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Abstract.
BACKGROUND: Analysis of chest X-ray images is one of the primary standards in diagnosing patients with COVID-19 and
pneumonia, which is faster than using PCR Swab method. However, accuracy of using X-ray images needs to be improved.
OBJECTIVE: To develop a new deep learning system of chest X-ray images and evaluate whether it can quickly and
accurately detect pneumonia and COVID-19 patients.
METHODS: The developed deep learning system (UBNet v3) uses three architectural hierarchies, namely first, to build
an architecture containing 7 convolution layers and 3 ANN layers (UBNet v1) to classify between normal images and
pneumonia images. Second, using 4 layers of convolution and 3 layers of ANN (UBNet v2) to classify between bacterial and
viral pneumonia images. Third, using UBNet v1 to classify between pneumonia virus images and COVID-19 virus infected
images. An open-source database with 9,250 chest X-ray images including 3,592 COVID-19 images were used in this study
to train and test the developed deep learning models.
RESULTS: CNN architecture with a hierarchical scheme developed in UBNet v3 using a simple architecture yielded following
performance indices to detect chest X-ray images of COVID-19 patients namely, 99.6% accuracy, 99.7% precision, 99.7%
sensitivity, 99.1% specificity, and F1 score of 99.74%. A desktop GUI-based monitoring and classification system supported
by a simple CNN architecture can process each chest X-ray image to detect and classify COVID-19 image with an average
time of 1.21 seconds.
CONCLUSION: Using three hierarchical architectures in UBNet v3 improves system performance in classifying chest
X-ray images of pneumonia and COVID-19 patients. A simple architecture also speeds up image processing time.

Keywords: Deep learning, detection of COVID-19, classification of pneumonia, chest X-ray images, convolution neural
network (CNN)

1. Introduction

Most COVID-19 sufferers experience respiratory problems that affect the lungs’ air sacs, also known
as pneumonia. This condition can cause by viral, bacterial, and fungal infections. The lungs of people
with pneumonia disturb because the tiny air pockets at the end of the airways fill with pus due to
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inflammation caused by viruses and bacteria. The causes pneumonia sufferers to experience shortness
of breath, cough with phlegm, chills, and even death. Until now, the COVID-19 pandemic outbreak is
still not over, so that an effective and accurate COVID-19 patient diagnosis system needs for proper
patient handling [1].

Several screening processes for the diagnosis of COVID-19 patients use the RT-PCR, Antigen
Swab, and Rapid test methods. The working principle of each screening method is different. RT-
PCR detected the presence of SARS-Cov-2 viral RNA in patient samples. Antigen Swab works by
detecting specific proteins from the SARS-Cov-2 virus that cause immunity or antibodies. At the same
time, the rapid test detects the presence of antigens released by the body because of the SARS-Cov-2
virus. However, the most accurate method used is reverse transcription-polymerase chain reaction
(RT-PCR) [1].

Diagnosing pneumonia in COVID-19 methods can also be done by analysing the patient’s chest
X-ray image. There are differences between positive and negative patient images to be used for the
diagnosis process. An X-ray image is a photo of an organ taken using a beam fired into the patient’s body.
The mechanism is that the detector receives x-ray rays, and then its intensity interprets the anatomical
shape of the patient’s body [2]. Thus, chest X-ray images are commonly used by radiologists to detect
lung diseases including COVID-19 virus infected pneumonia cases [3].

Recently, artificial intelligence technology that uses Convolutional Neural Network (CNN) model
with different architectures has been investigated and applied to medical imaging field. CNN has the
best performance in image processing, and its architecture significantly affects the performance of the
system built. The CNN artificial neural network model to automatically classify pneumonia patients
based on chest X-ray images using the VGG16 and Xception architectures obtained good results.
However, the error value is still high for the implementation of the medical field, so that it has not been
effectively used [4]. Recent studies have demonstrated that classification of pneumonia and analysis
of positive images of COVID-19 using variety of CNN architecture, including VGG19, Inception,
Residual network, and CovXNet, provided promising results [5–7].

