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Abstract. X-ray computed tomography (XCT) enables the dimensional measurement and inspection of highly geometrically
complex engineering components that are unmeasurable using optical and tactile instruments. Conventional XCT scans use
a circular scan trajectory where X-ray projections are acquired with a uniform angular spacing; this approach treats all
projections as being of equal importance, in practice, some projections contain more object information than others. In this
work we capitalize on this concept by intelligently selecting projections with a view to improve the quality of surface models
extracted from an XCT data-set. Our approach relies on using a priori object information to select X-ray projections in which
the surfaces of the object are aligned with a ray-path, thus ensuring the surface of the object is fully sampled. Results are
presented showing that the proposed method is able to reduce CAD comparison errors by 16%, reduce surface form error by
3%, and improve edge contrast by 14% for a machined aluminium component.
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1. Introduction

X-ray computed tomography (XCT) is increasingly used as a measurement tool for verifying that
engineering components have been made correctly. XCT is particularly well-suited for the measure-
ment and inspection of metal additively manufactured components, as it enables the measurement of
inaccessible internal features that are unmeasurable using tactile and optical methods.

Since its invention, XCT systems have mostly utilized a circular scan trajectory, whereby either
the object to be scanned is rotated between a stationary X-ray source and detector, as per industrial
XCT scanners, or the X-ray source and detector rotate around a stationary object, as per medical XCT
scanners. The popularity of the circular scan trajectory is perhaps due to its simplicity, combined with
the mathematics underpinning Fourier-based reconstruction algorithms. Most practitioners will agree
that for the vast majority of cases, a circular scan trajectory leads to an acceptable quality of XCT
data. However, as engineering components become more geometrically complex due to advances in
manufacturing technology, perhaps more exotic XCT scan trajectories may offer some advantages
[1–4].
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Computer aided design (CAD) data is almost always available for modern engineering components;
it seems illogical to ignore the information provided by a CAD model when planning an XCT scan.
Additional information such as the material of the component should also be readily available.

The concept of using a priori object information to improve the quality of XCT reconstructions
is not new. A review of the literature shows that a number of methods for optimizing the XCT scan
strategy based on a priori object information have been proposed [5–13]. These approaches generally
aim to select an optimal object scan orientation, or source-detector scan trajectory; this is achieved
by simulating projections for all possible object orientations, and then selecting the object orientation
or source-detector trajectory that maximizes some quality metric. This general approach is clearly
computationally expensive, and not all end users have access to XCT simulation tools which will stifle
adoption.

Heinzl et al. [5] selected an optimal scan orientation of an object by evaluating material penetration
lengths and the completeness of Radon sampling from simulations of the object in all possible orienta-
tions. Fischer et al. [6] developed an algorithm to select the optimal projection angle for a given object
feature; the optimality of a projection is quantified by evaluating the modulation transfer function and
the noise power spectrum of the system matrix of an iterative reconstruction algorithm. Ito et al. [7]
selected an optimal object scan orientation by simulating projections of all possible object orientations
and evaluating metrics indicative of metal artifacts, beam hardening artifacts and cone-beam artifacts,
the object orientation that simultaneously minimised the metrics was selected as optimal; aspects of
this approach were further developed in [8] to include the fusion of multiple XCT data sets in order to
minimise metal artifacts. Herl et al. [9] developed a method to select projection angles to reconstruct a
region of interest of an object using a dual robot XCT system; the completeness of Radon sampling and
material penetration lengths were used to select projections from a set of candidate projections. Herl
et al. further developed their method in [10] by investigating the use of an alternative quality metric
based on the modulation transfer function and noise power spectrum of the reconstruction, which has
also been utilised in recent work by Bauer et al. [12].

