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Abstract.
BACKGROUND: Cylindrical phantoms are often imaged by X-ray computed tomography (CT) to evaluate the extent of
beam hardening (or cupping artifact) resulting from a polychromatic X-ray source.
OBJECTIVE: Our goal was to derive analytical expressions for the reconstructed image of a homogeneous cylindrical
phantom exhibiting a cupping artifact, to permit a quantitative comparison with experimental cupping data.
METHODS: A filtered backprojection method was employed to obtain the analytical cupping profile for the phantom,
assuming that the projection data could be approximated as a power series with respect to the sample penetration thickness.
RESULTS: The cupping profile was obtained analytically as a series of functions by employing Ramachandran filtering with
an infinite Nyquist wavenumber. The quantitative relationship between the power series of the projection and the nth moment
of the linear attenuation coefficient spectrum of the phantom was also determined. Application of the obtained cupping profile
to the evaluation of the practical reconstruction filters with a finite Nyquist wavenumber and to the best choice of the contrast
agent was demonstrated.
CONCLUSIONS: The set of exact solutions derived in this work should be applicable to the analysis of cylindrical phantom
experiments intended to evaluate CT systems.
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1. Introduction

Homogeneous cylindrical samples are often used as phantoms in X-ray computed tomography
(CT) experiments with a polychromatic X-ray source [1–13, 35]. The resulting CT images containing
undesirable cupping artifacts [1–3, 5, 8–11, 14] can be used to assess the extent of beam hardening
by the CT system. To do so quantitatively, the theoretical line profile of the CT value along the radial
direction of the reconstructed two-dimensional (2-D) cylindrical sample image [1, 2, 4, 5, 8–10, 14,
15] is required to compare with the experimentally obtained line profile. The theoretical line profile
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Fig. 1. The configuration of a cylindrical sample (in grey) with radius R in an imaging system with a detector gap δ. The
polar coordinates of an arbitrary point (the yellow dot) within the sample are (r, θ). Another coordinate system (an x − y
system) is rotated by 180 degree during the X-ray emissions. The sample center coincides with the center of rotation.

contains undesirable errors due to, for example, the imperfect filtering and discretization [4, 10, 37] if
the profile is obtained by the numerical image-reconstruction simulation. The ideal beam-hardening
assessment without such undesirable errors is possible if the analytical (not numerical) line profile is
available. However, to the best of our knowledge, there is no paper on the general solution for the
analytical line profile.

In the present theoretical study, we therefore derived analytical expressions for the reconstructed
image of a homogeneous cylindrical phantom exhibiting a cupping artifact by assuming the following;
(i) that non-linear projection data can be considered as a power series with respect to the sample
penetration thickness and (ii) that Ramachandran filtering with an infinite Nyquist wavenumber can
be employed. We also examined the relationship between the power series for the projection data and
the nth moment of the linear attenuation coefficient (LAC) spectrum.

The obtained analytical solutions were applied to the evaluation of the practical reconstruction filters.
Numerical simulations reproducing cupping artifacts for a finite Nyquist wavenumber in association
with Ramachandran, Shepp, and Chesler filters were performed for a cylindrical specimen containing
an aqueous KI solution to confirm the applicability of the analytically-obtained solutions. The analytical
solutions were also applied to the choice of the best contrast agent for a cylindrical aqueous phantom.
We searched for the atomic number of the heavy element in the aqueous solution/suspension phantom
that induced the least cupping artifact.