Some prominent differences between CNN architectures in the number and arrangement of lay-
ers used. For example, VGG16 uses 16 CNN layers, VGG19 uses 19 CNN layers, Inception uses
48 CNN layers [8], and XCeption uses 72 CNN layers [9]. This difference in the arrangement and
number of CNN layers impacts each CNN architecture’s performance in classifying [10]. In develop-
ing deep learning architectural models, the performance used as the primary reference in the form of
model performance such as accuracy, precision, specificity, and no less important is how to balance
the computational load, which affect the speed of analysis. Light computing load requires computer
specifications that are not too high.

2. Materials and method

2.1. Pre-processing data

The X-ray image dataset used is open-source data for scientific development purposes obtained from
the internal data of the Guangzhou Women and Children’s Medical Center in jpeg format. In addition,
X-ray image data of local COVID-19 cases obtained from the internal data of Persahabatan Hospital
in Jakarta make use of it to test the diagnosis system. The data taken were 1,583 normal images, 2,730
bacterial pneumonia images, 1,345 viral pneumonia images, and 3592 COVID-19 images [11] as listed
in Table 1. The COVID-19 dataset obtains from the published results conducted by Tawsifur Rahman
et al. [12]. Figure 1 shows some X-ray image data from various classes.

Pre-processing data needs to prepare datasets in deep learning training. First, the data is selected from
the image that is not cropped in the lungs using data cleansing and data wrangling, then standardizes
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Fig. 1. Chest X-ray image of: (a) Viral pneumonia and Positif COVID-19, (b) Bacterial pneumonia, (c) Viral pneumonia
(negative COVID-19), and (d) Normal X-ray image.

Table 1
The chest X-ray image dataset

Class Total Data

Normal 1583
Bacterial pneumonia 2730
Viral pneumonia (non-COVID-19) 1345
Viral pneumonia (positive for COVID-19) 3592

the various image sizes into a 2D image measuring 400 × 400 grayscale. Next, normalize the image
pixel values in the range 0 to 1.

2.2. CNN architecture for pneumonia and normal image classification

In the normal and pneumonia classification, the CNN architecture is named UBNet v1. The UBNet
v1 model uses ReLU (Rectified Linear Unit) and Softmax activation functions on neurons. The Softmax
activation function determines the output trend in each class, its value between 0 and 1. UBNet v1
architecture uses parameters epoch = 10, Batch Size = 32, Adam’s Optimizer, ReLU activation function,
and Categorical Cross-Entropy loss function.

Initial training on the system using the K-fold validation method of 10 folds resulted in the best UBNet
v1 architectural structure consisting of 7 convolutions and 3 layers of artificial neural networks, as
shown in Table 2. UBNet v1 architecture uses Image input in 2D format with size (400 × 400). So
that the total parameters generated are 20,805,170 with an average layer size (1 × 80,000), and the last
layer corresponds to the number of classes in the classification using two outputs.

2.3. CNN architecture for image classification of bacterial pneumonia and viral pneumonia

The CNN architecture for classifying bacterial and viral pneumonia is a modification of UBNet v1
called UBNet v2. In UBNet v2 architecture, the parameters are 10 epochs, Batch size = 32, Adam’s
Optimizer, Activation Function ReLU, and Loss Function with Categorical Cross Entropy. The best
architectural structure in UBNet v2 obtains an architecture consisting of 4 convolution and 3 neural
network layers. UBNet v2, as shown in Table 3, uses input data in 2D format with a size of 400 × 400.
Therefore, the total parameters generated were 20,610,562 with a flatten layer size (1 × 80,000). Each
class uses one output in the last layer to predict the output value between 0 and 1.
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Table 2
UBNet v1 architecture

