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Abstract.
BACKGROUND: Neoadjuvant chemotherapy (NAC) has been regarded as one of the standard treatments for patients with
locally advanced breast cancer. No previous study has investigated the feasibility of using a contrast-enhanced spectral
mammography (CESM)-based radiomics nomogram to predict pathological complete response (pCR) after NAC.
OBJECTIVE: To develop and validate a CESM-based radiomics nomogram to predict pCR after NAC in breast cancer.
METHODS: A total of 118 patients were enrolled, which are divided into a training dataset including 82 patients (with
21 pCR and 61 non-pCR) and a testing dataset of 36 patients (with 9 pCR and 27 non-pCR). The tumor regions of interest
(ROIs) were manually segmented by two radiologists on the low-energy and recombined images and radiomics features
were extracted. Intraclass correlation coefficients (ICCs) were used to assess the intra- and inter-observer agreements of
ROI features extraction. In the training set, the variance threshold, SelectKBest method, and least absolute shrinkage and
selection operator regression were used to select the optimal radiomics features. Radiomics signature was calculated through
a linear combination of selected features. A radiomics nomogram containing radiomics signature score (Rad-score) and
clinical risk factors was developed. The receiver operating characteristic (ROC) curve and calibration curve were used to
evaluate prediction performance of the radiomics nomogram, and decision curve analysis (DCA) was used to evaluate the
clinical usefulness of the radiomics nomogram.
RESULTS: The intra- and inter- observer ICCs were 0.769–0.815 and 0.786–0.853, respectively. Thirteen radiomics features
were selected to calculate Rad-score. The radiomics nomogram containing Rad-score and clinical risk factor showed an
encouraging calibration and discrimination performance with area under the ROC curves of 0.906 (95% confidence interval
(CI): 0.840–0.966) in the training dataset and 0.790 (95% CI: 0.554–0.952) in the test dataset.
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CONCLUSIONS: The CESM-based radiomics nomogram had good prediction performance for pCR after NAC in breast
cancer; therefore, it has a good clinical application prospect.

Keywords: Breast cancer, neoadjuvant chemotherapy, pathological complete response, radiomics, contrast-enhanced spectral
mammography

List of abbreviations

Abbreviations Full name
ADC Apparent diffusion coefficient
CA125 Carbohydrate antigen 125
CA153 Carbohydrate antigen 153
CC Cranial caudal
CEA Carcinoembryonic antigen
CESM Contrast-enhanced spectral mammography
CI Confidence interva
CSCO Chinese society of clinical oncology
DCA Decision curve analysis
ER Estrogen receptor
HER2 Epidermal growth factor receptor-2
ICCs Intraclass correlation coefficients
IHC Immunohistochemistry
LASSO Selection operator
MLO Mediolateral oblique
MRI Magnetic resonance imaging
NAC Neoadjuvant chemotherapy
NCCN National comprehensive cancer network
pCR Pathological complete response
PET/CT Positron emission tomography/computed tomography
PR Progesterone receptor
ROC Receiver operating characteristic
ROIs Regions of interest

1. Introduction

Neoadjuvant chemotherapy (NAC) has been regarded as one of the standard treatments for patients
with locally advanced breast cancer, and for patients with triple-negative or human epidermal growth
factor receptor-2 (HER2)–positive tumor biological expression [1]. It is a preoperative systemic treat-
ment that can provide information to predict the prognosis for each patient, detect the sensitivity of
the tumor to the drug, reduce the local size of the tumor, reduce the scope of surgery, and even achieve
pathological complete response (pCR) [2]. pCR is the absence of invasive tumor cells within excised
breast and related tissues following NAC [3], while non-pCR refers to patients with partial response
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or no response, meaning that invasive cancer remains after NAC. Patients with pCR have a better
prognosis than those with non-pCR [4, 5]. However, only 10%–50% of patients with breast cancer
can achieve pCR after NAC treatment [6]. Some patients cannot benefit from NAC and are negatively
influenced by the toxicity and adverse effects caused by chemotherapy owing to their poor pathological
response. Therefore, a noninvasive and effective method for predicting pCR in patients undergoing
NAC without delaying patient treatment is needed.