The main limitation of many of the studies referenced above is that exhaustive simulations of an
object in all possible scan orientations or scan trajectories must be conducted. We propose to overcome
this by simply inspecting the features of an object and then calculating the projection angles required
to reconstruct them; no exhaustive XCT simulation is required, nor an optimisation algorithm. The
aim of our method is to improve the quality of object surfaces, such that a surface model of an object
can be extracted from a CT data set for subsequent analysis [14, 15]. Our approach is inspired by that
of Zheng et al. [11] and Qunito et al. [13] who noted that the surface of an object can only be reliably
reconstructed if a ray-path is tangent to the surface; this was also recently exploited by Butzhammer
et al. [16]. Therefore, we propose to focus on selecting projections that contain X-rays that are tangent
to the object’s surfaces; we hereafter refer to this approach as IntelliScan.

It is worth noting that a body of work exists on seeking to optimize XCT and MRI scans on-the-
fly, i.e. the next image to be acquired in a scan is estimated based on the projection set and partial
reconstruction currently available [17–21]; this is not the focus of the present work. It is assumed
throughout this work that the object to be scanned is known by means of an engineering drawing or
CAD model, thus the projection selection can be undertaken offline, before scanning takes place.

2. Methodology

The methodology adopted is as follows: the general approach for intelligently selecting projec-
tion angles is first described (Section 2.1); a suitable test sample is selected to demonstrate the
proposed method (Section 2.2); the application of the general approach to the test sample is described
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(Section 2.3), XCT scan conditions and data processing methods are described (Section 2.4); and
results presented (Section 3).

2.1. Projection selection approach

Assuming a flat detector, and a ray-path from the source to each detector pixel, there are two
projection angles where ray-paths are tangent to a given edge in the XY plane, θrot1 and θrot2 , see Fig.
1a. The projection angles θrot1 and θrot2 can be calculated by determining the initial rotation of an edge,
θI , and the angle at which the considered edge is aligned with a ray-path, φ and 180o − φ respectively:

θrot1 = φ − θI (1)

θrot2 = 180o − φ − θI (2)

Assuming the sample is rotated about its geometric center, let R be the perpendicular distance from
the sample’s center of rotation to the considered edge. Furthermore, let the distance from the X-ray
focal spot to the sample’s center of rotation be d. The angle at which the edge of interest is aligned
with a ray-path, φ, is calculated as:

φ = sin−1(R/d) (3)

The above approach only considers edges; let us now consider an arbitrary point that lies on a curve.
The projection angle required for a given point is calculated in the same way as for an edge, although
R is calculated as the cross product of the point’s local direction, �b, and the vector formed by the center
of rotation and the point, �c, see Fig. 1b. If a triangulated surface model of the sample is available then
the point’s local direction is perpendicular to its surface normal.

R = |�c × �b|
|�b| (4)

2.2. Test sample

To demonstrate the proposed method a test sample is selected, see Fig. 2a. The test sample is
nominally 25 mm x 15 mm x 10 mm (L x H x D) in size and is fabricated from aluminium. The test
sample has 14 faces, 25 edges, and 14 corners; CAD data and a technical drawing of the test sample
are available and are used to assist in calculating the IntelliScan projection angles.

2.3. Application of the projection selection approach to the test sample

In order to analyze the performance of our proposed approach, a benchmark scan of the test sample
is conducted using a conventional scanning approach. For the conventional scan, the test sample is
orientated with a 45-degree inclination as shown in Fig. 2b and 360 evenly spaced projections are
acquired.

In order to apply our IntelliScan approach to the test sample, two orthogonal scans are required, see
Fig. 2c and 2d respectively. Due to the geometric simplicity of the test sample, the IntelliScan angles are
evaluated from a simplified technical drawing, see Fig. 3. When the sample is in the vertical orientation
there are 9 faces that can be aligned with ray-paths, hence 18 projection angles are calculated. When
the sample is in the horizontal orientation, another 9 faces can be aligned with ray-paths, hence another
18 projection angles are calculated.
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Fig. 1. (a) Illustration of the projection selection method with the edge of interest highlighted. (b) Illustration of projection
selection method for a point on a curve; the point direction is perpendicular to the surface normal.