UBNet v1 Activation Shape Activation Size Parameter

Input (400 × 400 × 1) 400 × 400 × 1 160000 0
Convolution (7 × 7) f = 16 p = 3 400 × 400 × 16 2560000 800
Convolution (7 × 7) f = 16 p = 3 400 × 400 × 16 2560000 12560
Maxpool (2 × 2) 200 × 200 × 16 640000 0
Convolution (5 × 5) f = 32 p = 2 200 × 200 × 32 1280000 12832
Convolution (5 × 5) f = 32 p = 2 200 × 200 × 32 1280000 25632
Maxpool (2 × 2) 100 × 100 × 32 320000 0
Convolution (3 × 3) f = 64 p = 1 100 × 100 × 64 640000 18496
Maxpool (2 × 2) 50 × 50 × 64 160000 0
Convolution (3 × 3) f = 128 p = 1 50 × 50 × 128 320000 73856
Convolution (3 × 3) f = 128 p = 1 50 × 50 × 128 320000 147584
Maxpool (2 × 2) 25 × 25 × 128 80000 0
Flatten Layer 1 × 80000 80000 0
Fully Connected Layer 1 (n = 256) 1 × 256 256 20480256
Fully Connected Layer 2 (n = 128) 1 × 128 128 32896
Fully Connected Layer 3 (n = 2) 1 × 2 2 258

Table 3
UBNet v2 architecture

UBNet v2 Activation Shape Activation Size Parameter

Input (400 × 400 × 1) 400 × 400 × 1 160000 0
Convolution (7 × 7) f = 16 p = 1 400 × 400 × 16 2560000 160
Maxpool (2 × 2) 200 × 200 × 16 640000 0
Convolution (5 × 5) f = 32 p = 1 200 × 200 × 32 1280000 4640
Maxpool (2 × 2) 100 × 100 × 32 320000 0
Convolution (3 × 3) f = 64 p = 1 100 × 100 × 64 640000 18496
Maxpool (2 × 2) 50 × 50 × 64 160000 0
Convolution (3 × 3) f = 128 p = 1 50 × 50 × 128 320000 73856
Maxpool (2 × 2) 25 × 25 × 128 80000 0
Flatten Layer 1 × 80000 80000 0
Fully Connected Layer 1 (n = 256) 1 × 256 256 20480256
Fully Connected Layer 2 (n = 128) 1 × 128 128 32896
Fully Connected Layer 3 (n = 2) 1 × 2 2 258

2.4. CNN architecture for pneumonia and COVID-19 image classification

The classification process for viral pneumonia (negative COVID-19) and viral pneumonia (positive
COVID-19) uses a combined architecture of UBNet v1 and UBNet v2 called UBNet v3. The model
consists of 3 architectural models trained with 3 different data variations according to their respective
classifications using a decision hierarchy scheme, as shown in Fig. 2.

Evaluation to find out the performance of the model using the confusion matrix method. This method
measures the performance of a model in classifying several objects, including accuracy, sensitivity,
precision, specificity, and f1 score. Here is the equation of the evaluation metrics:
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Fig. 2. The decision hierarchy scheme uses the UBNet v3 architectures.

Accuracy = (TP + TN)

(TP + FP + FN + TN)
(1)

Precision = TP

(TP + FP)
(2)

Sensitivity = TP

(TP + FN)
(3)

Spesificity = TN

(FP + TN)
(4)

F1Score = 2x
(precision x recall)

(precision + recall)
(5)

TP, TN, FP, and FN are true positive, true negative, false positive, and false negative values, respec-
tively [13]. The parameters used to evaluate each model are accuracy (A), precision (P), recall (R),
specificity (S), and F1-score (F1). Accuracy evaluates the model’s accuracy and describes the ratio of
the number of accurately classified images to the total number of test images. The precision of the
model represents the ratio of accurately classified images from the predicted composite images of the
same class. Recall or sensitivity represents the ratio of accurately classified as first-class images from
the total number of predicted images. Specificity is the correctness of predicting negative compared to
the overall negative-data.