Several studies have demonstrated the potential of Magnetic resonance imaging (MRI) in predicting
the efficacy of NAC. Some MRI studies [7–9] have a certain guiding importance in clinical practice.
However, breast MRI has some problems. It is expensive and time consuming, and its high sensitivity
leads to additional examinations and biopsies [10, 11]. MRI also has some relative contraindications,
such as patients with metal substances in their bodies and patients suffering from claustrophobia,
which limits the application of MRI [12]. Contrast-enhanced spectral mammography (CESM) is a
new, simpler, and more cost-effective test and is a better supplement for breast imaging than MRI.
CESM combines an iodinated contrast agent with conventional mammography to improve diagnostic
accuracy [13]. Many pieces of evidence indicate that the performance of CESM is equivalent to that
of MRI, and CESM can improve specificity and reduce false-positive interpretations [14].

With the rapid development of technology, radiomics has developed rapidly as a new tool for non-
invasive tumor analysis [15]. Radiomics has shown excellent performance in predicting breast cancer
prognosis [16, 17]. Related studies on CESM-based radiomics have also achieved good results in pre-
dicting axillary lymph node metastasis in breast cancer, even neoadjuvant chemotherapy-insensitive
breast cancers, and in distinguishing benign and malignant breast lesions [18–22]. Among them, the
radiomics of CESM applied to neoadjuvant chemotherapy is only to predict the efficacy of neoadjuvant
chemotherapy [19, 22]. However, the application of CESM-based radiomics before surgery to predict
the pathological complete response of patients after NAC has not been reported yet.

The purpose of this study was to develop a CESM-based radiomics nomogram for pCR prediction
in patients with locally advanced breast cancer.

2. Materials and methods

2.1. Patients

This study was approved by the institutional review board of Yantai Yuhuangding Hospital, and the
patients right to informed consent was waived.

A total of 196 patients with locally advanced breast cancer who had underwent CESM examination
before NAC treatment from March 2018 to January 2021 were enrolled. The inclusion criteria were as
follows: (i) the patients had biopsy-confirmed unilateral primary invasive breast cancer before NAC;
(ii) the patients received no treatment other than NAC and completed the full course of NAC; (iii)
surgery was followed by the completion of NAC, and postoperative pathology was obtained; and (iv)
the CESM examination was conducted 2 weeks before NAC. The exclusion criteria were as follows:
(i) multifocal, bilateral, or occult breast cancer; (ii) lack of pre-treatment CESM image or clinical data;
(iii) the patients who received non-standard treatment or did not complete the NAC regimen; (iv) no
surgery was performed or the results of postoperative pathological immunohistochemistry (IHC) were
incomplete; and (v) the image quality of CESM is insufficient to obtain measurement results. Finally,
118 patients were included in this study and randomly divided into a training set (n = 82, included 21
pCR and 61 non-pCR) and a test set (n = 36, included 9 pCR and 27 non-pCR) in a ratio of 7:3. We also
repeated this training/testing process 6 times to prevent biases from in case partition. The screening
diagram of the study population is shown in Fig. 1.
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Fig. 1. Flow chart of patient enrolment.

2.2. CESM data acquisition

The CESM used in our breast center is based on a full-digital breast machine (Senographe DS
SenoBright, GE Healthcare). The contrast agent Omnipaque 300 (GE Healthcare, Inc., Princeton, NJ)
is injected through the patient’s upper arm vein at a dose of 1.5 mg/kg and a flow rate of 3.0 mL/s.
About 2 min after the contrast agent is injected, the bilateral breasts are pressed in the cranial caudal
(CC) view and mediolateral oblique (MLO) view. Moreover, low- and high-energy images are rapidly
acquired. Usually, the contralateral mammary gland is photographed first and then the suspicious side
is photographed. Bilateral breast CC and MLO views are photographed at low- and high-energy expo-
sures. Low- and high-energy exposures are continuously performed within 1.5 s, and then recombined
images are obtained using a post-processing system. The low-energy image is similar to a conventional
mammogram, whereas the recombined image shows the contrast medium uptake [13].