When the sample is in the horizontal orientation, there are 6 corners of radius 1 mm (Fig. 3a). We
choose to use 6 projection angles per corner, so 36 projections to capture the corners of the sample in
the horizontal orientation. When the sample is in the vertical orientation (Fig. 3b), there are 8 corners
of radius 0.5 mm. We choose to use 4 projection angles per corner, so 32 projections to capture the
corners of the sample in the vertical orientation. The number of projections per corner is chosen based
on a simulation study that showed good quality corner reconstructions are possible with as few as 6
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Fig. 2. (a) Photo of the test sample. (b) Test sample in the conventional scan orientation. (c) Test sample in the horizontal
orientation. (d) Test sample in the vertical orientation.

and 4 projections for the horizontal and vertical sample orientations respectively, see Fig. 4a and Fig.
4b respectively.

A total of 54 intelligently selected projection angles are chosen for the horizontal sample orientation,
and 50 for the vertical sample orientation. To ensure both the conventional scan and IntelliScan use the
same number of projections, a further 126 projections need to be selected in the horizontal orientation
and 130 in the vertical orientation. The remaining projection angles are selected as follows: the largest
angular gap between two successive projections is found and a projection is added at the angular
midpoint, this is repeated until all the 180 projections are allocated. These additional projections are
used here to ensure a fair comparison between the conventional scan and IntelliScan; it would be an
unfair comparison if the total number of projects acquired in each scan was not the same. The additional
projections are not expected to contribute additional edge information to the reconstruction. Users are
free to omit these projections if they are deemed not necessary, perhaps due to a desire to minimise
scan time

The initial orientation of the test sample is set by designing a slot in the sample mount that mates
with the grub screw of the XCT system’s rotation stage; the slot is visible in Figs. 2c and 2d. The
rudimentary mechanical alignment provided by the slot and grub screw is sufficient to provide the
desired initial sample orientation, θI . The angular misalignment of the sample is evaluated from the
reconstructed data and found to be approximately 0.26 degrees. In a similar manner, the sample mount
was designed such that the sample’s centre of rotation and the XCT system’s rotation axis were aligned.

2.4. XCT system, reconstruction and data processing

The XCT system used is a Nikon XT H 225 ST. The system uses a microfocus X-ray source with
an acceleration voltage of 200 kV, a filament current of 200 μA. The system consists of a flat panel
detector with an active area of 400 mm by 400 mm, a pixel matrix of 2000 by 2000 pixels and a pixel
size of 0.2 mm. The test sample is scanned with a voxel size of 0.04 mm, with d = 223.2 mm. The
X-ray spectrum is pre-filtered with 0.5 mm of copper. The detector exposure time is set to 2 seconds,
with a gain of 18 dB. Each projection is acquired fourfold and averaged to reduce measurement noise.

All reconstructions are performed using an in-house implementation of the filtered backprojection
algorithm [22]. The conventional filtered backprojection algorithm assumes that the object undergoes
uniform angular sampling; a modified filtered backprojection algorithm for non-uniformly sampled
data was developed by Zeng et al. [23]. However, based on our experiments, we find that the con-
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Fig. 3. Illustration showing (a) 9 faces (V) and 6 corners (VC) of the test sample identified in the vertical orientation, (b) 9
faces (H) and 8 corners (HC) of the test sample identified in the horizontal orientation. The centre of rotation shown into the
page.

Fig. 4. CT slice showing a corner reconstructed using: a) 22 projections, b) 6 projections. Based on simulated data.

ventional filtered backprojection algrorithm works well without modification. The orthogonal scans
for the IntelliScan method are reconstructed separately. The IntelliScan reconstructions are merged by
first determining the test sample’s surfaces, then aligning the data to a CAD model, the two aligned CT
volumes are then averaged and the surface of the merged data is re-evaluated. If there are artifacts in the
XCT data that propagate through to the determined surface, then registering the surfaces to the CAD
model may be problematic [24], however, this was not observed in this work. All the data process-
ing is performed in Volume Graphics VGSTUDIO MAX 3.5 (Volume Graphics GmbH, Heidelberg,
Germany) and GOM Inspect (Carl Zeiss GOM Metrology GmbH, Braunschweig, Germany).