Meanwhile, the F1-score states the average value of precision and recall. This value can be used
for model optimization towards better precision or recall [14]. The parameters used to evaluate each
model were accuracy (A), precision (P), recall (R), specificity (S), and F1-score (F1). The training
process uses the K-Fold validation method. The validation process repeated with different training and
validation data arrangements using 10 Fold and 10 Epoch parameters in each fold [15]. Each UBNet
architecture trained with varying dataset variation saved in a file with the extension.h5. The file is
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Fig. 3. (a) Average of 10 Normal chest X-rays dan (b) average of 10 Pneumonia chest X-rays.

called into the main program, containing several UBNet models trained with the decision hierarchy
schema. In the next step, the system-trained using new images from various classes. The results of
the chest X-ray image analysis and the image classification diagnosis are the system’s output. The
analysis result display system was developed based on a GUI with a simple scheme to simplify users
or specifically assist radiology doctors in diagnosing COVID-19 patients based on chest X-ray images.

3. Results and discussion

The training process on both CNN architectures (UBNet v1 and UBNet v2) with the same parameters
to determine the characteristics of each class. Evaluation of model performance uses a total of 1,499
test data images.

3.1. Classification of pneumonia – normal

UBNet v1’s test accuracy is up to 91%, a good result, considering that UBNet’s development con-
siderations are on performance, computational load, and execution time. The results of unique feature
extraction from images with two different classes with flatten layer visualization follow the number of
Flatten Output layers on UBNet v1 architecture of 1 × 80,000 layers, as shown in Fig. 3.

The difference in the Flatten layer graph for sampling 10 images shows that the flatten layer in the
pneumonia image has a relatively lower pixel value. These results indicate that the Convolution Layer
on CNN UBNet v1 architecture can perform unique feature extraction on normal chest X-ray images
and pneumonia.

The results of the UBNet v1 architecture evaluation on several testing data as shown in Table 4
are displayed in a confusion matrix as shown in Fig. 5 with the performance evaluation parameters
as shown in Table 5. In addition to predicting 129 and 421 images, the UBNet v1 architecture also
performs 24 misclassifications on image predictions.
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Fig. 4. Visualization of flatten layer on a chest X-ray image of pneumonia and normal.

Fig. 5. Confusion matrix UBNet v1.

Table 4
Data testing

Class Total

Pneumonia 149
Normal 425

Table 5
UBNet v1 architecture performance

Metrics Percentage

Accuracy 95,82%
Precision 86,58%
Sensitivity/recall 96,99%
specificity 95,46%
f1 score 91,49%

Evaluation of the performance of UBNet v1 using test data following the references in previous
studies [4]. It also compares the architecture’s performance with several existing architectures such
as CovXNet, Inception, XCeption, VGG16, VGG19, and Residual Network [5]. Table 6 shows a
comparison of the evaluation results for several CNN architectures.
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Table 6
Comparison of several architectures for the classification of pneumonia and normal

Architecture Total Layers A(%) P(%) R(%) S (%) f1 (%)

UBNet v1 10 95.8 86.8 97 95 91
CovXNet 40 98.1 98 98.5 97.9 98.3
Inception 48 88.7 88.9 94.1 80.2 91.1
Xception 71 82 65 85 82 74
VGG-16 16 87 86 82 91 84
VGG-19 19 87.2 85.6 91.1 77.9 89.3
Residual 34 91.2 90.7 95.9 84.1 93.4

Table 7
Time in training and total parameters

Architecture Train time Total parameters

XCeption 83 minutes 22,910,480
VGG16 100 minutes 138,357,544
UBNet v1 21 minutes 20,805,170

Fig. 6. Confusion matrix UBNet v1, XCeption, and VGG16.