2.3. Clinical and histopathological characteristics

Clinical and histopathological data were obtained from the medical record system, including age, car-
cinoembryonic antigen (CEA), carbohydrate antigen 153 (CA153), carbohydrate antigen 125 (CA125),
and molecular subtype (according to the status of estrogen receptor [ER], progesterone receptor [PR],
epidermal growth factor receptor-2 [HER2], and proliferation marker Ki-67). Immunohistochemical
(IHC) staining shows the stained tumor cell nuclei:< 1% positive tumor cells mean ER/PR negative
and ≥ 1% positive tumor cells mean ER/PR positive [23]. The cutoff level for Ki67 is 20%. The IHC
results for HER2 status were interpreted as follows:+3 was defined as positive, 0 to+1 was defined as
negative, and+2 required a fluorescence in situ hybridization (FISH) of the biopsied tissue for vali-
dation. The non-amplified FISH results were considered HER2–, whereas the amplified FISH results
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Fig. 2. Examples of regions of interest (ROIs) segmentation on contrast-enhanced spectral mammography (CESM) images.
(A, C) The low-energy and recombined images with cranial caudal (CC) view. (B, D) The low-energy and recombined images
with mediolateral oblique (MLO) view. The ROIs of breast lesions were drawn manually on low-energy and recombined
images, respectively.

were defined as HER2 + [24]. Tumors were stratified into molecular subtypes using IHC surrogate
markers. Luminal A was defined as ER positive, PR (20%) positive, HER2 negative, and Ki67 < 20%.
Luminal B was defined as ER positive and/or PR (< 20%) positive, HER2 negative or ER/PR/HER2
positive, or ER and PR positive but Ki67 > 20%. HER2 positive was defined as ER/PR negative and
HER2 positive. The triple-negative group was defined as ER/PR/HER2 negative.

2.4. NAC and pathological assessment

In accordance with the National Comprehensive Cancer Network (NCCN) guideline and Chinese
Society of Clinical Oncology (CSCO) guideline for breast cancer, all patients received six or eight
cycles of NAC before breast surgery. The NAC regimens were based on taxane (11 patients, 9.3%) or
taxane and anthracycline (107 patients, 90.7%). All HER2-positive patients also received trastuzumab
or trastuzumab and pertuzumab. Surgical operations were performed 2–3 weeks after completing NAC.

pCR is defined as the absence of residual infiltrating primary breast cancer (which can be ductal
carcinoma in situ) and residual regional lymph nodes after completing NAC [3], while non-pCR refers
to patients with partial response or no response, meaning that invasive cancer remains after NAC.

2.5. Region of interest segmentation and radiomic feature extraction

The radiologist 1 (with 9 years of experience in breast imaging) manually segmented the tumor
regions of interest (ROIs) by following the outline of the tumor on the low-energy and recom-
bined images of the CC and MLO views on ITK-SNAP software (version 3.8.0). The sample ROI
segmentation is shown in Fig. 2.

Image preprocessing is required before feature extraction. It includes the standardization of the gray
value of the ROI, discretization of gray level, and image resampling. The �±3σ method is used to
standardize the image of the ROI. Image normalization can improve the texture difference features
between two image classes [25]. Therefore, normalization was performed first, and the gray value
greater than �±3σ was set to 0. The gray scale of the image was adjusted by gray scale discretization.
In this study, 64 gray levels were used to reduce the calculation time and effect of noise [18, 26]. Finally,
the image was re-sampled to ensure that the scale of the feature was unchanged, and the anisotropic
pixel was converted to 0.1 mm×0.1 mm [27].
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Radiomics features were then extracted from each ROI of the low-energy images and the recombined
images from CC and MLO views respectively using “RadiomicsFeatureExtractor” by Pyradiomics,
including three categories: first-order features (270), shape-based features (14), and texture features
(1125).

2.6. Intra- and interobserver agreement of feature extraction

Intraclass correlation coefficients (ICCs) were used to assess the intra- and inter-observer agreement
of ROI feature extraction to evaluate the reproducibility of radiomics feature extraction. The CESM
images of 30 patients were randomly selected to calculate ICCs. Radiologist 1 repeated the ROI segmen-
tation after 2 months to evaluate intra-observer agreement. Radiologist 2 (with 13 years of experience
in breast imaging) segmented the ROIs manually and extracted features using the same method to
evaluate inter-observer agreement. ICC > 0.75 was considered a good agreement, and features with
ICCs > 0.75 within the training set were used for further analysis.

