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Abstract

Several propositional fragments have been considered so far as target languages for
knowledge compilation and used for improving computational tasks from major AI areas
(like inference, diagnosis and planning); among them are the ordered binary decision dia-
grams, prime implicates, prime implicants, “formulae” in decomposable negation normal
form. On the other hand, the validity problem val(QPROPPS) for Quantified Boolean For-
mulae (QBF) has been acknowledged for the past few years as an important issue for AI,
and many solvers have been designed. In this paper, the complexity of restrictions of the
validity problem for QBF obtained by imposing the matrix of the input QBF to belong to
propositional fragments used as target languages for compilation, is identified. It turns out
that this problem remains hard (PSPACE-complete) even under severe restrictions on the
matrix of the input. Nevertheless some tractable restrictions are pointed out.
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1. Introduction

Compiling “knowledge” has been used for the past few years to improve (from the compu-
tational point of view) some basic tasks from major AI areas, like inference (both classical
and nonmonotonic, see among others [1, 2, 3, 4, 5, 6, 7]), diagnosis (see e.g. [8, 9]) and
planning (see e.g. [10, 11, 12]). These approaches typically consist in turning, during an
off-line phase, some pieces of information encoded as propositional formulae into formulae
from a “more tractable” fragment C. “More tractable” means that the tasks required by
the application under consideration become computationally easier, and if possible, feasible
in polynomial time when the input belongs to such a fragment [13]. Such tasks usually
contain deciding satisfiability (determining whether a given propositional formula has or
not a model), the famous sat problem, which is NP-complete. Among the “tractable” frag-
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ments considered so far are the (quite influential) ordered binary decision diagrams, prime
implicates, prime implicants, and “formulae” in decomposable negation normal form.

On the other hand, val(QPROPPS), the validity problem for QBF, has a growing im-
portance in AI. This can be explained by the fact that, as the canonical PSPACE-complete
problem, many AI problems can be polynomially reduced to val(QPROPPS) (see e.g., [14,
15, 16, 17, 18]); in particular, val(QPROPPS) includes sat as a specific case; furthermore,
there is some empirical evidence from various AI fields (including among others planning,
nonmonotonic reasoning, paraconsistent inference) that a translation-based approach can
prove more “efficient” than domain-dependent algorithms dedicated to such AI tasks. Ac-
cordingly, many solvers for val(QPROPPS) have been designed and evaluated for the past
few years (see among others [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]).

In this paper, we consider several tractable fragments for sat, used as target languages
for knowledge compilation. For each fragment C under consideration, we focus on the
restriction val(QC) of the val(QPROPPS) problem obtained by imposing the matrix of the
input formula to belong to the fragment.

A similar investigation has already been done w.r.t. some incomplete propositional
fragments [30, 31]. Thus, in his well-known paper where a dichotomy theorem for sat is
presented [30], Schaefer also gave an analogue dichotomy theorem for val(QPROPPS) (The-
orem 6.1); roughly, this theorem shows that the only tractable classes for the restrictions
of val(QPROPPS) among those “characterized locally” (i.e., by the nature of the “clauses”
from the matrix) are the Krom one (binary clauses), the Horn one, the reverse Horn one and
the affine one (sets of linear equations over the field {0, 1}, or equivalently, conjunctions of
XOR-clauses). Accordingly, several polytime algorithms for the restriction of val(QPROPPS)
to such incomplete fragments can be found in the literature (see [32, 33, 34]).

In the very recent past, val(QCSP), the validity problem for quantified constraint net-
works – a generalization of val(QPROPPS) when conjunctive constraints are considered – has
received much attention; classification theorems giving the complexity of val(QCSP) depend-
ing on algebraic properties of the constraint language under consideration have been pointed
out [35, 36, 37]; such impressive results are deep insights into the study of the complexity of
val(QCSP); nevertheless, they are concerned in essence with conjunctive constraints, so they
cannot be used directly as such to identify the complexity of every restriction of val(QCSP)
(just like Schaefer’s dichotomy theorem for sat does not characterize every tractable re-
striction of sat, like the ones based on ordered binary decision diagrams or on renamable
Horn CNF formulae).

In this paper, the complexity of val(QC) is investigated for complete propositional frag-
ments C, where a propositional fragment C is complete if and only if every propositional
formula has an equivalent into C. We mainly focus on fragments C considered in [13]: DNF,
d-DNNF, sd-DNNF, DNNF, OBDD<, FBDD, PI, IP, MODS whose significance for many AI tasks (as
well as for problems pertaining to other fields) is acknowledged. We complete the results
given in [13] by focusing on an additional query, the val(QC) one. We draw the complex-
ity picture for val(QC) for all those fragments C. We also consider the val(QC) for two
additional fragments: OCNF<and ODNF<.

Both tractability and intractability results have been derived. Like for the DNF fragment
and its supersets including the DNNF fragment and the disjunctions of Horn CNFformulae,
the val(QC) problem for the C = OBDD< fragment (and its supersets, the FBDD fragment
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and the d-DNNF one) is PSPACE-complete in the general case, while in P whenever the
prefix of the instance is compatible with the total, strict ordering < associated with the
OBDD< “formula”. We also consider the complete restrictions ODNF< of DNF (and dually, the
restrictions OCNF< of CNF) and show that for those two sets of fragments C (< varying),
val(QC) is in P under the compatibility assumption. Because QMODS is a subset of QODNF<
for which the compatibility assumption holds (and dually, the fragments QCI of quantified
canonical implicates formulae is a subset of QOCNF< for which the compatibility assumption
holds), we get that the val(QMODS) problem and the val(QCI) problem are in P as well. We
finally show that the val(QPI) problem (resp. the val(QIP) problem) is PSPACE-complete,
while the complexity falls down to P for the restriction where the prefix of any instance is
of the form ∀X ∃Y (resp. ∃X ∀Y ).

The rest of the paper is organized as follows: in Section 2, we give some formal pre-
liminaries. In Section 3, the complexity results are presented. In Section 4, some experi-
mental results are provided. In Section 5, the connection between the problem of finding
out tractable matrix-based restrictions of val(QPROPPS) and the compilability issue for
val(QPROPPS) when matrices are fixed while prefixes may vary is investigated. Finally,
Section 6 concludes the paper and gives a few perspectives. We assume the reader familiar
with classes of the polynomial hierarchy PH and the complexity class PSPACE, and with
standard polynomial many-one reductions (see e.g. [38]).

2. Formal Preliminaries

In this section, we present the syntax and semantics of quantified boolean formulae; we also
give a number of easy metatheorems which will prove useful in the following sections. We
set the morphology of our language to the following set of connectives: ¬, ∧, ∨, ⇒, ⇔,
⊕ (XOR) plus the two boolean constants and the quantifiers ∀ and ∃; on this ground, a
language for quantified boolean formulae can be defined as follows:

Definition 1 (syntax of a quantified boolean formula). Let PS be a finite set of propo-
sitional symbols. The set QPROPPS of quantified boolean formulae (QBFs) over PS is the
smallest set of words defined inductively as follows:1.

1. the boolean constants true, false and every variable from PS belong to QPROPPS.

2. if φ and ψ belong to QPROPPS then (¬φ), (φ∧ψ), (φ∨ψ), (φ⇒ ψ), (φ⇔ ψ), (φ⊕ψ)
belong to QPROPPS.

3. if φ belongs to QPROPPS and x belongs to PS, then (∀x.φ) and (∃x.φ) belong to
QPROPPS.

4. every quantified propositional formula is obtained by applying the three rules above a
finite number of times.

Example 1. The following formula is a QBF:

Σ = ∃a.(((∀b.(a ∧ b)) ∨ ((¬a) ∨ b)) ∧ ∀b.(a ∨ ((¬b) ∧ c)))

Figure 1 is a graphical representation of Σ.

1. In order to simplify the syntax, we feel free to omit some parentheses when this does not question
equivalence. In addition, we often abbreviate ∃x.(∃y.φ) (resp. ∀x.(∀y.φ)) into ∃x, y.φ (resp. ∀x, y.φ).
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Figure 1. A quantified boolean formula.

�

The occurrences of a propositional variable x in a formula Σ from QPROPPS can be
partitioned into three sets: the quantified occurrences of x in Σ are those occurring in a
quantification, i.e., just after a quantifier ∀ or ∃; in every subformula ∀x.φ (resp. ∃x.φ) of
Σ, all the occurrences of x in φ are bound, the occurrences of x are said to be in the scope
of the quantification ∀x (resp. ∃x). Finally, all the remaining occurrences of x in Σ are free
ones.