In general, the UBNet v1 architecture with 10 layers can produce good accuracy performance
compared to others and is slightly different from the accuracy results of CovXNet, which uses 40
layers. UBNet v1 has lower total parameters and shorter training time than VGG16 and XCeption in
Table 7 and the confusion matrix as in Fig. 6. These results show that the UBNet architecture has a
relatively lighter computational load compared to VGGNet and XCeption..

Low computational load can shorten the time required for classification. The typical total parameter
influences the relatively lower computational burden as well. This parameter affects the model’s per-
formance, where building a CNN architecture requires an architecture with maximum performance
and minimal computational load. The total parameters of UBNet v1 are smaller than XCeption and
VGG 16, which means that the computational process of UBNet v1 is more petite than XCeption and
VGG16. UBNet v1 training time requires less time and can influence by the hardware conditions used
and also the architecture built [4, 9, 16].
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Fig. 7. (a) Flatten layer graph of an average of 10 chest X-ray images of pneumonia (bacteria) and (b) an average of 10 chest
X-ray images of pneumonia (non-COVID-19 virus).

Fig. 8. Flatten layer visualization on chest X-ray images of pneumonia (bacteria) and pneumonia (non-COVID-19 virus).

3.2. CNN architecture for pneumonia and normal image classification

The results of the UBNet v2 architecture, based on the visualization of the convolution layer, showed
unique characteristics as a differentiator between pneumonia (bacteria) and pneumonia (virus). After
the image extract through the convolution layer, the result converts into 1D data by entering it on a
Flatten layer measuring 1 × 80,000.

The two flatten layer graphs in Fig. 7. can be combined into the same chart as Fig. 8. The difference
shows that the Convolution layer in UBNet v2 can extract the unique features found in chest X-ray
images of pneumonia (bacteria) and pneumonia (virus). The red graph shows the Flatten layer of
pneumonia (bacteria) X-ray image, and the blue chart shows the Flatten layer of pneumonia (virus)
X-ray image. Visualization of the flatten layer UBNet v2 shows the flatten layer graph on the chest
X-ray image of pneumonia (virus) having a relatively higher pixel value than the image of bacterial
pneumonia.

UBNet v2, with the amount of data shown in Table 8, was able to accurately predict 226 and 114
chest X-ray images of bacterial pneumonia and pneumonia, as in Fig. 9. However, the UBNet v2
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Table 8
Data testing

Class Total

Pneumonia (virus) 268
Pneumonia (bacteria) 162

Fig. 9. UBNet v2 confusion matrix for pneumonia classification.

Table 9
Accuracy, sensitivity, and specificity of UBNet

v2 Architecture

Metrics Percentage

Accuracy 79%
Precision 84%
Sensitivity/recall 83%
Specificity 73%
f1 score 85%

architecture made a total of 90 prediction errors in both classes. UBNet v2 achieved 79% accuracy
and relatively balanced precision values in predicting pneumonia (bacteria) and pneumonia (virus), as
shown in Table 9.

The performance of UBNet v2 for the classification of viral pneumonia and bacteria can show the
model’s performance with an average performance of 80%. This performance is quite good considering
its high performance with a low computing load. The evaluation results of UBNet v2 with a total of 7
layers, as shown in Table 10, can match the performance of other models such as those developed by
Nguyen et al. [17], Residual, Inception, dan VGG19 [5].

3.3. Classification of viral pneumonia (non-COVID-19) and viral pneumonia (positive COVID-19)

The results from the flatten layer to determine the positive for COVID-19, as shown in Fig. 10,
using UBNet v3, can detect well as visualized in Fig. 11. The results reveal striking differences in the
characteristics of the chest X-ray image of non-COVID-19 viral pneumonia and COVID-19 positive
viral pneumonia.
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Table 10
Comparison of several architectures for the classification of bacterial and viral pneumonia

Architecture Total Layers A(%) P(%) R(%) S (%) f1 (%)

UBNet v2 7 79 84 83 73 85
Nguyen et. al. 4 80.8 – – – –
CovXNet 40 95.1 94.9 96.1 94.3 95.5
Residual 34 89.5 88.3 96.9 78.1 92.4
Inception 48 85.8 84.5 93.8 72.1 88.9
VGG-19 19 83.2 81.1 91.3 71.7 86.6

Fig. 10. (a) an average of 10 chest X-ray images of viral pneumonia (positive for COVID-19) and (b) an average of 10 chest
x-ray images for viral pneumonia (negative for COVID-19).