2.7. Radiomics feature selection and radiomics score construction

Radiomics features were selected by low variance method, SelectKBest method, and least absolute
shrinkage and selection operator (LASSO) in the training set. In the low variance method, the threshold
was 0.8, and the eigenvalues of the variance larger than 0.8 were included. In the SelectKBest method,
the features with p < 0.05 between NAC pCR and NAC non-pCR were selected. LASSO regression
was finally used for selecting the key radiomics features with non-zero coefficients. The 7-fold cross-
validation was used to select the optimal tuning parameter (alpha) of LASSO via minimum criteria.
Radiomics score (Rad-score) was calculated using a linear combination of the final selected features
weighted by their LASSO coefficients. The area under the receiver operating characteristic (ROC)
curve (AUC) value of Rad-score was calculated to assess the predictive performance of radiomics
features.

2.8. Radiomics nomogram construction and assessment

In the training set, univariate and multivariate logistic regression were used to select independent
predictive factors, including clinic radiological characteristics (age, CEA, CA153, CA125, ER, PR,
HER-2, Ki67, tumor size, and molecular subtypes) and Rad-score. Factors with p < 0.05 in were
selected as independent predictive factors and were integrated into the multivariate logistic regression.
Likelihood ratio test with backward step-down selection was applied for logistic regression. With
Akaike information as the criterion, when the minimum Akaike information criterion was reached, the
step-by-step process was stopped. A radiomics nomogram incorporating Rad-score and independent
predictive factors was built by multivariate logistic regression, which could be used as a convenient
visible tool to predict the individual probability of NAC pCR. To train the model, we performed a grid
search and fivefold cross-validation to find the optimal parameters in the training set and examine the
performance of generalization. The accuracy of the model was taken as the indicator for extracting the
model parameters. We then trained the model using the entire training set.

The predictive performance of the radiomics nomogram was evaluated by ROC in the training and
test sets. In addition, the point on the ROC curve farthest from the diagonal line corresponds to the
largest Youden index, which is calculated by the sum of sensitivity and specificity and then subtracting
1 over all the possible threshold values. This index was used to determine the cutoff value for dividing
the patients with NAC pCR and NAC non-pCR. Accuracy, sensitivity, and specificity were calculated
in the training and test sets according to the cutoff value.



K. Zhang et al. / Radiomics predicts complete response to neoadjuvant chemotherapy 675

The agreement between the observed results and predictive probability was assessed by calibration
curve. Decision curve analysis (DCA) was employed to evaluate the net benefit of the radiomics
nomogram under the different threshold probabilities.

2.9. Statistical analysis

The statistical analysis was conducted in Python (version 3.6), R software (version 3.4.1), and
SPSS (version 26). The categorical clinical variables (ER, PR, HER-2, Ki67, and molecular subtypes)
between training and test sets were compared using the chi-square test or Fisher’s exact test, whereas
continuous clinical variables (age, tumor size, CEA, CA153, and CA125) were analyzed by two-
sample t test. The “glmnet” and “glm” packages were used for LASSO logistic regression. The “rms”
and “pROC” packages were used for nomogram construction and ROC analysis, respectively. The
“Calibration Curves” package was used for calibration curve analysis, whereas the “Decision Curve”
package was used for DCA. p < 0.05 was interpreted as statistically significant difference.

3. Results

3.1. Clinical characteristics

A total of 118 patients were finally enrolled in this retrospective study. 82 patients (with 21 pCR, 61
non-pCR) were included in the training set, and 36 patients (with 9 pCR, 27 non-pCR) were included
in the test set. The patient characteristics in the training and test sets are shown in Table 1. Significant
differences in ER (p = 0.048) and PR (p = 0.002) but no significant differences in age (p = 0.135),
diameter (p = 0.624), CEA (p = 0.329), CA153 (p = 0.525), CA152 (p = 0.354), HER2 (p = 0.405), Ki-
67 (p = 0.440), and molecular subtype (p = 0.202) were found between NAC pCR and NAC non-pCR
in the training set.

3.2. Radiomics feature selection and radiomics score development

A total of 5636 radiomics features were extracted from each patient’s CESM images. The intra- and
inter- observer ICCs among 5636 radiomics features were 0.769–0.815 and 0.786–0.853, respectively,
which represented good reproducibility in radiomics feature extraction.