V ar(Σ) is the set of all variables occurring in Σ. A variable x of Σ is free if it has a free
occurrence in Σ.

Example 2 (cont’ed). The first occurrence of a in Σ is quantified, the second occurrence
of b in Σ is bound and the third one is free. b and c are the free variables of Σ. �

A QBF Σ is said to be polite if and only if every bound occurrence of a variable x of Σ is
in the scope of an unique quantification, and every free variable has no bound occurrence.
A QBF Σ is said to be prenex if and only if Σ = Qx1 . . . Qxn.φ where each occurrence of Q
stands for either ∀ or ∃, and φ does not contain any quantified occurrence of a variable. φ
is said to be the matrix of Σ and the sequence Qx1 . . . Qxn of quantifications is the prefix
of Σ. A QBF is said to be closed if and only if it has no free variable. A QBF is said to
be quantifier-free if and only if it does not contain any quantification (obviously enough,
such formulae can easily be considered as “standard” propositional formulae). The subset
of QPROPPS containing only quantifier-free formulae is noted PROPPS .

Example 3 (cont’ed). Σ is neither polite, nor prenex, nor closed. �

Let us now consider the semantical aspects of QBF; let us start with the following useful
notion of conditioning (also referred to as restriction or cofactor [39]). For every quantified
boolean formula Σ and every variable x, Σx←0 (resp. Σx←1) denotes the QBF obtained by
replacing every free occurrence of x in Σ by false (resp. true). Formally:
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Definition 2 (conditioning). Let Σ ∈ QPROPPS, x ∈ PS and ∗ ∈ {1, 0}. The conditioning
of x by ∗ in Σ is the QBF defined inductively as follows:

Σx←∗ =


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if Σ = x and ∗ = 1 then true
if Σ = x and ∗ = 0 then false
if Σ ∈ PS and Σ 6= x then Σ
if Σ = ¬φ then ¬(φx←∗)
if Σ = φ ◦ ψ then φx←∗ ◦ ψx←∗ with ◦ a binary connective
if Σ = ∀x.φ or Σ = ∃x.φ then Σ
if Σ = ∀y.φ with y 6= x then ∀y.(φx←∗)
if Σ = ∃y.φ with y 6= x then ∃y.(φx←∗)

Example 4 (cont’ed). The conditioning of b by 1 in Σ is the QBF

Σb←1 = ∃a.(((∀b.(a ∧ b)) ∨ ((¬a) ∨ true)) ∧ ∀b.(a ∨ ((¬b) ∧ c)))

�

We are now ready to define the semantics of a QBF:

Definition 3 (semantics of a quantified boolean formula). Let I be an interpretation
over PS (i.e., a total function from PS to BOOL = {0, 1}). The semantics of a quantified
boolean formula Σ in I is the truth value [[Σ]](I) from BOOL defined inductively as follows:

• if Σ = true (resp. false), then [[Σ]](I) = 1 (resp. 0).

• if Σ ∈ PS, then [[Σ]](I) = I(Σ).

• if Σ = ¬φ, then [[Σ]](I) = 1− [[φ]](I).

• if Σ = φ ∧ ψ, then [[Σ]](I) = [[φ]](I)× [[ψ]](I).

• if Σ = φ ∨ ψ, then [[Σ]](I) = max({[[φ]](I), [[ψ]](I)}).

• if Σ = φ⇒ ψ, then [[Σ]](I) = [[¬φ ∨ ψ]](I).

• if Σ = φ⇔ ψ, then [[Σ]](I) = [[(φ⇒ ψ) ∧ (ψ ⇒ φ)]](I).

• if Σ = φ⊕ ψ, then [[Σ]](I) = [[¬(φ⇔ ψ)]](I).

• if Σ = ∀x.φ, then [[Σ]](I) = min({[[φx←0]](I), [[φx←1]](I)}).

• if Σ = ∃x.φ, then [[Σ]](I) = max({[[φx←0]](I), [[φx←1]](I)}).

Clearly enough, every connective used in the morphology of QPROPPS (including quan-
tifications which can be viewed as unary connectives) is truth-functional.

An interpretation I is said to be a model of Σ, noted I |= Σ, if and only if [[Σ]](I) = 1. If
Σ has a model, it is satisfiable; otherwise, it is unsatisfiable. If every interpretation I over
PS is a model of Σ, Σ is valid, noted |= Σ. If every model of Σ is a model of µ, then µ is a
logical consequence of Σ, noted Σ |= µ. Finally, when both Σ |= µ and µ |= Σ hold, Σ and
µ are equivalent, noted Σ ≡ µ.
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It is not difficult to prove (again by structural induction) that the semantics of any
quantified boolean formula Σ depends only on its free variables, in the sense that, for
any interpretation J over PS which coincides with a given interpretation I on all the free
variables of Σ, I is a model of Σ if and only if J is a model of Σ. Especially, the semantics
of a closed formula is the same in every interpretation over PS. Stated otherwise, such a
formula is equivalent to one of the boolean constants true or false, hence it is satisfiable if
and only if it is valid.

As in propositional logic, Σ |= µ holds if and only if the formula (Σ∧¬µ) is unsatisfiable
if and only if the formula (Σ ⇒ µ) is valid. More generally, since the connectives are
truth-functional ones, a substitution metatheorem holds for quantified boolean formulae:
replacing any subformula by an equivalent one preserves equivalence w.r.t. the overall
formula.

It is easy to show that the conditioning of x by ∗ in Σ can be computed in time linear in
|Σ|. Furthermore, it is easy to show by structural induction that successive conditionings
commute: for any Σ ∈ QPROPPS , any x, x′ ∈ PS and ∗, ∗′ ∈ {0, 1}, we have

(Σx←∗)x′←∗′ ≡ (Σx′←∗′)x←∗.

Other interesting metatheorems are given in the following two propositions.

Proposition 1 (folklore). Let Σ, Φ be formulae from QPROPPS and x, y be variables from
PS.

1. ∀x.Σ ≡ Σx←0 ∧ Σx←1.

2. ∃x.Σ ≡ Σx←0 ∨ Σx←1.

3. ∀x.Σ ≡ ¬(∃x.(¬Σ)).

4. If x is not free in Σ, then ∀x.Σ ≡ ∃x.Σ ≡ Σ.

5. ∀x.(Σ ∧ Φ) ≡ (∀x.Σ) ∧ (∀x.Φ).

6. ∃x.(Σ ∨ Φ) ≡ (∃x.Σ) ∨ (∃x.Φ).

7. ∀x.(∀y.Σ) ≡ ∀y.(∀x.Σ).

8. ∃x.(∃y.Σ) ≡ ∃y.(∃x.Σ).

9. If x is not free in Σ, then ∀x.(Σ ∨ Φ) ≡ Σ ∨ (∀x.Φ).

10. If x is not free in Σ, then ∃x.(Σ ∧ Φ) ≡ Σ ∧ (∃x.Φ).

Points 1 and 2 show that every quantified boolean formula Σ can be turned into a “stan-
dard” propositional formula but the transformation suggested (viewing the equivalences as
left-to-right rewriting rules) cannot be achieved in polynomial space (and more generally, it
is very unlikely that a polysize mapping from QPROPPS to PROPPS that preserves equivalence
exist, since this would make the polynomial hierarchy PH to collapse). Accordingly, it is
assumed that QPROPPS enables much more compact encodings than PROPPS .

Point 3 shows that universal quantifiers and existential quantifiers are dual ones.
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Point 4 gives a sufficient condition for the elimination of quantifications (the condition
is not necessary as the example Σ = x ∨ ¬x shows it).

Points 5, 6, 9 and 10 make precise the interplay between the quantifiers and the con-
nectives ∧ and ∨.

Points 7 and 8 show that it is possible to switch two successive quantifications of the
same nature in a quantified boolean formula Σ without questioning equivalence. Hence, for
every finite, non empty subset S = {x1, . . . , xn} of PS, we note ∀S.Σ (resp. ∃S.Σ) as a
shortand for ∀x1, . . . , ∀xn.Σ (resp. ∃x1, . . . , ∃xn.Σ).

Contrastingly, it is not possible in general to switch two successive quantifications of
different nature while preserving equivalence. Thus, ∀x.(∃y.Σ) is a logical consequence of
∃y.(∀x.Σ) but is not equivalent to it (just consider Σ = x⇔ y). Furthermore, in the general
case, we do have neither ∀x.(Σ ∨ Φ) ≡ (∀x.Σ) ∨ (∀x.Φ) nor ∃x.(Σ ∧ Φ) ≡ (∃x.Σ) ∧ (∃x.Φ)
(as a counterexample, take Σ = x and Φ = ¬x).