Fig. 11. Visualization of flatten layer on chest X-ray photo of COVID-19 and pneumonia (non-COVID-19 virus).

Flatten layer X-ray images of viral pneumonia patients (positive for COVID-19) tend to experience
constant fluctuations with lower pixel values than flatten layer X-ray images of viral pneumonia
(negative COVID-19). Training on UBNet v3 using data testing, as shown in Table 11, can accurately



68 C.S. Widodo et al. / UBNet: Deep learning-based approach for automatic X-ray image detection

Table 11
Data Testing

Class Total

Pneumonia virus (Negative COVID-19) 385
Pneumonia virus (Positive COVID-19) 110

Fig. 12. Confusion matrix UBNet v1.

Table 12
Accuracy, sensitivity, precision, and F1-score

UBNet v3 Architecture

Metrics Percentage

Accuracy 99,60%
Precision 99,74%
Sensitivity/recall 99,74%
Specificity 99,09%
f1 score 99,74%

detect 384 negative-COVID-19 images and 109 positive images of COVID-19 as generated in the
confusion matrix in Fig. 12.

The evaluation results on UBNet v3 showed good performance with up to 99% accuracy and a
balanced precision, sensitivity, and F1-score value for classifying viral pneumonia (negative COVID-
19) and viral pneumonia (positive COVID-19), as shown in Table 12.

UBNet v3’s performance in classifying viral pneumonia (negative COVID-19) and COVID-19 virus
(positive COVID-19) is quite good and stable with a light computational load because it uses a few
layers. The accuracy of the UBNet v3 architecture exceeds several existing architectures such as
CovXNet, Residual, Inception, and VGG19 [5], as shown in Table 13.

Evaluation of the architecture of UBNet v1 and UBNet v2 to classify images of normal (N), bacterial
pneumonia (B), viral pneumonia (V), and COVID-19 virus (C) was tested with 4 classes directly and
using a hierarchy of 2 classes. The classification results of 4 classes are directly compared with other
studies [18], as shown in Table 14.

The performance of UBNet v1 and UB Net v2 has higher accuracy, exceeding 88%, while other
architectures are up to 81%. The use of hierarchical architectures such as those developed in UBNet
v1, UBNet v2, and UBNet v3 can improve system performance, as listed in Table 15.
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Table 13
Comparison of the classification architecture of viral pneumonia and COVID-19 virus (positive COVID-19)

Architecture A(%) P(%) R(%) S (%) F1 (%)

UBNet v3 99.60 99.67 99.74 99.09 99.74
CovXNet 87.3 88.1 87.4 85.5 87.8
Residual 80.4 81.1 79.3 77.1 80.2
Inception 78.2 76.8 79 75.4 77.9
VGG19 72.1 70.9 74.7 69.3 72.8

Table 14
Comparison of several architectures for the classification
of normal, bacterial pneumonia, viral pneumonia

(non-COVID-19) and viral pneumonia (positive COVID-19)

Model Classification Accuracy

UBNet v1 N-B-V-C 88,58%
UBNet v2 N-B-V-C 88,48%
MobileNetV2 N-B-V-C 81%
XCeption N-B-V-C 81%
ResNet50v2 N-B-V-C 81%
DenseNet121 N-B-V-C 77%
InceptionResNetv2 N-B-V-C 76%
VGG19 N-B-V-C 75%
NASNetMobile N-B-V-C 75%
Inceptionv3 N-B-V-C 70%

