogoods function (see Algorithm 1).
The parameters of this function are the sequence of decisions labelling the current branch
taken from the root to the leaf and the current nogood base. As observed in Section 3, a
reduced nld-nogood can be recorded from each negative decision occurring in this sequence.
From the root to the leaf of the current branch, when a positive decision is encountered,
its negation is recorded, and when a negative decision is encountered, we build a nogood
∆′ from this decision and all previously recorded ones in the set ∆ (line 9). As a nogood
is stored as a disjunction of negative decisions, we record the negation of the (positive)
decision (line 4). If the nogood is of size 1, it can be directly exploited by reducing the
domain of the involved variable (line 7). Otherwise, it is recorded into the nogood base B

(line 10).

Two decisions are watched each time a nogood is recorded. Note that any decision of
∆ can be watched since the search algorithm is about to restart. It means that the two

Figure 2. Partial view of a nogood base B
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Algorithm 1 storeNogoods(Σ : Sequence of Decisions, B : Nogood base )

1: ∆← ∅
2: for each decision δ ∈ Σ ranging from the first decision of Σ to the last do

3: if δ is a positive decision then

4: ∆← ∆ ∪ {¬δ}
5: else

6: if ∆ = ∅ then

7: remove a from dom(X) where δ = (X 6= a), for all subsequent runs
8: else

9: ∆′ ← ∆ ∪ {δ}
10: B ← B ∪ {∆′}
11: end if

12: end if

13: end for

selected decisions will be valid at the beginning of the next run. For each selected decision,
a new entry (for the new nogood) is inserted in the list of nogoods watched by this decision.

5.3 Exploiting Nogoods

Inferences can be performed using reduced nld-nogoods while establishing (maintaining)
Generalized Arc Consistency. We show it with a coarse-grained GAC algorithm based on
a variable-oriented propagation scheme [30, 8, 6]. Algorithm 2 can be applied to any CN
(involving constraints of any arity) in order to establish GAC. At preprocessing, propagate
must be called with the set S of variables of the network whereas during search, S only
contains the variable involved in the last positive or negative decision. At any time, the
principle is to have in Q all variables whose domains have been reduced by propagation.

Initially, Q contains all variables of the given set S (line 1). Then, iteratively, each
variable X of Q is selected (line 3). If dom(X) corresponds to a singleton {a} (lines 4
to 11), we can exploit recorded nogoods by checking the consistency of the nogood base.
This is performed by the function inferences (described below) which iterates all nogoods
involving X 6= a as watched literal and returns a set of inferences deduced from such
nogoods. This set of inferences is then taken into account: for each identified inference
Y 6= b ∈ inferences(X 6= a), if b belongs to dom(Y ), then we can remove it, which can
yield an inconsistency or an update of the set Q.

The rest of the algorithm (lines 12 to 19) corresponds to the body of a classical generic
coarse-grained GAC algorithm. For each constraint C binding X, we perform the revision
of all arcs (C, Y ) with Y 6= X. A revision is performed by a call to the function revise,
specific to the chosen coarse-grained arc consistency algorithm, and entails removing values
that became inconsistent with respect to C. When the revision of an arc (C, Y ) involves the
removal of some values in dom(Y ), revise returns true and the variable Y is added to Q.
For more information about this algorithm and some optimizations, see [6]. The algorithm
loops until a fixed point is reached.

The principle of Algorithm 3 is to iterate the list of nogoods involving as watched literal
the decision given in parameter. For each such nogood, denoted by ∆ at each turn of the
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Algorithm 2 propagate(S : Set of Variables) : Boolean