2. Analytical expressions for a cupping artifact

2.1. From the projection to the cupping profile

Herein, we consider the analytical 2-D image reconstruction of a homogeneous cylindrical sample
with radius, R, using a polychromatic X-ray source and an array of linear detectors (Fig. 1). The bowtie
filtration [35] which modulates the original X-ray source spectrum is not considered. The incident
parallel X-rays have an initial intensity, I(0), and penetrate the sample to a depth of s. The attenuated
X-ray intensity, I(s), is measured physically [36] by detectors placed at a constant distance of δ. The
projection, p(s), obtained by the detectors is defined as:

p(s) = ln
[
I(0)

I(s)

]
for 0 ≤ s ≤ 2R. (1)
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Fig. 2. A comparison between the reconstructed voxel values obtained from the analytical expression and a simulated CT
image with respect to a homogeneous cylindrical phantom (a 440 mM aqueous KI solution). (a) The normalized photon-
energy spectrum of the X-ray source (at an acceleration voltage of 100 kV). Two LAC spectra of the KI solution and of
a 160 mM samarium aqueous solution/suspension are superimposed. The K absorption edges of iodine and samarium are
indicated by arrows (33 and 47 keV, respectively). (b) The reconstructed CT image of the cylindrical KI solution phantom
obtained using the Ramachandran filter with a finite Nyquist wavenumber. The image dimensions were trimmed to 3002

voxels ( = 32 cm2), and the radius, R, of the phantom is 90 voxels ( = 0.9 cm). The yellow line (the r-axis) expanding from the
sample center to the image edge is the baseline for the line profile. (c) Line profiles of the reconstructed voxel values along
the yellow line in (b) for three reconstruction filters (Ramachandran, Shepp, and Chesler). The true line profile calculated
using the exact solution based on Equations (3) and (4) is also plotted for N = 100. (d) An expanded view of (c) around the
sample edge at r = 0.9 cm. (e) The projection, p, as a function of s as calculated using Equations (1) and (7). The projection,
h, approximated as a power series of s as calculated using Equation (2) via μn (0) from Equation (A9) is also shown. The
linear component of Equation (2) (i.e., C1 s) is superimposed by a dotted line to depict the non-linearity of p and h.

The 2-D polar and Cartesian coordinate systems, (r, θ) and (x, y), respectively, are indicated in
Fig. 1. The system is axisymmetric because the sample is homogeneous and cylindrical. Thus, 2-D
image reconstruction by CT imagery is essentially identical to deriving the 1-D cupping profile, f (r),
rather than f (x, y) where f is the reconstructed value of the LAC obtained by the CT system.

Typical sample LAC and X-ray source spectra are provided in Fig. 2a. The energy-dependent nature
of the spectra in Fig. 2a results in a non-linear projection, p(s), and non-uniform reconstructed value,
f (r), within the phantom. With regard to the non-linearity of the projection, we assume that p(s) can
be suitably approximated by h(s), which is a power series with respect to the penetration thickness, s,
written as [1]:
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h(s) =
N∑

n=1

Cns
n for 0 ≤ s ≤ 2R, (2)

where Cn is a coefficient and N is an integer representing the upper limit of the summation. The energy-
dependent LAC spectrum and polychromatic X-ray source spectrum yield the cupping artifact. The
physical information of the two spectra is combined and embedded in Equation (2). Thus, it is possible
to derive the analytical expressions of the cupping profile by the conventional image-reconstruction
algorithm using the non-linear projection data of Equation (2).

Employing the conventional filtered backprojection method [4, 16, 17], we derived an analytical
expression for the cupping profile, f (r), as a series of functions, written as:

f (r) =
N∑

n=1

Fn

(
R2 − r2

) n−1
2 for 0 ≤ r < R (3)

and

f (R) = C1

2
. (4)

Here, the coefficient Fn is given by:

Fn = 2n

√
π

�
(

n
2 + 1

)
�
(

n+1
2

) Cn, (5)

where � is the gamma function. The detailed derivation of Equations (3) and (4) from Equation (2)
is described in Appendix 1. It should be noted that Ramachandran filtering with an infinite Nyquist
wavenumber (i.e., infinitesimal δ) was employed in this derivation.

Equation (3) shows that the linearity (or non-linearity) of the projection is transferred to the constant
(or r-dependent) distribution of f (r) as follows. (i) The coefficient for the linear component in Equation
(2), C1, is embedded as F1 in the right-hand side of Equation (3), which contributes to the constant
component of f (r) without cupping artifact. (ii) Each coefficient Cn for n ≥ 2 corresponding to the
non-linear term in Equation (2) occurs in Fn on the right-hand side of Equation (3) as the r-dependent
component of f(r).