Based on the metatheorems given in Proposition 1 and the substitution metatheorem, it
is easy to prove that every formula from QPROPPS can be turned in polynomial time into a
prenex and polite, equivalent formula (bound variables can be renamed without questioning
equivalence). Note that several strategies for prenexing a quantified boolean formula exist
(depending on the way quantifications are shifted), and that the choice of a prenex formula
equivalent to a given quantified boolean formula Σ when several are possible may have a
practical impact on the efficiency of deciding the validity of Σ [40].

Example 5 (cont’ed). Σ is equivalent to the following prenex, polite QBF:

∃a.(∀u.(∀v.(((a ∧ u) ∨ ((¬a) ∨ b)) ∧ (a ∨ ((¬v) ∧ c))))).

u and v are the fresh variables used to make the formula polite. �

Finally, there are close connections between (general) quantified boolean formulae and
closed ones. Especially we have:

Proposition 2 (folklore). Let Σ be a formula from QPROPPS.

1. Σ is satisfiable if and only if the closed formula ∃V ar(Σ).Σ is valid.

2. Σ is valid if and only if the closed formula ∀V ar(Σ).Σ is valid.

Points 1 and 2 above show that the satisfiability problem (resp. the validity problem)
of (general) quantified boolean formulae can be reduced in polynomial time to the validity
problem of closed quantified boolean formulae. Especially, the satisfiability problem of
a “standard” propositional formula Σ can be reduced in polynomial time to the validity
problem of the closed quantified boolean formula ∃V ar(Σ).Σ.

Example 6 (cont’ed). Σ is satisfiable since

∃a, b, c.(∃a.(((∀b.(a ∧ b)) ∨ ((¬a) ∨ b)) ∧ ∀b.(a ∨ ((¬b) ∧ c))))

which can be simplified to

∃b, c.(∃a.(((∀b.(a ∧ b)) ∨ ((¬a) ∨ b)) ∧ ∀b.(a ∨ ((¬b) ∧ c))))

since a is not free in Σ, is a valid, closed QBF. �
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For this reason, the val(QPROPPS) problem is usually stated as follows:

Definition 4 (val(QPROPPS)). val(QPROPPS) is the following decision problem:

• Input: A prenex, closed, polite formula Σ from QPROPPS;

• Question: Is Σ valid?

Example 7 (cont’ed). Σ is satisfiable if and only if the following instance of val(QPROPPS)
is valid:

∃a, b, c ∀u, v.(((a ∧ u) ∨ ((¬a) ∨ b)) ∧ (a ∨ ((¬v) ∧ c)))

�

More generally, we use the following notations:

Definition 5 (Notations). Let C ⊆ PROPPS.
We note:

• QC is the language of prenex, closed, polite QBF with matrix from C.

• val(QC) is the following decision problem:

– Input: A formula Σ from QC;

– Question: Is Σ valid?

3. Tractable vs. Intractable Classes for val(QPROPPS)

In the following, the complexity of several restrictions of val(QPROPPS) is investigated. A
propositional fragment (i.e., a subset of a propositional language) C is said to be tractable
for val(QPROPPS) (resp. sat) if and only if the membership to the fragment can be decided
in polynomial time, and there also exists a polytime decision algorithm for the validity
problem val(QC) (resp. there exists a polytime decision algorithm for the satisfiability
problem for formulae from the fragment).

Let us start with intractability results. First, it is well-known that the restriction
val(QCNF) of val(QPROPPS) is still PSPACE-complete. Indeed, every propositional formula
Σ over {x1, . . . , xn} can be associated in linear time to a CNF formula Σ′ over {x1, . . . , xn, y1,

. . . , ym} s.t. Σ ≡ ∃{y1, . . . , ym}.Σ
′. Such a reduction which preserves satisfiability (and

much more) is typically used to show that circuit-sat can be reduced to sat restricted to
CNF formulae (the basic idea is to introduce a new variable yi per gate or subformula).

Let us now consider the val(QC) problem for target fragments C for knowledge compi-
lation; many such fragments have been identified in the literature: DNF, sd-DNNF, d-DNNF,
DNNF, FBDD, OBDD<, MODS, PI, IP, ... As we will see, all such problems are typically in-
tractable.

First, since PSPACE is closed under complementation and the negation of a QBF with
a CNF matrix is a QBF with a DNF matrix, it follows directly that the val(QDNF) problem
also is PSPACE-complete. This prevents many tractable fragments C for sat from being
considered as interesting candidates for val(QC). Among them are all the supersets of DNF
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including the DNNF fragment and the disjunctions of Horn CNF formulae which are target
classes for knowledge compilation (see [3, 4, 13]).

Let us now turn to complete DAG-based propositional fragments.2. A “formula”3. in
NNFPS is a rooted, directed acyclic graph where each leaf node is labeled with true, false,
x or ¬x, x ∈ PS; and each internal node is labeled with ∧ or ∨ and can have arbitrarily
many children. If C is a node in an NNFPS formula, then V ar(C) denotes the set of all
variables that label the descendants of node C. Moreover, if φ is an NNFPS formula rooted
at C, then V ar(φ) is defined as V ar(C). Interesting fragments of NNFPS are obtained by
imposing some of the following requirements [41]:

• Decomposability: An and-node C is decomposable if and only if the conjuncts of
C do not share variables. That is, if C1, . . . , Cn are the children of and-node C, then
V ar(Ci) ∩ V ar(Cj) = ∅ for i 6= j. An NNFPS formula satisfies the decomposability
property if and only if every and-node in it is decomposable.

• Determinism: An or-node C is deterministic if and only if each pair of disjuncts of
C is logically contradictory. That is, if C1, . . . , Cn are the children of or-node C, then
Ci ∧Cj |= false for i 6= j. An NNFPS formula satisfies the determinism property if and
only if every or-node in it is deterministic.

• Decision: A decision node N in an NNFPS formula is one which is labeled with true,
false, or is an or-node having the form (x∧α)∨ (¬x∧β), where x is a variable, α and
β are decision nodes. In the latter case, dVar(N) denotes the variable x. An NNFPS
formula satisfies the decision property when its root is a decision node.

• Ordering: Let < be a total, strict ordering over the variables from PS. An NNFPS
formula satisfying the decision property satisfies the ordering property w.r.t. < if and
only if the following condition is satisfied: if N and M are or-nodes, and if N is an
ancestor of node M , then dVar(N) < dVar(M).

• Smoothness: An or-node C is smooth if and only if each disjunct of C mentions the
same variables. That is, if C1, . . . , Cn are the children of or-node C, then V ar(Ci) =
V ar(Cj) for i 6= j. An NNFPS formula satisfies the smoothness property if and only if
every or-node in it is smooth.

Example 8. Consider the and-node marked ➷ on the left part of Figure 2. This and-
node C has two children C1 and C2 such that V ar(C1) = {a, b} and V ar(C2) = {c, d};
Node C is decomposable since the two children do not share variables. Each other and-
node in Figure 2 (left) is also decomposable and, hence, the NNFPS formula in this figure
is decomposable. Consider now the or-node marked ➷ on the right part of the figure; it
has two children corresponding to subformulae ¬a ∧ b and ¬b ∧ a. Those two subformulae
are jointly unsatisfiable, hence the or-node is deterministic. Furthermore, the two children

2. Actually, the DAG-based fragment corresponding to CNF (resp. DNF) can be identified to the fragment
CNF (resp. DNF) consisting of tree-like formulae – as defined before – without any significant loss w.r.t.
succinctness. See [13].

3. In the following, we will use the term formula to denote the DAG-based representation of that formula.
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Figure 2. A formula in NNFPS . On the left part, the node marked ➷ is decomposable while the
node marked with the same symbol on the right part denotes a deterministic and smooth node.

mention the same variables a and b, hence the or-node is smooth. Since the other or-nodes
in Figure 2 (right) are also deterministic and smooth, the NNFPS formula in this figure is
deterministic and smooth. �

We consider the following propositional fragments4. [13]:

Definition 6 (propositional fragments).

• The language DNNF is the subset of NNFPS of formulae satisfying decomposability.

• The language d-DNNF is the subset of NNFPS of formulae satisfying decomposability
and determinism.