1: Q← S
2: while Q 6= ∅ do

3: pick and delete X from Q

4: if | dom(X) | = 1 then

5: Let dom(X) = {a}
6: for each (Y 6= b) ∈ inferences(X 6= a) do

7: dom(Y )← dom(Y )\{b}
8: if dom(Y ) = ∅ then return false
9: else Q← Q ∪ {Y }

10: end for

11: end if
12: for each C | X ∈ vars(C) do

13: for each Y ∈ V ars(C) | X 6= Y do

14: if revise(C,Y ) then

15: if dom(Y ) = ∅ then return false
16: else Q← Q ∪ {Y }
17: end if

18: end for

19: end for

20: end while

21: return true

Algorithm 3 inferences(X 6= a : Decision) : Set of Decisions

1: Γ← ∅
2: for each nogood ∆ ∈ BX 6=a do

3: Let (Y 6= b) be the second decision watched in ∆
4: if b ∈ dom(Y ) then

5: if ¬ canFindAnotherWatch(∆, X 6= a) then

6: Γ← Γ ∪ {Y 6= b}
7: end if

8: end if

9: end for

10: return Γ

Algorithm 4 canFindAnotherWatch(∆ : Nogood, X 6= a : Decision) : Boolean

1: for each decision (Y 6= b) ∈ ∆ | Y 6= b is not watched in ∆ do

2: if b /∈ dom(Y ) or | dom(Y ) |> 1 then

3: watch Y 6= b instead of X 6= a in ∆
4: return true
5: end if

6: end for

7: return false
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main loop, we have to look for another watched literal when the second decision watched
in ∆ is not true, i.e. b has been removed from dom(Y ) (line 4). This is done by calling the
function canFindAnotherWatch. If we cannot find a new watched decision (see line 5),
then the second watched decision (Y 6= b) is inferred.

Finally, the function canFindAnotherWatch (see Algorithm 4) examines all decisions
(not currently watched) of the given nogood in order to find the next decision to watch (line
3). Such a decision is either already satisfied or unassigned (line 2).

Even if not described here, note that when a new watched literal has been found, we
have to remove the entry (corresponding to the nogood ∆) from the list of nogoods involving
X 6= a as watched literal. Next we have to update (i.e. add an entry) the list of nogoods
involving Y 6= b as new watched literal.

5.4 Complexity Analysis

Now, we present the complexities of the different algorithms proposed to store and exploit
nogoods. For what follows, remember that B denotes the nogood base and |B| the number
of nogoods in B.

Proposition 4. The worst-case time complexity of recording reduced nld-nogoods from
restarts (i.e. the worst-case time complexity of storeNogoods) is O(n2d).

Proof. First, each nogood ∆ added to B (line 10 of Algorithm 1) is composed of at most
|pos(Σ)| decisions, and at most |neg(Σ)| nogoods can be extracted from Σ. Then, we can
observe that the worst-case time complexity of storeNogoods is O(|pos(Σ)|.|neg(Σ)|). As
|pos(Σ)| is O(n) and |neg(Σ)| is O(nd), we obtain O(n2d). 2

Proposition 5. The worst-case time complexity of exploiting reduced nld-nogoods at each
node of the search, i.e. the cumulated worst-case time complexity of inferences for a single
call to propagate is O(n|B|).

Proof sketch. First, it is important to note that when a decisionX 6= a (potentially watched)
is not valid anymore (i.e. a is the only value remaining in the domain of X), then it cannot
be watched again (during a same call to propagate). Also, when looking for a decision to be
watched in a reduced nld-nogood (i.e. a set of negative decisions), we can iterate its decisions
in any order. To obtain the mentioned complexity, we need a refinement (not presented
for the sake of simplicity) of the function canFindAnotherWatch described in this paper.
Considering that the set of decisions of each nogood is represented using an array, we assume
here that before calling the propagate algorithm, the two first decisions of each array are
swapped with those currently watched. This operation can be performed in O(|B|). Then,
whenever we need to find a new watched literal using the canFindAnotherWatch function,
we just have to iterate the decisions of the nogood ∆ (given in parameter) by starting
from the index that follows the greatest position of both decisions currently watched up to
the last decision in the array. As a consequence, for one call to the propagate algorithm,
whatever the number of canFindAnotherWatch (and so inferences) calls is, we will check
up to |∆| decisions per nogood ∆. Consequently, the cumulated worst-case complexity of
managing any nogood ∆ is then O(|∆|) which is O(n). Overall, the cumulated worst-case
time complexity of inferences in propagate is then O(n|B|). 2
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Remark that the worst-case time complexity of exploiting reduced nld-nogoods for each
branch of the search tree, from the root to a leaf, is O(n2|B|) since the event “variable
whose domain becomes singleton” can only happen once per variable and per branch.

Corollary 1. The worst-case time complexity of propagate is O(er2dr + n|B|) where r is
the greatest constraint arity.

Proof. The cost of establishing GAC is O(er2dr) when a generic algorithm such as GAC2001
[4] is used and the cost of exploiting nogoods has just been shown to be O(n|B|). 2

Proposition 6. The worst-case space complexity of storing reduced nld-nogoods is O(n(d+
|B|)).