3. Results

The surface of each reconstruction is determined and aligned with the CAD model of the test sample.
The deviation of the reconstructed data from the CAD model is visualized for the conventional scan
and IntelliScan, see Fig. 5a and 5b respectively; the colourmap is a visualisation of the the surface
deviation between the CAD surface and XCT surface. IntelliScan has a total surface deviation of
14.6 mm3, whilst the conventional scan has a total surface deviation of 17.4 mm3; this is a 16%
decrease in total surface deviation. This result is largely due to the conventional scan having blurred
corners compared to IntelliScan, as shown in Fig. 5a. It should be noted that this analysis is based
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Fig. 5. (a) Visualisation of surface deviation from CAD model for a conventional scan. (b) Visualisation of surface deviation
from CAD model for an IntelliScan. Large deviations are seen for the corners of the conventional scan compared to IntelliScan.
It is assumed that the test sample is free of manufacturing defects and the CAD model is representative of the test sample.

on the assumption that the test sample is free of manufacturing defects, hence the CAD model is
representative of the test sample.

CT slices for each reconstruction are shown in Fig. 6. Line profiles evaluated from the slices are
shown in Fig. 7. The line profiles show that the edge contrast is greater for IntelliScan when compared
to the conventional scan. The edge contrast is calculated as the maximum grey value gradient across
each edge; the absolute grey value gradient for the line profiles are shown in Fig. 7c and 7d. The mean
edge contrast from the line profiles is 1.27 for IntelliScan and 1.11 for the conventional scan; this is
an increase of edge contrast of 14%.

Planes are fitted to the 14 faces of the test sample. For each reconstruction, the form deviation of
each plane is evaluated. An example is shown in Fig. 8 for a single plane. The sum of the form error
for all 14 planes is 1.09 mm for IntelliScan and 1.12 mm for the conventional scan; a reduction of form
error by 3%.

Fig. 6. Slice along XY plane for (a) conventional scan, (b) IntelliScan. Slice along XZ plane for (c) conventional scan, (d)
IntelliScan.
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Fig. 7. Grey value line profiles and grey value gradient evaluated from Fig. 6. (a) and (c) XY slice, (b) and (d) XZ slice.
Note that the grey value gradient for IntelliScan in plots (c) and (d) has been shifted by 3 pixels in order to clearly show the
change in gradient magnitude.

Fig. 8. (a) Visualisation of planar deviation for a face of the conventional scan result. (b) Visualisation of planar deviation
for a face of the IntelliScan result.

4. Discussion and conclusions

For the considered test sample, the proposed approach for intelligently selecting projection angles
reduced the reconstructed surface deviation from the CAD model by 16%, improved the edge contrast
by 14%, and reduced surface form error by 3%. These results are limited to the case considered, but
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illustrate the gains that can be achieved with slight modifications to the scan strategy. It is important to
highlight that no excessive XCT simulations or complex optimization algorithms are required in the
proposed approach; we simply select particular projection angles based on a priori knowledge of the
object to be scanned.

The obvious disadvantage of the method, for the test sample considered, is the need to scan the
sample in two orientations to capture all the surfaces; this will lead to a slight increase in scan time
as the operator will need to remove the sample and change its orientation. This is a consequence
of our method considering only the alignment of an object’s surfaces with X-rays presented by the
central fan-beam of a cone-beam system; we have not considered the possibility of aligning an object’s
surfaces with X-rays above or below the central fan-beam. For the test sample considered, the faces
of the sample can be aligned with the cone-beam if the sample is inclined in such a way that the plane
formed by each face intersects the X-ray source. In future work we will consider how to exploit this
property in order to overcome the need to reorient the sample.