• The language sd-DNNF is the subset of NNFPS of formulae satisfying decomposability,
determinism and smoothness.

• The language FBDD is the subset of NNFPS of formulae satisfying decomposability and
decision.

• The language OBDD< is the subset of NNFPS of formulae satisfying decomposability,
decision and ordering.

• The language MODS is the subset of DNF ∩ d-DNNF of formulae satisfying smoothness.

The FBDD language corresponds to free binary decision diagrams (FBDDs), as known in
formal verification [42], while its subset obtained by imposing the ordering property w.r.t.
a given variable ordering contains the ordered binary decision diagrams (OBDDs) [39].

Binary decision diagrams are usually depicted using a more compact notation: labels

true and false are denoted by 1 and 0, respectively; and each decision node ∧
ϕ

∧
ψ

∨

¬aa

4. It must be noted that the six languages below are not stricto sensu subsets of PROPPS in the sense that
its elements are rooted DAGs, not standard tree-like formulae. Considering DAG-based representations
is just a way to enable subformulae sharing; while this is fundamental for the spatial efficiency point
of view, this has no impact on the semantical issue, so the definitions and properties reported in the
Section 2 can be easily extended to DAG-based formulae.
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∨

∧ ∧

∧

∨

false

∧

a

b ¬b

¬a

true 0 1

a

b

Figure 3. On the left part, a formula in the OBDD< language. On the right part, a more standard
notation for it.

denoted by
ϕ ψ

a . The OBDD< formula on the left part of Figure 3 corresponds to the binary

decision diagram on the right part of Figure 3.

A MODS encoding of a propositional formula mainly consists of the explicit representation
of the set of its models over the set of variables occurring in it. Figure 4 depicts a formula
from MODS which is equivalent to the DNFformula (a ∧ b ∧ c) ∨ (¬a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c) ∨
(¬a ∧ ¬b ∧ ¬c).

∨

∧ ∧∧ ∧

¬a ¬b ¬ca b c

Figure 4. An element of the MODS fragment.

For the sake of completeness, we also consider the dual language of MODS, consisting of
CNF formulae given by their canonical implicates:

• The language CI is the subset of CNF containing formulae Σ = γ1 ∧ . . . ∧ γk such that
for each clause γi (i ∈ 1 . . . k) and for each variable x ∈ V ar(Σ), γi contains x or ¬x.

Obviously enough, the negation of any MODS formula can be turned in linear time into
a CI formula, and the converse also holds.

Now, it is well-known that eliminating a single quantification within an OBDD< formula
can be achieved in time quadratic in the input size (an OBDD< formula equivalent to ∃x.Σ
(resp. ∀x.Σ) is computed as Σx←0∨Σx←1, (resp. Σx←0∧Σx←1), see e.g. [39]). Since the size
of the resulting formula may be quadratic in the size of the input Σ, there is no guarantee
that such an elimination process leads to a formula of size polynomial in the input size
when iterated so as to eliminate more than a preset number of variables. Hence, there is no
guarantee that the time needed by such an elimination algorithm will remain polynomial in
the input size. Actually, the next proposition shows that whatever the approach to solving
val(QOBDD<), a polytime algorithm is very unlikely:
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Proposition 3. val(QDNNF), val(Qd-DNNF), val(QFBDD) and val(QOBDD<) are PSPACE-
complete.

Proof 1. The membership directly comes from the fact that val(QCNF) is in PSPACE, the
fact that the circuit language associated to PROPPS includes NNFPS as a proper subset, the
fact that every circuit (encoding a boolean function over {x1, . . . , xn}) can be mapped in
polynomial time to a CNF formula over an extended set of variables, whilst equivalent to
the circuit whenever the new variables are forgotten (i.e., existentially quantified) (see e.g.
[43]), and the fact that PSPACE is closed under polynomial reduction.

As to hardness, since the following inclusions hold (cf. Figure 5 in the appendix)
OBDD<⊂ FBDD⊂ d-DNNF⊂ DNNF

it is sufficient to prove that the val(QOBDD<) problem is PSPACE-hard. The proof is by
reduction from val(QDNF). The main step is to show that every DNF formula φ = γ1∨. . .∨γn
can be associated in polynomial time to an equivalent QBF of the form ∃X.ψ where X ∩
V ar(φ) = ∅ and ψ is from OBDD< (whatever < over V ar(φ)). First, let us note obdd(γi) the
OBDD< formula equivalent to the term γi (i ∈ 1 . . . n); clearly enough, every obdd(γi) can be
computed in time polynomial in |γi|. Let V ar(φ) = {y1, . . . , ym} and let X = {x1, . . . , xn−1}
be a set of new variables; let ψ = ψ1, where the formulae ψi (i ∈ 1 . . . n) are defined by:

• ψn = obdd(γn), and

• ψi = (obdd(γi) ∧ xi) ∨ (ψi+1 ∧ ¬xi), for i = 1, . . . , n− 1.

From such definitions, ψ – which can be read as an OBDD< formula where the new
ordering < is the extension of the previous ordering y1 < . . . < ym such that x1 < . . . <

xn−1 < y1 < . . . < ym – can be computed in time polynomial in the size of φ. Now, since
for every QBF α, β and every variable x, we have that ∃x.(α ∨ β) ≡ (∃x.α) ∨ (∃x.β) (from
point 6 in Proposition 1), and ∃x.(α ∧ x) ≡ ∃x.(α ∧ ¬x) ≡ α whenever x 6∈ V ar(α) (from
point 10 in Proposition 1), it immediately follows that φ ≡ ∃X.ψ. Finally, the substitution
metatheorem for QBF shows that for any prefix P , the QBF P.φ is equivalent to the QBF
P ∃X.ψ, and this completes the proof. �

The following example illustrates the proof above:

Example 9. Let us consider the following DNF formula φ = (γ1 ∨ γ2) where γ1 = (a ∧ b)
and γ2 = (a ∧ ¬b).

We have :

ψ2 ≡

0

a

b

1

0

So ψ ≡ ψ1 ≡

x

b

a

b

a

1 0

0

0 1

0
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and φ ≡ ∃x.ψ. �

Based on the reduction given in the proof above, one can also show that the val(QOBDD<)
problem spans all the polynomial hierarchy when restrictions are put on the prefix of the
input: if no alternations of quantifiers occur, the problem reduces to the satisfiability prob-
lem or to the validity problem, and both of them are in P for OBDD< formulae; if the prefix
is of the form ∀S1 ∃S2, the problem is Πp

1-complete (= coNP-complete); if the prefix is of
the form ∃S1 ∀S2 ∃S3, the problem is Σp

2-complete, and so on. Since the negation of an
OBDD< formula can be computed as an OBDD< formula in constant time, we also obtain that
if the prefix is of the form ∃S1 ∀S2, the problem is Σp

1-complete (= NP-complete), if the
prefix is of the form ∀S1 ∃S2 ∀S3, the problem is Πp

2-complete, and so on.

Adding the smoothness requirement to val(d-DNNF) does not help to reduce the com-
plexity; indeed, every d-DNNF formula can be smoothed in polynomial time:

Corollary 1. val(Qsd-DNNF) is PSPACE-complete.

Proof 2. Direct from the fact that the val(Qd-DNNF) is PSPACE-hard and that a d-DNNF

can be turned into an equivalent sd-DNNF formula in polynomial time (see Lemma A.1 in
[13]). �

Contrastingly, val(QOBDD<) is tractable when the corresponding prefixes are compatible
with the total, strict ordering < associated with the OBDD< fragment:

Definition 7 (compatibility). Let Σ = QS1 . . . QSn.φ be a prenex, polite, closed QBF
where each Q stands for a quantifier and {S1, . . . , Sn} is a partition of V ar(φ) which does
not contain the empty set. The prefix QS1 . . . QSn of Σ is said to be compatible with a total,
strict ordering < over V ar(φ) if and only if for each x, y ∈ V ar(φ) s.t. x < y, if x ∈ Si
and y ∈ Sj then j ≥ i.

Proposition 4. The restriction of the val(QOBDD<) problem for instances with a prefix
compatible with < is in P.

Proof 3. The proof is constructive and is given by the polytime algorithm SolveObdd
below. Such an algorithm consists in eliminating the quantifications (from the innermost to
the outermost) into the input formula.

Let x be the greatest variable w.r.t. <.

Let us first assume that x is existentially quantified. By construction, an interpretation
I is a model (resp. a counter-model) of an OBDD< formula φ if and only if the unique
path from the root of φ that is compatible with I leads to the sink 1 (resp. 0); such a path
corresponds to an implicant of φ (resp. its negation).