Moreover, 4110 radiomics features were selected by low variance method, and 33 radiomics features
were further selected by SelectKBest method. Finally, the optimal 13 radiomics features with non-
zero coefficients in LASSO logistic regression were selected, whereas the optimal value of alpha was
0.0198, and the optimal –log(alpha) was 1.7 (Fig. 3, Table 2). The Rad-score of each patient was
calculated by the 13 radiomics features.

3.3. Radiomics nomogram construction

In univariate logistic regression, ER (P = 0.049), PR (P = 0.001), molecular subtypes (P = 0.034),
and Rad-score (P < 0.01) were included into multivariate logistic regression. After multivariate logistic
regression, Rad-score and PR were remarkably related to pCR after NAC (both P < 0.001). Thus, the
radiomics nomogram was developed with the combination of Rad-score and PR as shown in Fig. 4.
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Table 1
Clinico-radiological characteristics in the training and validation cohorts

Training set (n = 82) Validation set (n = 36)
pCR (n = 21) non-pCR

(n = 61)
P pCR (n = 9) non-pCR

(n = 27)
P

Age, years (mean ± SD) 52.5 ± 9.8 48.8 ± 9.6 0.135 51.3 ± 9.5 52.5 ± 10.3 0.771
Diameter, cm (mean ± SD) 4.6 ± 2.3 5.0 ± 2.8 0.624 3.1 ± 1.2 4.8 ± 2.6 0.012
CEA (ng/ml±SD) 44.3 ± 190.5 2.7 ± 3.3 0.329 11.0 ± 14.1 5.4 ± 10.6 0.217
CA153 (U/ml±SD) 15.6 ± 22.3 19.9 ± 27.7 0.525 14.7 ± 11.5 20.1 ± 14.4 0.314
CA125 (U/ml±SD) 18.0 ± 11.4 27.8 ± 47.7 0.354 21.1 ± 18.8 27.9 ± 54.2 0.718
ER 0.048 0.005
Negative 10 15 7 6
Positive 11 46 2 21
PR 0.002 0.018
Negative 14 17 8 10
Positive 7 44 1 17
HER2 0.405 0.001
Negative 12 41 1 20
Positive 9 20 8 7
Ki-67 0.440 1.000
Negative 1 9 2 7
Positive 20 52 7 20
Molecular Subtype 0.202 0.009
Luminal A 1 5 0 3
Luminal B 10 42 2 18
HER2 over expression 4 7 6 3
Triple negative 6 7 1 3

SD, standard deviation; CEA, carcinoembryonic antigen; CA153, carbohydrate antigen 153; CA125 carbohydrate antigen
125; ER, estrogen receptor; PR, progesterone receptor; HER2, epidermal growth factor receptor-2; Ki-67, proliferation
marker; pCR, pathological complete response.

Fig. 3. Lasso algorithm for radiomics features selection. (a) Least absolute shrinkage and selection operator (LASSO)
coefficient profiles of the 33 features. The y-axis represents coefficient of each feature. The optimal value of alpha was
0.0198, and the optimal –log(alpha) was 1.7, where 13 features with non-zero coefficient were selected. (b) Mean square
error path using seven-fold cross-validation.
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Table 2
Radiomics feature for establishing radiomics score

Radiomics Features view Modality Coefficient

wavelet-HHH firstorder Mean CC Recombined image –0.080037993
wavelet-HHL glrlm HighGrayLevelRunEmphasis CC Recombined image 0.048776836
wavelet-HHL glrlm LowGrayLevelRunEmphasis CC Recombined image –2.19E–08
wavelet-HHL gldm GrayLevelVariance MLO Recombined image –0.01470699
wavelet-HHL glrlm ShortRunLowGrayLevelEmphasis MLO Recombined image 0.010598986
wavelet-HLH gldm LargeDependenceHighGrayLevelEmphasis CC Recombined image –0.020753821
wavelet-HHH glcm SumSquares MLO Recombined image –0.01982842
wavelet-HLH glszm GrayLevelNonUniformity MLO Recombined image –0.030070211
wavelet-HLL glrlm ShortRunLowGrayLevelEmphasis CC Low-energy image 0.061813611
wavelet-LHH glrlm GrayLevelNonUniformityNormalized CC Low-energy image 0.025723448
wavelet-HHH glszm SmallAreaHighGrayLevelEmphasis CC Low-energy image 0.100427095
wavelet-HLL glrlm HighGrayLevelRunEmphasis CC Low-energy image –0.010935022
wavelet-HHH gldm DependenceEntropy CC Low-energy image 0.006643032

glszm, gray level size zone matrix; glrlm, gray level run length matrix; gldm, gray level dependence matrix; glcm, gray level
co-occurrence matrix.