2.2. From the spectral moment to the projection

The non-linearity of the projection in Equation (2) is a consequence of the energy-dependence of the
LAC spectrum and the broadness of the X-ray source spectrum. We therefore developed a quantitative
relationship between the projection and spectra by introducing a spectral moment. The incident X-ray
intensity, I(0), in Equation (1) can be considered as the sum of all components having various photon
energy values, E, and thus can be summarized as:

I(0) =
∫ ∞

0
i0 (E) dE, (6)

where i0(E) is the energy-dependent spectrum of the X-ray source. Hereafter, we assume that I(0) is
normalized to a value of unity. Following the penetration of the cylindrical sample in Fig. 1 by the
X-ray beam, the X-ray intensity is attenuated by Beer’s law to [18]:

I(s) =
∫ ∞

0
i0 (E) exp (−μ(E)s) dE, (7)

where μ(E) is the energy-dependent LAC spectrum of the cylindrical sample.
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In order to relate the power-low non-linearity in Equation (2) to the exponential non-linearity in
Equation (7), we introduce the nth moment of the LAC spectrum, weighted by the attenuation due to
the sample penetration, defined as:

Mn(s) =
∫ ∞

0
i0 (E) μ(E)n exp (−μ(E)s) dE for n = 0, 1, 2, . . . , N, (8)

where Mn (s) is the nth moment. Mn (s) can be normalized by I(s) as:

μn(s) = Mn(s)

I(s)
for n = 0, 1, 2, . . . , N. (9)

Through the process described in Appendix 2, μn(0) can be related to Cn as the following recurrence
relation:

Cn+1 = −νn+1 −
n∑

m=1

νn−m+1
m

n + 1
Cm for n = 0, 1, 2, . . . , N − 1, (10)

where the coefficient νn is defined by:

νn = (−1)n μn(0)

n!
= (−1)n

n!

∫ ∞

0
i0 (E) μ(E)ndE for n = 0, 1, 2, . . . N. (11)

By the above process, we obtained the analytical relationships among the normalized spectral
moment (μn (0) in Equation (A9)), the coefficient for the non-linear projection (Cn in Equation (2)),
and the coefficient for the cupping profile (Fn in Equation (3)). In the following sections, these exact
solutions were applied to the comparison with the practical reconstruction filters and to the search for
the best contrast agent in terms of the reduction of the cupping artifact.

3. Application of the exact solutions

3.1. Effects of reconstruction filters

The analytical expressions derived in Sec. 2 assume Ramachandran filtering with an infinite Nyquist
wavenumber. This implies that the detector interval, δ, is zero. In practical CT imagery, however, the
quantity δ is not zero, and Shepp (i.e., sinc) and Chesler (i.e., hanning) reconstruction filters with finite
Nyquist wavenumbers are often used in addition to the Ramachandran filter [4, 16]. Thus, conventional
numerical simulations to reconstruct a synthetic CT image exhibiting a cupping artifact were performed
using such practical filters to demonstrate the applicability of these analytical expressions to practical
CT imagery.

The cylindrical sample selected for the reconstruction simulations was composed of a homoge-
neous aqueous 440 mM KI solution. The radius of the cylinder, R, was 0.9 cm and the detector
separation distance, δ, was 0.01 cm. Thus, the radius of the reconstructed cylindrical sample was
(0.9 cm/0.01 cm) = 90 voxels. The LAC spectrum of the sample as calculated using the NIST database
[19] is shown in Fig. 2a, in which the X-ray source spectrum at an acceleration voltage of 100 kV
[14] is superimposed. The target of the X-ray tube is made of Mo-W alloy. Metal films (Al film of
approximately 1 mm and Cu film of 0.1 mm in thickness) are preinstalled on the CT system [14].