Let N be any decision node labeled by x in φ. Given the ordering assumption about x,
the only possible children of N in φ are the sink nodes (actually, one of them is the 1 sink
and the other one is the 0 sink if the ordered binary decision diagram φ is reduced, which
can be assumed w.l.o.g. since such a reduction can be achieved in polynomial time).

Since every model of ∃x.φ coincides with a model of φ except possibly on x, it is sufficient
to remove every node N labeled by x and to re-direct its incoming edges to the 1 sink to
obtain an OBDD< formula equivalent to ∃x.φ; the resulting formula is not necessarily reduced,
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but it can be reduced in polynomial time if it is not the case. The overall process can be
easily achieved in time polynomial in the size of φ.

Now, if the greatest variable x w.r.t. < is universally quantified, we take advantage of
the equivalence ∀x.φ ≡ ¬(∃x.¬φ) (point 3 in Proposition 1) and the fact that an OBDD<
formula equivalent to the negation of an OBDD< formula can be obtained in constant time
(just switch the labels of the two sink nodes). This completes the proof. �

Algorithm 1: Polytime algorithm for the restriction of val(QOBDD<) to instances with
a compatible prefix

procedure SolveObdd
Data: A formula Q1x1 . . . Qnxn.φ from QOBDD< where φ ∈ OBDD< is reduced and

x1 < · · · < xn
Result: 1 if Q1x1 . . . Qnxn.φ is valid, 0 otherwise

begin

for i from n to 1 do

if Qi = ∃ then

foreach node N labeled by xi do

N ← 1 ;

else

foreach node N labeled by xi do

N ← 0 ;

Reduce(φ) ;

return φ ;

end

A Reduce procedure is described in [39], and a more efficient one, running in time linear
in the input size, is given in [44]. As a consequence, SolveObdd runs in time O(n× |φ|).

The following example illustrates a run of SolveObdd:

Example 10. Let < be the ordering over {a, b, c} such that a < b < c. Let us consider

Σ = ∃a ∀b ∃c.φ

with φ = (a ∨ b) ∧ c

The OBDD< formula associated to φ is:
0

0 1

a

b

c
.

The algorithm proceeds as follows, allowing us to conclude that Σ is valid.

0

0 1

a

b

c
→

a

b

0 1

∃c.φ =

→

0 1

a

∀b∃c.φ =

→∃a∀b∃c.φ ≡ true �
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Compatibility proves to be a key for deciding the validity problem for QBF when re-
stricted to other fragments. Thus, we have also considered the two propositional fragments
ODNF< and OCNF< which are respectively a subset of DNF and of CNF. Let < be a total, strict
ordering over the variables from PS = {x1, . . . , xn} s.t. x1 < . . . < xn. We define:

• The language ODNF< is the set of all DNF formulae Σ = γ1 ∨ . . . ∨ γk where each
satisfiable term γi (i ∈ 1 . . . k) of Σ is such that for every j ∈ 1 . . . n, if xj or ¬xj
occurs in γi then for every l such that 1 ≤ l < j, xl or ¬xl occurs in γi.

• The language OCNF< is the set of all CNF formulae Σ = γ1 ∧ . . . ∧ γk where each non
tautologous clause γi (i ∈ 1 . . . k) of Σ is such that for every j ∈ 1 . . . n, if xj or ¬xj
occurs in γi then for every l such that 1 ≤ l < j, xl or ¬xl occurs in γi.

Example 11. Let PS = {a, b, c} and < such that a < b < c. ¬a∨ (a∧ b) is a formula from
ODNF<. (a ∨ b) ∧ (¬a ∨ b ∨ c) is a formula from OCNF<. �

Clearly enough, OCNF< (resp. QOCNF<) is the dual fragment of ODNF< (resp. QODNF<);
especially the negation of any ODNF< (resp. QODNF<) formula can be computed in linear
time as a OCNF< (resp. QOCNF<) formula, and the converse also holds. Furthermore, both
OCNF< and ODNF< are complete propositional fragments since they include respectively the
complete fragments MODS and CI.

Proposition 5. The restrictions of val(QODNF<) and val(QOCNF<) to instances with a
prefix compatible with < are in P.

Proof 4. Since the negation of a QOCNF< formula can be computed in linear time as a
QODNF< formula, it is sufficient to prove that val(QODNF<) is in P when restricted to in-
stances with a prefix compatible with <.

Again, the proof is constructive and is given by the polytime algorithm SolveODNF<

below. This algorithm consists in eliminating quantifications as an internal law in the
ODNF< fragment. In this algorithm, every ODNF< formula φ is considered w.l.o.g. as a set
of terms and every term as a set of literals. After the first step of the algorithm, every term
in φ is satisfiable (removing unsatisfiable terms in φ can be easily achieved in polynomial
time). The resulting ODNF< formula is either the empty set (i.e., the empty disjunction
equivalent to false ({} ≡ false)) or a set containing the empty conjunction, equivalent to
true ({{}} ≡ true).

Let us explain how quantifications can be eliminated and first consider the case of exis-
tential quantifiers; we take advantage of two equivalences: for every pair of QBF α and β
and every variable x ∈ PS, we have ∃x.(α ∨ β) ≡ (∃x.α) ∨ (∃x.β) (point 6 in Proposition
1), and ∃x.γ is equivalent to the term γ \ {x,¬x} obtained by removing x and ¬x from γ

whenever γ is a satisfiable term (viewed as the set of its literals) (which is a direct con-
sequence of the definition of conditioning and point 2 in Proposition 1). Let x be the last
variable of V ar(Σ) w.r.t. <. Clearly enough, if γ is a canonical term over X ∪ {x} (with
x 6∈ X), then γ \ {x,¬x} is a canonical term over X. Hence removing every occurrence of
x and ¬x in such an ODNF< formula φ leads to an ODNF< formula equivalent to ∃x.φ.

Let us now focus on the case of universal quantifiers. Let φ be an ODNF< formula, viewed
as a set of satisfiable terms over X ∪{x}, where x 6∈ X and x is the last variable of V ar(Σ)
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w.r.t. <. Each term of φ containing x or ¬x is canonical over X ∪ {x}. Now, the terms γ
of φ can be partitioned into three sets (disjunctively interpreted): W , S and S ′. W is the
set of all terms γ s.t. x 6∈ V ar(γ). W can be viewed as an ODNF< formula over X. S is
the set of all terms γ of φ containing x or ¬x s.t. switch(γ, x) belongs to φ as well, where
switch(γ, x) is the canonical term over X ∪{x} which coincides with γ for every variable of
X but contains ¬x whenever γ contains the literal x, while switch(γ, x) contains x whenever
γ contains ¬x. It is obvious that γ belongs to S if and only if switch(γ, x) belongs to S.
Finally, S ′ is the set of remaining terms from φ (i.e. every term γ ∈ S ′ contains x or ¬x but
does not belong to S). By construction, we have ∀x.φ ≡ ∀x.(W ∨S ∨S ′) ≡W ∨∀x.(S ∨S ′)
(from point 9 from Proposition 1). Let us now observe that S = {γ1, . . . , γk} (disjunctively
interpreted) is independent from x [45] in the sense that it is equivalent to the disjunction
ψ = (γ1 \ {x,¬x}) ∨ . . . ∨ (γk \ {x,¬x}) which is an ODNF< formula over X as well (for
every γi (i ∈ 1 . . . k), we have γi ∨ switch(γi, x) ≡ γi \ {x,¬x}). Clearly enough, ψ can
be computed in time polynomial in the size of φ. Since ψ is independent from x, we get
∀x.φ ≡ W ∨ ψ ∨ (∀x.S ′). Finally, it remains to show that ∀x.S ′ is unsatisfiable (so that
∀x.φ ≡ W ∨ ψ). Let γ be any canonical term over X viewed as an interpretation over
X; by definition, γ satisfies ∀x.S ′ if and only if both the extension of it assigning x to 0
and the extension of it assigning x to 1 are models of S ′; but this is impossible due to the
definition of S ′ (if one of such extensions belongs to S ′, it cannot be the case that the second
one belongs to S ′ as well since it is obtained by switching x in the first one). Accordingly,
(∀x.S′) is unsatisfiable, and this concludes the proof. �

Algorithm 2: Polytime algorithm for the restriction of val(QODNF<) to instances with
a compatible prefix

procedure SolveODNF<
Data: A formula Q1x1 . . . Qnxn.φ where φ ∈ ODNF< and x1 < . . . < xn

Result: 1 if Q1x1 . . . Qnxn.φ is valid, 0 otherwise

begin

Remove unsatisfiable terms from φ ;
for i from n to 1 do

if Qi = ∀ then

φ′ ← {γ ∈ φ | switch(γ, xi) ∈ φ or x 6∈ V ar(γ)} ;

else

φ′ ← φ ;

φ← {γ r {xi,¬xi} | γ ∈ φ
′} ;

if φ = {} then

return 0 ;

else

return 1 ;

end

SolveODNF< runs in time O(n×|φ|2). This algorithm could be easily refined, return-
ing 0 as soon as the empty set has been obtained.
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Let us illustrate how SolveODNF< works on two simple examples (where a < b):

Example 12.