The developed method has an important underlying assumption: that the scanned sample and the
design data are in close agreement. If the sample to be scanned does not closely match the design data
then the projection angles calculated using our method will be incorrect. To overcome this, a modified
approach could be used whereby instead of acquiring just the nominal projection angles for each
surface, a range of angles are acquired centred around the nominal angle. This approach would catch
any surfaces that significantly deviate from the design data, but at a cost of using valuable projection
angles. This approach could also address any error in the initial alignment of the sample, i.e. if there is an
error in θI or if the sample’s centre of rotation is not aligned with that of the XCT system’s rotation stage.

It could be argued that the conventional scan led to inferior results because too few projections
were acquired to reconstruct the sample’s surface correctly. This is true, and the use of a low number
of projections was deliberate as it highlights that sharp edges can be reconstructed if the projection
angles are intelligently chosen. This has implications for those interested in minimizing scan time; is it
necessary to acquire thousands of projections just to reconstruct sharp edges? Is it not more sensible to
reduce scan time using well-chosen projections? Reducing the scan time also reduces focal spot drift,
which in turn will reduce the blurring of sharp edges in high-resolution scans; this is still advisable
even if a focal spot drift correction method is used [25].

This work made use of a Fourier-based reconstruction algorithm. There may be further image quality
improvements to be realized through the use of an iterative reconstruction algorithm [26]. The use of
such algorithms will be considered in future work, alongside the development of a fully automated
implementation of our method, whereby the user inputs a CAD model of the object to be scanned, and
all the IntelliScan angles are output, ready for deployment via a robotic object manipulator.
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[6] A. Fischer, T. Lasser, M. Schrapp, J. Stephan and P.B. Nöel, Object specific trajectory optimization for industrial x-ray
computed tomography, Scientific Reports 6 (2016). doi:https://doi.org/10.1038/srep19135

[7] T. Ito, Y. Ohtake and H. Suzuki, Orientation optimization and jig construction for xray ct scanning, NDT.net10th
Conference on Industrial Computed Tomography, Wels, Austria (2020).

[8] Y. Tan, Y. Ohtake and H. Suzuki, Scan angle selection and volume fusion for reducing metal artifacts by multi-
ple x-ray ct scanning, Precision Engineering 74 (2022), 384–395. doi:https://doi.org/10.1016/j.precisioneng.2021.07.
020

[9] G. Herl, J. Hiller and A. Maier, Scanning trajectory optimisation using a quantitative tuybased local qual-
ity estimation for robot-based x-ray computed tomography, Nondestructive Testing and Evaluation 35(3)
(2020), 287–303. arXiv:https://doi.org/10.1080/10589759.2020.1774579, doi:10.1080/10589759.2020.1774579.
URL https://doi.org/10.1080/10589759.2020.1774579

[10] G. Herl, J. Hiller, M. Thies, J.-N. Zaech, M. Unberath and A. Maier, Task-specific trajectory optimisa-
tion for twin-robotic x-ray tomography, IEEE Transactions on Computational Imaging 7 (2021), 894–907.
doi:10.1109/TCI.2021.3102824

[11] Z. Zheng and K. Mueller, Identifying sets of favourable projections for few-view lowdose cone-beam ct scanning,
Stony Brook University11th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology
and Nuclear Medicine, Potsdam, Germany (2011).

[12] F. Bauer, D. Forndran, T. Schromm and C.U. Grosse, Practical part-specific trajectory optimization for robot-
guided inspection via computed tomography, Journal of Nondestructive Evaluation 41(3) (2022), 894–907.
doi:10.1007/s10921-022- 00888-9. URL https://doi.org/10.1007/s10921-022-00888-9

[13] E.T. Quinto, Singularities of the x-ray transform and limited data tomography in r2 and r3, SIAM J Math Anal 24(5)
(1993), 1215–1225. doi:10.1137/0524069. URL https://doi.org/10.1137/0524069

[14] S. Carmignato, W. Dewulf, R. Leach, Industrial X-Ray Computed Tomography, Springer, Switzerland, 2018.
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