Proof. We know that |B| nogoods of size at most n are recorded. Further, the number of
cells introduced to access nogoods is O(|B|) and the size of the array associated to each
negative decision is O(nd). We then obtain O(n(d+ |B|)). 2

6. Minimal Reduced nld-Nogoods

In Section 3, we proved that nld-nogoods can be reduced in size by considering positive
decisions only. Pursuing the same goal, we introduce in this section the concept of minimal
reduced nld-nogood with respect to an inference operator φ. We can then obtain more
powerful nogoods.

6.1 Minimal φ-Nogoods

In the context of a backtrack search algorithm, the φ operator can be employed at any step
of a tree search, using a binary branching scheme. For example, MGAC corresponds to
using an operator that enforces (Generalized) Arc Consistency at each node of the search
tree.

Definition 6. Let P be a CN , φ(P ) is the CN obtained after applying the operator φ on
P .

If there exists a variable with an empty domain in φ(P ) then P is clearly unsatisfiable,
denoted φ(P ) = ⊥.

Definition 7. Let P be a CN and ∆ be a set of decisions. ∆ is a φ-nogood of P iff
φ(P |∆) = ⊥. ∆ is a minimal φ-nogood of P iff @∆′ ⊂ ∆ such that φ(P |∆′) = ⊥.

Obviously, φ-nogoods are nogoods, but the opposite is not necessarily true. It is easy to
minimize a φ-nogood using a polynomial algorithm such as QuickXplain or one of its variants
[21]. In our context, we know that at the end of each run, we can extract nld-nogoods from
the current branch and reduce them. One interesting thing is that nld-nogoods which are
not φ-nogoods can be directly identified and discarded. This is the case when the last
decision δm of the nld-subsequence from which a nld-nogood ∆ has been extracted, did
not directly lead to a dead-end when applying φ. It means that we had to explore a non
trivial subtree from that decision. On the other hand, when δm directly leads to a dead-
end, we know that this decision necessarily belongs to any φ-nogood included in ∆. As a
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direct dead−ends

¬δ3

¬δ2

δ1

¬δ6

¬δ4

δ6

δ2

δ3

δ5 ¬δ5

δ4

δ10 ¬δ10

δ7

δ8 ¬δ8

¬δ9δ9

Figure 3. Identification of (reduced) nld-nogoods susceptible to be minimized

consequence, δm can be directly selected as the first transition decision of the minimization
algorithm defined in the next subsection.

Figure 3 depicts a tree search for a run stopped after refuting δ10, where an inference
operator φ is maintained at each node. Among the four nld-nogoods that can be extracted,
only two yield a direct dead-end: ∆1 = {δ1,¬δ2, δ6} and ∆2 = {δ1,¬δ2,¬δ6, δ7,¬δ8, δ10}.
∆1 and ∆2 are clearly φ-nogoods, as the application of φ after each decision directly leads
to an inconsistency. The reduced nld-nogoods that will be considered for minimization are
then ∆′

1 = {δ1, δ6} and ∆′
2 = {δ1, δ7, δ10}. Remark that a reduced nld-nogood obtained

from a nld-nogood which is a φ-nogood is not necessarily a φ-nogood itself. Indeed, some
negative decisions removed when reducing a nld-nogood may be involved in the conflict.

When reduced nld-nogoods can be highly minimized, the impact on subsequent runs
can be quite important. In the best case, one can expect to isolate minimal φ-nogoods of
size 1. They correspond to singleton φ-inconsistent values. For example, let us consider
the queens-knights problem as proposed in [5] and the algorithm MAC to solve it. As
any knight variable is singleton arc inconsistent, if such a variable is involved in the last
decision of a reduced nld-nogood, then a singleton arc inconsistent value will be proved by
the minimization algorithm. Some results that confirm this behaviour are given in Table 3
of Section 7.

6.2 Minimization Techniques

Some works concerning the identification of minimal φ-nogoods (also called conflict-sets)
have already been proposed [21, 33]. As extracting a minimal φ-nogood is an activity
limited to a branch of a search tree, the proposed algorithms involve (at least, partially) a
constructive schema in order to keep some incrementality of the propagation process. On
the other hand, the last version of QuickXplain [22] exploits a divide and conquer approach
(as in [29]) but is defined in a more general context. For example, it can be used to extract
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Minimal Unsatisfiable Cores (MUCs) of constraint networks which has been recently studied
both theoretically and experimentally in [18].