1. ∀a∃b.{{¬a}, {a,¬b}} → ∀a.{{¬a}, {a}} → {{}} ≡ true.

2. ∃a∀b.{{¬a, b}, {a, b}} → ∃a.{} → {} ≡ false.

�

As an immediate consequence, one gets the tractability of val(QMODS) and val(QCI):

Corollary 2. val(QMODS) and val(QCI) are in P.

Proof 5. Direct from the fact that every formula from QMODS (resp. QCI) is a formula from
QODNF< (resp. QOCNF<) with a prefix compatible with <, whatever the strict, total ordering
<. �

Let us now turn to two additional, important propositional fragments in AI: the prime
implicates one and the (dual) prime implicants one (see e.g., [46] for a survey of their
applications in abduction, assumption-based reasoning, closed world reasoning and other
AI areas). Formally, a prime implicate of φ ∈ PROPPS is a clause δ s.t. φ |= δ and for
every clause δ′ s.t. φ |= δ′ and δ′ |= δ, we have δ ≡ δ′.

Definition 8 (prime implicates formulae). A prime implicates formula (or Blake formula)
from PROPPS is a CNF formula Σ where every prime implicate of Σ (up to logical equivalence)
appears as a conjunct. PI is the language of all prime implicates formulae (a proper subset
of CNF).

Example 13. The following is a prime implicates formula:

(a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (a ∨ c ∨ d).

�

The set of prime implicates formulae is a tractable fragment for sat since (1) a CNF

formula Σ is a prime implicates one if and only if no clause of it is properly entailed by
another clause of Σ and every resolvent from two clauses from Σ is entailed by a clause
of Σ (this shows that the problem of deciding whether a propositional formula is a prime
implicates one can be decided in polynomial time), and (2) a prime implicates formula Σ is
satisfiable if and only if it does not reduce to the empty clause.

Unfortunately, PI is not a tractable fragment for val(QPROPPS) (under the usual as-
sumptions of complexity theory):

Proposition 6. val(QPI) is PSPACE-complete.

Proof 6. Membership comes directly from the fact that val(QCNF) is in PSPACE and every
PI formula also is a CNF formula.

As to hardness, let us give a polytime reduction from val(QCNF) to val(QPI). Let φ be
a CNF formula over {x1, . . . , xn}, viewed as the set S of its clauses. We take advantage of
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the following property, which results directly from the correctness of resolution-based prime
implicates algorithms (like Tison’s one [47]): a set S of clauses contains all its prime
implicates if and only if whenever two clauses from S have a resolvent δ, there exists a
clause ε ∈ S s.t. ε |= δ.

Let us assume that S is totally ordered w.r.t. an arbitrary (but fixed) ordering <. Let
δi and δj be two clauses from S with i < j; when δi and δj have a resolvent, replace δi
by δi ∨ yi,j and δj by δj ∨ ¬yi,j; doing it in a systematic way for every ordered pair of
clauses from S leads to generate in polynomial time a CNF formula ψ over an extended
vocabulary {x1, . . . , xn}∪Y where O(n2) new variables yi,j are introduced. By construction,
every binary resolvent from clauses of ψ is tautologous, hence implied by any clause of ψ.
As a consequence, ψ contains all its prime implicates, and a prime implicates formula θ

equivalent to ψ can be computed in time polynomial in |ψ|, just by removing every clause of
ψ which is properly implied by another clause from ψ.

Now, for every pair of QBFs α and β and every variable x ∈ PS, we have ∀x.(α∧ β) ≡
(∀x.α) ∧ (∀x.β) (point 5 in Proposition 1); furthermore, for every non tautologous clause δ
(viewed as the set of its literals) and every variable x ∈ PS, ∀x.δ is equivalent to the clause
δ \ {x,¬x} (this is a direct consequence of the definition of conditioning and point 1 in
Proposition 1). As a consequence, we have φ ≡ ∀Y.θ. Finally, the substitution metatheorem
for QBFs shows that QS1 . . . QSk.φ is equivalent to QS1 . . . QSk∀Y.θ, and this concludes the
proof. �

The following example illustrates the reduction given in the above proof:

Example 14. Let φ = (a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬c ∨ d) be a CNF formula. We associate in
polynomial time φ to the following PI formula θ = (a∨ b∨ y1,2)∧ (¬b∨ c∨ d∨¬y1,2 ∨ y2,3)∧
(¬c ∨ d ∨ ¬y2,3). We have φ ≡ ∀y1,2, y2,3.θ. �

Based on the reduction given in the proof above, one can also show that val(QPI) hits
every level from the polynomial hierarchy when restrictions are put on the prefix: if no
alternations of quantifiers occur, the problem is in P, if the prefix is of the form ∃S1 ∀S2,
the problem is NP-complete, if the prefix is of the form ∀S1 ∃S2 ∀S3, the problem is Πp

2-
complete, and so on.

Now, what’s about the restriction of val(QPI) for the instances for which the rightmost
quantification of the prefix is existential? Contrariwise to OBDD< formulae in the general
case, the negation of a PI formula cannot be computed in polynomial time (and even
in polynomial space) as a PI formula, hence the same argument cannot be used again.
Nevertheless, it is easy to show that a rightmost existential quantification does not lead to
a complexity shift:

Proposition 7. The restriction of val(QPI) to instances with prefixes of the form ∀S1 ∃S2

is in P.

Proof 7. The proof is based on the fact that it is possible to eliminate in polynomial time
existential quantifications as an internal law in the PI fragment. To be more precise, let
PI(φ) be the set of prime implicates of a propositional formula φ (only one representative
per equivalence class is kept); let us consider the following lemma (a direct consequence of
Proposition 55 in [46]):
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Lemma 1. Let φ be a formula from PROPPS and let Y be a set of variables from PS. We
have PI(∃Y.φ) = {δ ∈ PI(φ) | V ar(δ) ∩ Y = ∅}.

This lemma shows how a CNF formula ψ over X which is equivalent to ∃Y.φ can be
derived in time polynomial in |φ|.

Then we exploit the two following properties (already at work in the proof of Proposition
6): for every pair of QBF α and β and every variable x ∈ PS, we have ∀x.(α ∧ β) ≡
(∀x.α)∧ (∀x.β) and for every non tautologous clause δ (viewed as the set of its literals) and
every variable x ∈ PS, ∀x.δ is equivalent to the clause δ \ {x,¬x}. A direct consequence of
them is that ∀X.ψ is valid if and only if ψ contains only tautologous clauses, which can be
easily checked in time polynomial in |ψ|. �

The following example illustrates the lemma given in the above proof:

Example 15. A PI formula equivalent to ∃a.((a∨ b)∧ (¬b∨ c∨d)∧ (a∨ c∨d)) is ¬b∨ c∨d.
�

As a corollary to the previous proposition, we obtain that if the prefix of the input is of
the form ∃S1 ∀S2 ∃S3, the val(QPI) problem is NP-complete, if the prefix of the input is
of the form ∀S1 ∃S2 ∀S3 ∃S4, the problem is Πp

2-complete, and so on.
The following dual class also is interesting. Let φ ∈ PROPPS . A prime implicant of φ is

a term γ s.t. γ |= φ and for every term γ ′ s.t. γ′ |= φ and γ |= γ′, we have γ ≡ γ′.

Definition 9 (prime implicants formulae). A prime implicants formula from PROPPS is
a DNF formula Σ where every prime implicant of Σ (up to logical equivalence) appears as a
disjunct. IP is the language of all prime implicants formulae (a proper subset of DNF).

Prime implicants formulae are duals of prime implicates formulae: every prime implicant
of a formula φ is (up to logical equivalence) the negation of a prime implicates of ¬φ (see
e.g. Proposition 8 in [46]). As a consequence, QIP and QPI are also dual classes. Taking
advantage of duality, we also obtain that:

Proposition 8. val(QIP) is PSPACE-complete.