The 2-D image reconstruction of the cylindrical sample in Fig. 1 was performed with our original
computer program. The details of the computer program have been described elsewhere [4, 10, 20].
Briefly, the parallel X-ray beams with the polychromatic X-ray source spectrum are assumed, and the
attenuated X-ray intensity is measured on the 1-D array of detectors. The non-linear projection, p(s),
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is calculated on the discrete points (separation distance, δ) using Equations (1) and (7) for 0 ≤ s ≤ 2R.
Totally 805 projection data were acquired on the 1-D detector array during the sample rotation of 180◦.
The original dimensions of the 2-D reconstructed image were 5122 voxels, and the obtained sinogram
consisted of 512 × 805 voxels. The convolution backprojection method was applied to the sinogram
to reconstruct a 5122-voxel image with voxel dimensions of 0.012 cm2. Three typical reconstruction
filters, the Ramachandran, Shepp, and Chesler filters, with a finite Nyquist wavenumber of 1/(2δ) = 50
1/cm, were employed in the computer program. The grey scale of the reconstructed TIFF image was
16 bits. We applied a line-profile analysis of the voxel values to the 16-bit image exhibiting beam
hardening to evaluate the effects of the reconstruction filters on the degree of cupping artifact. The
ImageJ program developed at the National Institutes of Health was used for the line profile analysis of
the 16-bit TIFF image.

The exact solutions corresponding to the KI phantom of R = 0.9 cm were calculated as follows. The
upper limit of n (i.e., N), was taken to be 100. Using the X-ray source and LAC spectra in Fig. 2a, values
for μn (0) were calculated via Equation (A9) for n = 1 to 100. These values were subsequently converted
to νn using Equation (11), and Cn was calculated by Equation (10). Finally, Fn was determined by
Equation (5) to obtain the cupping profile, f (r).

3.2. Search for the best contrast agent

Substance with a high atomic number (e.g., iodine and lanthanoids) is used as a contrast agent in
X-ray CT [6]. The use of such heavy elements yields the undesirable cupping artifact [9], which makes
the quantitative CT image analysis difficult. The degree of the cupping depends on the atomic number
of the heavy element [10]. In this section, we applied the exact solutions obtained in Sec. 2 to the
search for the atomic number of the best contrast agent that induces the least cupping artifact.

The degree of the cupping artifact of a cylindrical phantom can be expressed as the difference in the
f (r) values between the center and the rim of the reconstructed phantom image. As for the f (r) value
at the rim, the limiting behavior of Equation (3) described in Appendix 1 ensures the approximation
that f (r) ≈ C1 in the immediate vicinity of the sample rim. Thus, we take that the best contrast agent
yields a minimum with respect to the C1 value for a fixed f (0) value.

We consider the following simple case. A mixture of simple substance of a heavy element and pure
water is supposed as a cylindrical homogeneous phantom. The mixture is an aqueous solution or a
fine-grained suspension, so that the grain size of the simple substance is very small compared with the
voxel dimension, and the mixture can be well approximated as homogeneous.

Heavy elements ranging from 49In to 79Au were examined. The f (0) value was tentatively fixed
to be 0.48 1/cm (≈ 1000 Hounsfield unit (HU)) in the present study. The detailed input data for the
exact solutions were as follows. The radius of the phantom, R, was 0.9 cm, N = 100, and the X-ray
source spectrum was for the 100 kV acceleration, which was the same as the simulation in Sec. 3.1. We
obeyed Nakashima and Nakano [10, 20] for the estimation of the bulk density of the mixture, which
was needed for the LAC spectrum calculation. An example for the calculated LAC spectrum is shown
in Fig. 2a for the samarium-water mixture system.