To summarize, in order to find a minimal φ-nogood, it is necessary to iteratively identify
the decisions that are involved in it. More precisely, we know that, given a φ-nogood
∆ = {δ1, δ2, . . . , δm} of a CN P and a total ordering of the decisions (to simplify, we
shall consider the natural order δ1, δ2, . . . , δm of the decisions), there exists a decision δi
such that φ(P |{δ1,...,δi−1}) 6= ⊥ and φ(P |{δ1,...,δi}) = ⊥. This decision which clearly belongs
to a minimal φ-nogood will be called the transition decision of ∆ (according to the given
ordering). Note also that any decision δj with j > i can be safely removed. This notion of
transition decision is analogous to that of transition constraint defined in [18].

To identify a transition decision, it is possible to use a constructive approach, a de-
structive approach or a dichotomic one. The principle of the constructive approach is to
successively add the decisions of ∆ (according to the given ordering) to the CN until an
inconsistency is detected when applying φ. The principle of the destructive approach is to
initally add all decisions of ∆ to the CN and successively remove them one by one until
no more inconsistency is detected when applying φ. As a third alternative, the transition
decision can be identified by using a dichotomic search.

To extract a minimal φ-nogood, it suffices to adopt one of the approaches described
above. After finding a first3. transition decision δi in ∆, one can search a second one after
having removed all decisions δj with j > i of ∆ (since unsatisfiability is preserved) and
considering a new order of the decisions such that all found transition decisions are the
smallest ones (the background of [22]). This process can be repeated until all decisions of
the current nogood correspond to transition decisions that have been successively found.
The principle of this iterative process has been described in [9, 21, 33, 18].

In the context of identifying a minimal nogood, we can relate the constructive, de-
structive and dichotomic approaches succinctly described above to the algorithms called
RobustXplain, ReplayXplain and QuickXplain [21]. However, here, we will assume the
incrementality of the inference operator φ. It simply means that the worst-case time com-
plexities of applying φ on a given CN from two respective sets of decisions ∆ and ∆′ such
that ∆ ⊂ ∆′ are equivalent. For example, all (known) generic algorithms that enforce
φ = (G)AC are incremental. As a consequence, using a constructive approach to identify
a transition decision is well-adapted to our purpose. This algorithm will be used for our
experimentation and its complexity is discussed in the next subsection.

6.3 Complexity Analysis

Proposition 7. The worst-case time complexity of extracting a minimal GAC-nogood from
a reduced nld-nogood is O(enr2dr).

Proof. We know that a generic algorithm such as GAC2001 to enforce GAC on a CN
is incremental. As a consequence, using a constructive approach to identify a transition
decision is O(er2dr), that is to say the worst-case time complexity of establising GAC
only once. If the extracted nogood is composed of k decisions, then we obtain an overall
complexity in O(ker2dr). As k is O(n), we obtain O(enr2dr) 2

3. If ∆ is a φ-nogood, then we can directly consider δm as the first transition decision.
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Corollary 2. In the binary case (i.e. for r = 2), the worst-case time complexity of extract-
ing a minimal AC-nogood from a reduced nld-nogood is O(end2).

Proposition 8. The worst-case time complexity of extracting minimal reduced GAC-nld-
nogoods (at the end of each run) is O(en2r2dr+1).

Proof. Extracting a GAC-nogood from a reduced nld-nogood is O(enr2dr) and we know
that there is at most O(nd) reduced nld-nogoods to be minimized. 2

Corollary 3. In the binary case (i.e. for r = 2), the worst-case time complexity of recording
minimal reduced GAC-nld-nogoods (at the end of each run) is O(en2d3).

7. Experiments

In order to show the practical interest of the approach described in this paper, we have con-
ducted an extensive experimentation (on a Xeon processor cadenced at 3 GHz and 1GiB
RAM). We have used the CSP solver Abscon whose kernel is a MGAC algorithm (embed-
ding GAC3rm [26]). Abscon can be considered as a state-of-the-art generic CSP solver,
considering the results it obtained at the 2005 [39] and 2006 CSP solver competition4.. We
have studied the impact of exploiting restarts (denoted by MGAC+RST), nogood recording
from restarts (denoted by MGAC+RST+NG) and the same technique with minimization
(denoted by MGAC+RST+NGm). Concerning the restart policy, the initial number of
allowed backtracks for the first run has been set to 10 and the increasing factor to 1.5 (i.e.
at each new run, the number of allowed backtracks increases by a 1.5 factor). This is a geo-
metric restart policy as introduced in [40]. Note that we have tested other restart policies,
but the relative behaviour of the algorithms described in this paper, remained relatively
the same. In any case, an in-depth study of the impact of different restart policies on these
algorithms is beyond the scope of this paper.