Table 15
Comparison of UBNet performance for several classification classes (N is Normal, B is Bacterial Pneumonia, V is Viral

Pneumonia (non COVID-1919), C is Viral Pneumonia (positive COVID-1919), and P is General Pneumonia)

Model Classification Accuracy Precision Sensitivity F1 Score

UBNet v1 N-B-V-C 88,58% 89,18% 86,94% 86,73%
UBNet v2 N-B-V-C 88,48% 89,20% 85,35% 86,40%
UBNet v1 N-P 91% 81% 94% 87%
UBNet v2 B-V 79% 84% 83% 73%
UBNet v3 V-C 99,60% 100% 99,45% 99,72%

The design of this GUI-based display system has 2 buttons, namely a button to enter X-ray images
into the system and a button to start the analysis process, as shown in Fig. 13. This image is the result
of testing X-ray images of a patient with bacterial pneumonia and normal. Testing system performance
using a laptop with a Ryzen 5 processor, 8GB RAM, without using an external GPU, the average time
required to perform the analysis is 1.21 seconds for each image. The GUI develops using the Python
language and the PyQt5 library [19].

Another test uses chest X-ray image data from local Indonesian patients confirmed pos-
itive for COVID-19 [20]. The system can classify the image as a COVID-19 image with
an accuracy rate of 99.61%, as shown in Fig. 14. The detailed results are also available at
https://github.com/mmasdar/Model-UBNet-Trained.

https://github.com/mmasdar/Model-UBNet-Trained
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Fig. 13. Trial of a GUI-based viewer system to analyze images of patients with (a) bacterial pneumonia and (b) normal.

Fig. 14. Results of chest X-ray analysis of local COVID-19 patients.

4. Conclusion

CNN architecture with a hierarchical scheme developed in UBNet v3 using a simple architecture
can classify chest X-ray images of COVID-19 patients with performance: 99.60% accuracy, 99.74%
precision, 99.74% sensitivity, 99.09% specificity, and f1 score of 99.74%. Using three hierarchical
architectures in UBNet v3 improves system performance in classifying images of pneumonia and
COVID-19 patients. The simple hierarchical architecture used includes: first, UBNet v1 uses 7 convo-
lution layers and 3 ANN layers to classify normal images and pneumonia images; second, UBNet v2
uses 4 convolution layers and 3 ANN layers to classify bacterial pneumonia images and viral pneumo-
nia images, third, reuse of UBNet v1 to classify viral pneumonia images and COVID-19 virus images.
A simple architecture speeds up the diagnostic time of x-ray images of COVID-19 patients; This needs
during a pandemic like now.

A desktop GUI-based monitoring and classification system supported by a simple CNN architecture
can classify pneumonia and COVID-19 X-ray images with an average time of 1.21 seconds. This
monitoring system can help to assist the radiologist in operating the entire UBNet algorithm with ease.

Acknowledgment

This Research is supported by the Ministry of Research and Technology / National Research and
Innovation Agency through RISPRO Funding.

References

[1] S. Jegerlehner, F. Suter-Riniker, P. Jent, et al., Diagnostic accuracy of a SARS-CoV-2 rapid antigen test in real-life
clinical settings: Antigen tests in real-life clinical settings, Int J Infect Dis 109 (2021), 118–122.



C.S. Widodo et al. / UBNet: Deep learning-based approach for automatic X-ray image detection 71

[2] P. Purwatiningsi and H.E. Prasetio, Analisis Sebaran Radiasi Hambur Ct Scan 128 Slice Terhadap Pemeriksaan Ct
Brain, Sainstek J Sains dan Teknol 8(1) (2017), 50.

[3] Z. Li, B. Zeng, P. Lei, et al., Differentiating pneumonia with and without COVID-19 using chest CT images: from
qualitative to quantitative, J Xray Sci Technol 28(4) (2020), 583–589.
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