Proof 8. Immediate from Proposition 6 given the fact that PSPACE is closed under com-
plementation and the fact that the negation of a QPI formula can be turned in linear time
into a QIP formula. �

Proposition 9. The restriction of val(QIP) to instances with prefixes of the form ∃S1 ∀S2

is in P.

Proof 9. This a direct consequence of Proposition 7 (by duality). �

Exploiting duality, it is easy to show that the classes Σp
i and Πp

i of the polynomial hier-
archy that were not “hit” by restrictions of val(QPI) are “hit” by restrictions of val(QIP):
if no alternations of quantifiers occur, the problem val(QIP) is in P, if the prefix of the
input is of the form ∀S1 ∃S2 or ∀S1 ∃S2 ∀S3, the problem is coNP-complete, if the prefix of
the input is of the form ∃S1 ∀S2 ∃S3 or ∃S1 ∀S2 ∃S3 ∀S4, the problem is Σp

2-complete, and
so on.
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4. Some Experimental Results

From the practical side, an important question is to determine how existing solvers for
val(QPROPPS) behave on instances from tractable fragments. Especially, when solvers do
not solve “easily” instances from tractable fragments, finding out the reason for it can prove
a major step in the improvement of existing solvers. In order to answer this question, we
performed some experiments on instances from QCI and QOCNF< under the compatibility
assumption, which are tractable subsets of QCNF, the class of QBF almost all existing solvers
deal with.

4.1 Experimental settings

We generated QOCNF< benchmarks with compatible prefixes in the following way. Given a
number of variables n, each integer in {1, . . . , n} is identified with a variable. We took <

as the natural ordering on integers. In order to generate a clause of the matrix of a QOCNF<
formula, the size s of the clause is first chosen at random in {1, . . . , n} under a uniform
distribution, then the sign of each of the s variables (from 1 to s) of the clause is chosen at
random under a uniform distribution.

For our experiments, we set n to 100, 200, 300, 400, 500, 1000 variables, which produce
huge benchmarks, compared to the benchmarks commonly used for evaluating state-of-the-
art solvers. The number of clauses was arbitrarily fixed to four times the number of variables
(m = 4×n). The prefix is generated so as to ensure the compatibility with <. The number
of quantifier alternations was fixed to 12: 11 sets of the same size (n div 11) and a last
one with the remaining (n mod 11) variables. Note that this number of alternations is also
quite high compared to the usual standards in QBF benchmarks.

We used three QBF solvers for those experiments. Our own Java-based QBF solver,
called OpenQBF, which participated to the three QBF evaluations and reported medium
strength results, while being among the few solvers not declared incorrect during the last
two QBF evaluations. We also used Semprop release 010604 and Qube-Rel 1.3, two publicly
available QBF solvers. The solvers ran on a PIV 3GHz with 1.5GB of RAM under Linux.
The Java solver ran on the latest Sun Java VM (1.5.0 06) using default settings.

4.2 Results

Table 1 summarizes the behaviour of the three solvers on QCI and QOCNF< instances. Note
that the running times are expressed in seconds, for solving 100 instances with the same
parameters. The size column reports the total space taken by the generated benchmarks
(for a total greater than 3 GB for those experiments!). The #true column reports the
number of positive instances of QBF out of 100. One can note that all the instances from
QCI were positive. This can be explained by the fact that each clause has roughly half of
its literals existentially quantified (since by construction roughly half of the variables are
existentially quantified and that the clauses contain all variables).

Note that all solvers perform better on QOCNF< benchmarks than on QCI benchmarks.
This is probably due to the difference in the size of the benchmarks: QCI benchmarks are
twice as big as QOCNF< benchmarks. Note also that it is usually easier to solve negative
instances than positive ones: most of the instances in QOCNF< are negative ones.
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Table 1. Running times of three solvers on instances from two polynomial classes of QBF. Cu-
mulative CPU time in seconds for solving 100 instances for a given number of variables.

CI OCNF< (compatible prefix)

#vars size Own Semp. Qube #true size Own Semp. Qube #true

100 14 36 10 2 100 8 28 2 1 11
200 62 71 71 7 100 30 44 12 4 12
300 144 124 240 16 100 69 73 38 8 13
400 260 209 554 28 100 125 104 94 14 19
500 411 316 1062 43 100 198 145 165 21 10
1000 1680 1217 8638 174 100 824 532 1601 82 13

The three solvers were able to easily solve all benchmarks (a mean of 86 seconds per
benchmark in the worst case, even if the running times ranges over one order of magnitude in
that case). Note that those benchmarks are really huge compared to usual QBF benchmarks
which explains why a usually robust solver such as Semprop does not scale well.

Those experiments show that the current solvers do not have problems for solving in-
stances from QCI and QOCNF<. This is in contrast with our previous experiments on some
other tractable (but incomplete) fragments for the validity problem (quantified Horn CNF

and quantified renamable Horn CNF) [48] that were confirmed during the latest QBF eval-
uation [29].

5. Compilability

It is interesting to note the connection between the problem of finding out tractable matrix-
based restrictions of val(QPROPPS) and the compilability issue for val(QPROPPS) when
matrices are fixed while prefixes may vary. A basic issue is the compilability to P of
val(QPROPPS), i.e., the membership to the compilability class compP of the compilation
problem comp-val(QPROPPS) associated to qbf where each instance is divided into two
parts – the fixed one is the matrix and the variable one is the prefix [49, 50].

Definition 10 (comp-val(QPROPPS)). comp-val(QPROPPS) is the language of pairs
{〈Σ, P 〉 | P.Σ is a closed, polite, prenex formula from QPROPPS which is valid}.

Definition 11 (compP [50]). A language of pairs L belongs to compP if and only if there
exists a polysize function f and a language of pairs L′ ∈ P such that 〈x, y〉 ∈ L if and only
if 〈f(x), y〉 ∈ L′.

Actually, the practical significance of such a compilability issue comes from the fact that,
instead of considering the matrix as fixed, one can more generally consider the case when it
can be computed in polynomial time from more basic inputs. Because many target classes C
for knowledge compilation enable polytime conditioning, polytime bounded conjunction and
polytime bounded disjunction [13], many inference problems can be encoded (and solved)
as QBFs whose matrices in C can be computed in polynomial time from a compiled formula
Σ ∈ C (the knowledge base) and a clausal query γ.
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The membership of comp-val(QPROPPS) to compP can be expressed by the following
question: can we find a complete propositional fragment C for which there is a polynomial
p(.) s.t. every propositional formula α has an equivalent β ∈ C satisfying |β| ≤ p(|α|) and
there is a polytime algorithm for val(QC)? Clearly, C = MODS (or CI) is not a satisfying
answer since it is not the case that every propositional formula has polynomially many
models (or canonical implicates). Actually, it seems that no such fragment C exists:

Proposition 10. comp-val(QPROPPS) is not in compP unless NP ⊆ P/poly. The conclu-
sion holds under the restriction when at most one alternation of quantifiers occurs in the
prefix of the input.5.

Proof 10. Let us first give a brief refresher about non-uniform complexity classes:

Definition 12 (Advice-taking Turing machine). An advice-taking Turing machine is
a Turing machine that has associated with it a special “advice oracle” A, which can be
any function (not necessarily a recursive one). On input s, a special “advice tape” is
automatically loaded with A(|s|) and from then on the computation proceeds as normal,
based on the two inputs, s and A(|s|).

Definition 13 (Polynomial advice). An advice-taking Turing machine uses polynomial
advice if its advice oracle A satisfies |A(n)| ≤ p(n) for some fixed polynomial p and all
non-negative integers n.

Definition 14 (C/poly). If C is a class of languages defined in terms of resource-bounded
Turing machines, then C/poly is the class of languages defined by Turing machines with the
same resource bounds but augmented by polynomial advice.

We show that the NP-complete 3-cnf-sat problem can be solved in (deterministic) poly-
nomial time using a Turing machine with polynomial advice if comp-val(QPROPPS) belongs
to compP. For each integer n, let Φn be the CNF formula (viewed as a set of clauses) con-
taining all the clauses of the form yi ∨ δi where δi is a clause with at most 3 literals built
up from the set Xn of variables x1, . . . , xn and each yi is a new symbol (one for each clause
δi). Clearly enough, Φn (up to logical equivalence) depends only on n. Furthermore, the
number pn of clauses in Φn is s.t. pn ∈ O(n3), hence the size of Φn is polynomial in n.