For search, we used three different variable ordering heuristics: the classical brelaz [7]
and dom/ddeg [3] as well as the adaptive dom/wdeg that has been recently shown to be the
most efficient generic heuristic [5, 25, 19, 39]. Importantly, when restarts are performed,
randomization is introduced in brelaz and dom/ddeg to break ties. For dom/wdeg, the
weight of constraints are preserved from each run to the next one, which makes randomiza-
tion useless (weights are sufficiently discriminant).

In our first experimentation, we have tested the four algorithms on the full set of 3, 621
instances used as benchmarks for the first round of the 2006 CSP solver competition. The
time limit to solve an instance was fixed to 20 minutes. Table 1 provides an overview of
the results in terms of the number of instances unsolved within the time limit (#timeouts)
and the average cpu time in seconds (avg time) computed from instances solved by all four
methods.

First, on random instances, for all the heuristics, it appears that restarting search is
penalysing. This is not surprising since there is no structure to exploit from one run to
the next one. This result confirms those observed on random SAT instances which do not
exhibit any heavy-tailed phenomenon. However, by recording nogoods, we approximately
obtain the same results than MGAC without restarts. Second, on structured instances, as

4. http://www.cril.univ-artois.fr/CPAI06
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Table 1. Number of unsolved instances and average cpu time on the benchmarks of the 2006
CSP Solver Competition (first round), given 20 minutes.

MGAC
+RST +RST+NG +RST+NGm

Random instances (1,390 instances)

dom/ddeg
#timeouts 270 301 276 273
avg time 40.4 57.6 41.9 42.0

brelaz
#timeouts 305 330 311 311
avg time 73.2 103.2 70.5 71.1

dom/wdeg
#timeouts 266 278 274 268
avg time 36.4 45.8 38.1 41.2

Structured instances (2,231 instances)

dom/ddeg
#timeouts 873 863 825 772
avg time 87.5 97.8 79.7 72.4

brelaz
#timeouts 789 788 757 738
avg time 79.0 92.4 74.8 71.5

dom/wdeg
#timeouts 623 554 551 551
avg time 50.5 51.3 51.4 50.8

All (3,621 instances)

dom/ddeg
#timeouts 1, 143 1, 164 1, 101 1, 045
avg time 66.1 79.6 62.6 58.6

brelaz
#timeouts 1, 094 1, 118 1, 068 1, 049
avg time 76.4 97.3 72.8 71.3

dom/wdeg
#timeouts 889 832 825 819
avg time 44.1 48.8 45.4 46.5

expected, recording nogoods from restarts is benefiting. Also, minimizing nogoods has a
significant impact, in particular when classical heuristics are used. In an overall analysis,
while restarting without learning yields mitigated results, nogood recording from restarts
significantly improves the robustness of the solver. Indeed, both the number of unsolved
instances and the average cpu time are reduced. This is due to the fact that the solver
never explores several times the same portion of the search space while benefiting from
restarts. Another view on results in given by Figures 4, 5 and 6 which represent scatter plots
displaying pairwise comparisons for dom/ddeg, brelaz and dom/wdeg. Note the presence
of many dots on the right-hand side of these figures which represent instances unsolved by
the methods whose name label the x-axis.