Fig. 4. A radiomics nomogram with Rad-score and PR incorporated for predicting the probability of NAC pCR in breast
cancer patients.

3.4. Performances of Rad-score, radiomics nomogram, and clinical model

The radiomics nomogram yielded AUCs of 0.906 (95% CI, 0.840–0.966) and 0.790 (95% CI,
0.554–0.952) in the training and test sets, respectively (Fig. 5). The results showed that the radiomics
nomogram has favorable predictive performances. The AUCs of the Rad-score and clinical model were
0.873 (95% CI, 0.808–0.948) and 0.694 (95% CI, 0.581–0.782) in the training set and 0.700 (95%
CI, 0.506–0.911) and 0.759 (95% CI, 0.617–0.870) in the test set, respectively. The diagnostic perfor-
mances of the three models are shown in Table 3. The results revealed that the radiomics nomogram’
performance was better than Rad-score and clinical model in the training and test sets. The average
AUC and standard deviation (STD) of the nomogram after repeating training/testing process 6 times
are shown in Fig. 6. The results showed a mean AUC of 0.943 and 0.785, and a STD of 0.027 and
0.038, respectively, for the nomogram in the training and test sets. The nomogram was experimentally
shown to be robustness.
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Fig. 5. Receiver operating characteristic (ROC) curves of Rad-score, clinical model and radiomics nomogram in the training
(a) and validation (b) cohorts.

Table 3
Predictive performances of the three models

AUC Sensitivity Specificity Accuracy

Rad-score Training set 0.873 0.857 0.787 0.805
Test set 0.700 0.556 0.889 0.806

Clinical model Training set 0.694 0.667 0.721 0.707
Test set 0.759 0.889 0.630 0.694

Radiomics nomogram Training set 0.906 0.905 0.836 0.854
Test set 0.790 0.667 0.926 0.861

Fig. 6. Receiver operating characteristic (ROC) curves of the nomogram after repeating training/testing process 6 times in
the training (a) and test (b) sets.

DCA showed that the radiomics nomogram had net benefit than the “treat all” or “treat none” scheme,
whereas the threshold probability ranged from 0 to 0.65 in the test set (Fig. 7). The calibration curves of
the radiomics nomogram demonstrated good consistency between predictive outcome and observation
in the training and test sets (Fig. 8).
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Fig. 7. Decision curve analysis of three models in validation set. The y-axis measures the net benefit. The green line represents
the radiomics nomogram. The red line represents the radiomics score. The blue line represents the clinical model. The black
line represents the assumption that all patients achieve the PCR after NAC. The horizontal red thin line represents the
assumption that no patients reach the PCR after NAC.

Fig. 8. Calibration curves of radiomics nomogram in the training (a) and validation (b) sets. The diagonal line represents
the perfect prediction of the radiomics nomogram. The red, blue and green lines represent the calibration curve of rad-
score, clinical model, and radiomics nomogram, respectively. The calibration curves of radiomics nomogram are close to the
diagonal line both in the training and validation sets, which shows that the prediction probability have good agreement with
the actual probability.

4. Discussion

A CESM-based radiomics nomogram was constructed and validated for pCR prediction in patients
with locally advanced breast cancer before NAC. The result showed the nomogram’s good prediction
efficiency (AUC = 0.79) in the test set. The noninvasive tool combining radiomics with PR could predict
pCR in patients with breast cancer who undergo NAC. It has good clinical application prospects. As
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far as we know, no report has investigated the feasibility of using a CESM-based radiomics nomogram
in breast cancer to predict pCR after NAC.