4. Results

4.1. Effects of reconstruction filters

The synthetic 2-D CT image of the cylindrical phantom of the 440 mM KI solution is shown in
Fig. 2b. The original 5122 voxels image was trimmed to 3002 voxels to provide an expanded view
of the cylindrical sample. This figure demonstrates a characteristic beam hardening artifact (cupping
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Table 1
List of the coefficients, μn (0), νn , Cn , and Fn in Fig. 2 for the

n values up to ten. The units of these four coefficients are common,
but depend on n (i.e., 1/cmn ). The two values for n = 0 (i.e., μ0(0) = 1

and ν0 = 1) are dimensionless constants that are independent of the size
and chemistry of the sample

n μn (0) νn Cn Fn

0 1 1 N/A N/A
1 0.96208 –0.96208 0.96208 0.96208
2 1.14125 0.57062 –0.10783 –0.27458
3 1.60713 –0.26786 0.01570 0.09421
4 2.56714 0.10696 –0.00045 –0.00605
5 4.47574 –0.03730 –0.00056 –0.01666
6 8.28798 0.01151 0.00014 0.00920
7 16.01007 –0.00318 2.4 e-7 3.4 e-5
8 31.88811 0.00079 –8.3 e-6 –0.00247
9 64.98430 –0.00018 1.8 e-6 0.00113
10 134.79017 3.7 e-5 1.2 e-7 0.00016

phenomenon) along with a non-uniform distribution of the reconstructed LAC values within the sample
(see the bright voxels near the sample rim). The line profile along the radial direction (the yellow
baseline in Fig. 2b) is provided in Fig. 2c, and also shows the cupping phenomenon. Figure 2c is
enlarged in Fig. 2d to enhance the differences between the three reconstruction filters.

With regard to the analytical solutions, the theoretical cupping profile, f (r), calculated using Equa-
tions (3) and (4) is presented in Fig. 2 c and d. A data point spacing of 0.001 cm was applied in the
case of this theoretical plot, which is an order of magnitude smaller than the detector spacing (i.e.,
δ = 0.01 cm) used for the simulation. This was done because the theoretical profile is for an infinite
Nyquist wavenumber (an infinitesimal δ). The μn (0), νn , Cn , and Fn values calculated for Fig. 2
are summarized in Table 1 for the n values up to ten. The two non-linear projections (p(s), directly
calculated by Equations (1) and (7), and h(s), indirectly calculated by Equation (2) via μn (0)) are
plotted in Fig. 2e, and demonstrate reasonable agreement.

The effects of the N value in Equation (3) for the case of Fig. 2 are shown in Fig. 3. The f (r) value
is constant (i.e., f (r) = C1 = μ1(0)) and no beam hardening occurs if N = 1, which is a consequence
of assuming that the projection, h(s), in Equation (2) is linear with respect to s. From this figure it is
evident that Equation (3) converges rapidly on a fixed profile in conjunction with a small degree of
oscillation as N increases.

4.2. Search for the best contrast agent

Using the X-ray source spectrum in Fig. 2a and a LAC spectrum of a mixture of a specific heavy
element and water, values for μn (0) were calculated via Equation (A9) for n = 1 to 100. These values
were subsequently converted to νn using Equation (11), and Cn was calculated by Equation (10).
Finally, Fn was determined by Equation (5) to obtain the cupping profile, f (r). By trial and error,
we searched for the molar concentration of each heavy element in the aqueous solution/suspension
which yields f (0) = 0.48 1/cm (≈ 1000 HU), and plotted the C1 value against the atomic number of the
heavy element as well as the corresponding molar concentration. The results are summarized in Fig. 4,
depicting that the C1 value is sensitive to the atomic number of the heavy element in the mixture. For
example, C1 = 0.522 (≈ 1180 HU), 0.500 (≈ 1080 HU), and 0.545 (≈ 1270 HU) for 53I, 62Sm, and
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Fig. 3. The dependence of the exact solution, f(r), on N. Here, f(r) for N = 100 is the same as that plotted in Fig. 2c, and it is
difficult to distinguish the f(r) curves for N = 6, 10, and 100 due to the good agreement.

79Au, respectively. This is a consequence of that the degree of the cupping artifact is sensitive to the
relative position between the K absorption edge of the heavy element and the spectrum peak of the
X-ray source [9, 10, 20].