Let φn be any CNF formula over Xn. By construction, each clause δi from φn corresponds
to a unique clause yi ∨ δi from Φn. Let ψn be the complement of {yi ∨ δi | δi ∈ φn} in Φn.
One can easily compute in polynomial time from φn the set Yφn

of variables yi s.t. the
corresponding clauses δi belong to φn. Now, we know that for every pair of QBFs α and β
and every variable y ∈ PS, we have ∀y.(α ∧ β) ≡ (∀y.α) ∧ (∀y.β) (point 5 in Proposition
1); for every clause δ (viewed as the set of its literals) and every variable y ∈ PS, if δ
does not contain both y and ¬y, then ∀y.δ is equivalent to the clause δ \ {y,¬y} (as a
direct consequence of the definition of conditioning and point 1 in Proposition 1); and if the
variable y does not occur in the formula α, we have ∀y.α ≡ α (an easy consequence of point
4 in Proposition 1); From those three properties, we get immediately that ∀Yφn

.Φn ≡ φn∧ψn.

5. Contrastingly, the restriction of comp-val(QPROPPS) to instances where no alternation occurs obviously
is in compP, just because there are only two possible prefixes for each matrix in this case (one is composed
of existential quantifications only, and the other one of universal quantifications only).
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Since every clause yi ∨ δi from ψn contains the literal yi which is pure in φn ∧ ψn (i.e., its
negation does not occur), it follows that φn ∧ψn is satisfiable if and only if φn is satisfiable.
Hence, φn is satisfiable if and only if ∀Yφn

.Φn is satisfiable if and only if ∃Xn ∀Yφn
.Φn

is valid. Finally, let us assume that there exists a complete propositional fragment C for
which val(QC) is tractable and for which there is a polynomial p(.) s.t. every propositional
formula α has an equivalent β ∈ C satisfying β ≤ p(|α|). Then 3-cnf-sat can be solved in
polynomial time by a deterministic Turing machine with advice as follows: for each input
φn, the advice for n first gives a polyspace formula Φn,C from C which is equivalent to Φn and
then the satisfiability of φn is decided in polynomial time as the validity of ∃Xn ∀Yφn

.Φn,C.
�

Note that NP ⊆ P/poly would imply the polynomial hierarchy to collapse at the second
level [51], which is considered very unlikely.

6. Conclusion

In this paper, we have presented new tractability and new intractability results for the valid-
ity problems for QBFs when the matrices of the inputs belong to a target class for knowledge
compilation. In the light of our study, the complexity landscape for val(QPROPPS) can be
completed as reported in Table 2.

Fragment C Complexity of val(QC)

PROPPS (general case) PSPACE-c

CNF PSPACE-c

DNF PSPACE-c

d-DNNF PSPACE-c

sd-DNNF PSPACE-c

DNNF PSPACE-c

FBDD PSPACE-c

OBDD< PSPACE-c

PI PSPACE-c

IP PSPACE-c

OBDD< (compatible prefix) ∈ P

ODNF< (compatible prefix) ∈ P

OCNF< (compatible prefix) ∈ P

MODS ∈ P

CI ∈ P

Table 2. Complexity results for val(QPROPPS).

In [13], the authors have investigated the spatial efficiency of several complete proposi-
tional fragments, including many of those considered in this paper. A given fragment C1 is
considered at least as concise as a second fragment C2 whenever there exists a polynomial
p(.) s.t. for every formula α ∈ C2, there exists an equivalent formula β ∈ C1 s.t. |β| ≤ p(|α|).
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Our results show that val(QPROPPS) is difficult even when limited to instances with ma-
trices from fragments which are not efficient from the spatial point of view (i.e., the OBDD<
one, the PI fragment and the IP fragment). Tractability is achieved without restrictions
only for the MODS fragment and the CI fragment which are among the least efficient ones
(as to spatial efficiency) (see [13]). Under the compatibility assumption, tractability is also
achieved for the more concise OBDD<, ODNF< and OCNF< fragments; those fragments appear
as the best candidates among the classes considered in this paper which enable tractable
QBF queries; however, the choice of the ordering < has a major impact on the size of the
formulae (see [39] for the OBDD< case).

This work calls for several perspectives. One of them consists in further extending the
complexity landscape of val(QPROPPS), focusing on other complete or incomplete frag-
ments. In particular, it would be interesting to determine how the notion of K-Boolean
model from [52], in the case when K is a class of boolean functions which can be encoded
in polynomial space, could be exploited to give rise to new restrictions of val(QPROPPS)
which are computationally easier (under the usual assumptions of complexity theory).

While the focus has been laid on matrix-based restrictions of val(QPROPPS) in this
paper, it might seem quite natural at a first glance to consider prefix-based restrictions as
well. However, from a theoretical point of view, considering restrictions on the prefix alone
(i.e., without further requirements on the matrix like we did it before when considering the
OBDD< fragment, the OCNF< fragment, the ODNF< fragment, the prime implicates fragment
and the prime implicants fragment) does not look so much interesting. While limiting
the number of quantifications alternations in the prefix leads immediately the complexity
of val(QPROPPS) to decrease from PSPACE to a given level in the polynomial hierarchy,
it does not lead to tractability (under the standard assumptions of complexity theory);
indeed, in the limit case, no quantification alternations occur in the prefix so that the
val(QPROPPS) problem reduces either to sat or to unsat (depending of the nature of
the quantification of all variables), and none of these problems is likely to belong to P
provided that no assumption on the matrix is made. Of course, this does not mean that
the way quantifications are processed has no practical impact on the efficiency of solvers for
val(QPROPPS). For instance, QBFs Σ of the form ∀{x1, . . . , xn−1}∃{xn}.φ where φ is a CNF

formula can be solved in quadratic time (compute a CNF representation of ∃{xn}.φ using
resolution to forget xn within φ, remove tautologous clauses, then shorten every resulting
clause by removing from it every literal built up from {x1, . . . , xn−1}; Σ is valid if and
only if the resulting CNF formula does not contain the empty clause). However, solvers for
val(QPROPPS) where quantifications are processed from the outermost to the innermost may
require an exponential amount of time to solve some Σ of this kind. A deeper investigation
of the interaction between prefix-based restrictions and matrix-based ones is a perspective
for further research.

Acknowledgments

Many thanks to the Région Nord / Pas-de-Calais through the IRCICA Consortium and the
COCOA project, and to the IUT de Lens for their support. Special thanks to the anonymous
reviewers for their very constructive remarks and suggestions (especially for suggesting the
tractability of val(QODNF<) and val(QOCNF<) under the compatibility assumption).

84



Complexity Results for QBF

Appendix

Figure 5 depicts the inclusion graph of the propositional fragments considered in this paper.

FBDD

OBDD

OBDD< MODS

DNF CNF

d-DNNF

IP PI

sd-DNNF

NNF

DNNF

ODNF<

CI

OCNF<

Figure 5. Inclusion graph of propositional fragments. An edge L1 → L2 means that L1 is a
proper subset of L2.
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formulas. Information and Computation, 117(1):12–18, 1995.

[34] I. P. Gent and A. G. D. Rowley. Solving 2-CNF Quantified Boolean Formulae using
variable assignment and propagation. In QBF workshop at SAT’02, pages 17–25, 2002.

[35] F. Börner, A. Bulatov, A. Krokhin, and P. Jeavons. Quantified constraints: algorithms
and complexity. In CSL’03, volume 2803 of LNCS, pages 58–70, 2003.

[36] H. Chen. Collapsibility and consistency in quantified constraint satisfaction. In
AAAI’04, pages 155–160, 2004.

[37] H. Chen. Quantified constraint satisfaction, maximal constraint languages, and sym-
metric polymorphisms. In STACS’05, pages 315–326, 2005.

[38] Ch. H. Papadimitriou. Computational complexity. Addison–Wesley, 1994.

[39] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
on Computers, C-35(8):677–692, 1986.

[40] U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing different prenex-
ing strategies for Quantified Boolean Formulas. In SAT’03, volume 2919 of LNCS,
pages 214–228, 2003.

87



S. Coste-Marquis et al.

[41] A. Darwiche. Decomposable negation normal form. Journal of the ACM, 48(4):608–
647, 2001.

[42] J. Gergov and C. Meinel. Efficient analysis and manipulation of OBDDs can be ex-
tended to FBDDs. IEEE Trans. on Computers, 43(10):1197–1209, 1994.
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