The radiomics nomogram can obtain features that are invisible to the naked eye from tumor images
and can more accurately describe the features of breast tumors [28]. In the present study, the radiomics
nomogram had better predictive performance than Rad-score and clinical prognostic factors (PR). The
radiomics nomogram had higher specificity and accuracy than Rad-score and PR (92.6% vs 88.9% vs
63%; 86.1% vs 80.6% vs 69.4%). Wang et al. [19] investigated the feasibility of using a CESM-based
radiomics nomogram in breast cancer to predict NAC-insensitive patients. The results showed that the
radiomics nomogram combined with Rad-score and clinical prognostic factors (Ki67, Her2, and BPE)
has the best predictive performance. The present study and Wang et al.’s study showed that CESM-
based radiomics can provide certain value in the prediction of NAC efficacy in breast cancer. However,
the purpose of our study is different. Wang et al. studied the sensitivity to NAC in breast cancer,
whereas the current study investigated the pCR of patients under NAC. The effective prediction of
pCR to NAC in breast cancer can assist clinicians in judging the prognosis of patients and help doctors
determine whether patients with triple-negative and HER2 overexpression need intensive treatment
after chemotherapy.

However, many MRI and positron emission tomography/computed tomography (PET/CT) studies
have been applied in pCR prediction [29–31]. Fangberget et al. assessed the value of MRI in predicting
pCR through changes in tumor size and tumor apparent diffusion coefficient (ADC) during treatment
[31]. They predicted pCR with sensitivity values of 88% and 80% and specificity values of 91% and 80%
using ADC and tumor volume reduction, respectively. In comparison, the present research developed
and validated a CESM-based radiomics model with a larger sample size (118 vs 31) and higher
specificity (92.6% vs 80%). The meta-analysis of Yuan et al. of 25 studies showed that the sensitivity
and specificity of MRI in predicting pCR after NAC are 63% (range 56%–70%) and 91% (range
89%–92%), respectively [32]. In comparison, the proposed model had a sensitivity and a specificity
of 66.7% and 92.6%, respectively. The results showed that the CESM-based radiomics model could
predict pCR with higher specificity and sensitivity than other models. Thus, the proposed radiomics
model can be used as a supplement for MRI to predict pCR after NAC in patients with breast cancer,
especially those who are not able to undergo MRI, such as patients with claustrophobia. In addition,
Antunovic et al. assessed the role of the radiomics parameters of PET/CT in predicting pCR after NAC
in patients with locally advanced breast cancer and built four radiomics models [29]. The AUCs of the
four radiomics models are in the range of 0.70–0.73. In our current research, the radiomics model’s
AUC is 0.79, and more cases were included (118 vs 79). Furthermore, PET/CT is expensive, poorly
accepted by patients, and cannot be popularized. Therefore, the CESM-based radiomics nomogram
for breast cancer has a good prospect of clinical application.

Our study still has some limitations. One of the major drawbacks is the small sample size and
its single-center retrospective design. In addition, CESM is a relatively new examination item. We
also required the inclusion criteria to meet the corresponding clinical indicators, such as breast tumor
examination, which made the inclusion limited. Although previous studies have shown that different
molecular subtypes can obtain different rates of pCR [33, 34], the present study showed that molecular
subtypes did not improve the performance of the radiomics model, which may be caused by the small
sample size and sample distribution. Therefore, a larger sample size and a multimodal study are needed
to improve the prediction efficiency of the model to continue our study. Second, the ROI was manually
sketched, although ICCs were used to assess the reproducibility of the radiomics feature extraction
and increase the confidence. In the future, deep learning will be added to improve the agreement of
image segmentation. Third, the characteristics of the peritumoral region was not included. A related
study [35] showed that the peritumoral region is related to pCR; therefore, it has potential research
value in CESM. This factor is also one of our future research directions. Furthermore, this study is a
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CESM-based radiomics study. Radiomics features are manually set in advance. However, deep learning
can automatically mine the deep information of the image according to different tasks. In the future
study, a larger sample data will be used to explore the value of CESM-based deep learning model in
predicting pCR after NAC in breast cancer.

This study is the first to develop a CESM-based radiomics nomogram for locally advanced breast
cancer pCR prediction. Although CESM as a new diagnostic imaging modality has fewer studies than
MRI, traditional mammography, PET/CT, and ultrasound studies, its clinical application value and
prospect are undeniable. Our group has already achieved some encouraging outcomes using CESM-
based radiomics methods [18, 19, 21, 22].

5. Conclusion

In conclusion, the radiomics model based on CESM images showed acceptable predictive perfor-
mance in predicting pCR after NAC in breast cancer, which can potentially benefit for those patients
who have not responded well to NAC. Further research on larger sample size with more centers and
integration with deep learning methods is needed in the future.
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