When focusing to the hardest instances (which involve 680 variables and a greatest
domain size of about 50 values) built from the real-world Radio Link Frequency Assignment
Problem (RLFAP), we have observed (see Table 2) that using a restart policy allows to be
more efficient by almost one order of magnitude. Here, performance is measured in terms
of cpu time (in seconds), amount of used memory (in bytes) and number of visited nodes.
When we further exploit nogood recording, the gain is about 10%. What is interesting to
note here is that (w.r.t. our restart policy) recording nogoods from restarts does not require
a lot of memory. Also, we noticed that the number and the size of the reduced nld-nogoods
recorded during search were always very limited. As an illustration, MAC+RST+NG solved
the instance scen11-f1 in 36 runs (and 3, 750 seconds) while only 712 nogoods of average
size 8.5 and maximum size 33 were recorded.
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Figure 4. Pairwise comparison (cpu time) on the 3, 621 instances used as benchmarks of the
2006 CSP Solver Competition (first round). The variable ordering heuristic is dom/ddeg and the
timeout to solve an instance is set to 20 minutes.
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Figure 5. Pairwise comparison (cpu time) on the 3, 621 instances used as benchmarks of the 2006
CSP Solver Competition (first round). The variable ordering heuristic is brelaz and the timeout to
solve an instance is set to 20 minutes.
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Figure 6. Pairwise comparison (cpu time) on the 3, 621 instances used as benchmarks of the
2006 CSP Solver Competition (first round). The variable ordering heuristic is dom/wdeg and the
timeout to solve an instance is set to 20 minutes.
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Table 2. Performance on hard RLFAP Instances using the dom/wdeg heuristic (timeout set to 20
minutes)

MGAC
+RST +RST+NG +RST+NGm

scen11-f10
cpu 5.8 4.9 5.0 5.0

mem 29M 31M 32M 32M
nodes 891 403 405 556

scen11-f8
cpu 10.2 5.5 5.8 6.1

mem 29M 31M 32M 32M
nodes 15, 045 1, 149 1, 098 1, 287

scen11-f6
cpu 59.8 14.8 13.5 10.9

mem 29M 31M 32M 32M
nodes 217K 35, 030 25, 851 19, 798

scen11-f4
cpu 924.1 141.1 116.6 125.9

mem 30M 31M 32M 32M
nodes 3, 458K 494K 450K 476K

scen11-f3
cpu time-out 370.6 361.5 342.5

mem 31M 32M 32M
nodes 1, 506K 1, 331K 1, 314K

scen11-f2
cpu time-out time-out 1, 135.3 1, 137.7

mem 32M 32M
nodes 4, 406K 4, 370K

Finally, we present in Table 3 the results obtained for some instances of the queens-
knights problem using dom/wdeg. As indicated in Section 6, minimizing nogoods is quite
relevant on this kind of instances since singleton arc inconsistent values can be detected.
Note that with the dom/wdeg heuristic, results are less impressive. Indeed, it is explained
by the fact that this heuristic has a good capability of preventing thrashing.

Table 3. Cpu time to solve some instances of the queens-knights problem, given 20 minutes.

MGAC
+RST +RST+NG +RST+NGm

qk-12-5-mul
dom/ddeg 265.1 408.9 256.2 2.1

brelaz 255.7 377.9 250.8 2.1
dom/wdeg 3.1 1.8 2.6 1.6

qk-25-5-mul
dom/ddeg time-out time-out time-out 4.9

brelaz time-out time-out time-out 5.1
dom/wdeg time-out 4.2 4.8 4.3

qk-50-5-mul
dom/ddeg time-out time-out time-out 67.3

brelaz time-out time-out time-out 65.3
dom/wdeg time-out 59.5 44.6 43.9

8. Conclusion

In this paper, we have studied the interest of recording nogoods in conjunction with a restart
strategy. The benefit of restarting search is that the heavy-tailed phenomenon observed on
some structured instances can be avoided. The drawback is that we can explore several
times the same parts of the search tree. We have shown that it is quite easy to eliminate
this drawback by recording a set of nogoods at the end of each run (that can be related
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to the search signature technique proposed [1] for SAT). For efficiency reasons, nogoods
are recorded in a base (and so do not correspond to new constraints) and propagation is
performed using the 2-literal watching technique introduced for SAT. One can consider
the base of nogoods as a unique global constraint with an efficient associated propagation
algorithm.

Interestingly, this filtering algorithm can be embedded as a new propagator to any
constraint propagation engine but it can also be easily integrated to any generic GAC
algorithm as we have shown in this paper. In our approach, reduced nld-nogoods correspond
to positive decisions only, and so, can be classified as standard nogoods. One advantage is
that the complexity of managing the base of nogoods is small since the only event we need to
intercept is when a variable becomes fixed (its domain becoming a singleton). In [24], it has
been shown that generalized nogoods are more powerful than standard nogoods. However,
it is not immediate if this remains true when a binary branching scheme is used [20]. In any
case, it appears that one perspective to the approach proposed in this paper is to compute
generalized nogoods, that is to say to extract minimal (not reduced) nld-nogoods from the
last branch. The theoretical and practical aspects of this alternative deserve to be studied.
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