5. Discussion

From Fig. 2c, it can be seen that the line profile of each simulated image closely coincides with the
exact solution. This result confirms that the power-series approximation for the non-linear projection
(Equation 2) is reasonable. This is supported by Fig. 2e, depicting good agreement between h(s) and
p(s). As for the choice of the upper limit of the n value (i.e., N), a larger N value theoretically ensures
better accuracy as far as the numerical calculation error is not serious. However, the three profiles
for N = 6, 10, and 100 yield almost the same curves in Fig. 3, implying that an N value as small
as approximately 6 would be practically sufficient for the KI-solution sample of Fig. 2. This is also
confirmed by the rapid decrease of the Fn values with increasing n in Table 1.

Figure 2d shows a discrepancy in the line profiles of the simulated images and the exact solution near
the sample rim (i.e., at r = 0.9 cm). This is attributed to the use of a finite Nyquist wavenumber when
generating the simulated image [4, 16]. The discrepancy relative to the exact solution is greatest for the
Chesler filter and smallest for the Ramachandran filter. The Chesler and Ramachandran filters are the
strongest and weakest low-pass filters among the three options, respectively, and this is reflected in the
degree of discrepancy in Fig. 2d. However, the three simulated image line profiles are in reasonable
agreement with the exact solution, with the exception of a few voxels at the sample rim (Fig. 2c and d).
Thus, we conclude that the exact solution is applicable to the analysis of real-world CT images using
either Chesler, Shepp, or Ramachandran filters with finite Nyquist wavenumbers, except in the vicinity
of the sample rim.
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Fig. 4. Dependence of C1 value on the atomic number of the heavy element suspended in the water sample for a fixed f (0)
value of 0.48 1/cm. The corresponding molar concentration of the heavy element is also plotted. Note that samarium (atomic
number, 62) yields the minimum cupping artifact of C1 – f (0) ≈ 0.02 1/cm, for which the corresponding LAC spectrum is
shown in Fig. 2a.

Figure 4 depicts that the best contrast agent is not conventionally used iodine [9] but samarium [6]
because the difference of the f (r) values between the center and the rim is as small as 0.020 1/cm
(≈ 80 HU) for samarium while it is 0.042 1/cm (≈ 180 HU) for iodine. This is a consequence of
that the K absorption edge of samarium (47 keV) is located near the spectrum peak of the continuous
X-ray component of the source spectrum (see Fig. 2a) [9, 10, 20]. It should be noted that Fig. 4 was
obtained not by the conventional image-reconstruction numerical simulations having undesirable errors
[4, 10, 37] but by the analytical solutions. The analytical solutions derived in the present study would
contribute to the reliable assessment of the contrast agent performance without such undesirable errors.

As can be seen from Equations (11), (10), and (5), the nth moment of the LAC (i.e., μn (0)) and
the non-linearity of the projection (i.e., Cn ) are mathematically related to the coefficient, Fn , for the
line profile, f (r). This set of analytical expressions can be considered as either a forward or inverse
problem. Assuming a forward problem [4, 10, 20], it is possible to predict the line profile, f (r), for the
reconstructed CT image of a sample with a known size and chemistry if the X-ray source spectrum
or thickness-dependent projection data are available. This would have applications in assessing the
performance of a CT imaging system using a cylindrical phantom as demonstrated in Fig. 4. In the case
of an inverse problem [18, 21, 22], the same set of analytical expressions allows us to estimate the X-
ray source spectrum by analyzing the line profile data, f (r), experimentally obtained using cylindrical
phantoms of known size and chemistry. In term of the mathematical inverse problem, the use of plural
phantoms with different heavy elements is preferable because it would increase the estimation accuracy
of the X-ray source spectrum. For example, the C1 values for 58Ce and 74W are significantly different in
Fig. 4, and both can be independent constraint in solving the inverse problem. Thus, the simultaneous
use of the 58Ce- [20] and 74W-water [9] phantoms would contribute to the more accurate estimation of
the source spectrum.
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The exact solutions obtained are applicable not only to X-ray CT [13, 23–26, 34], but also to other
diverse imaging systems employing straight ray paths. Example includes those employing neutrons,
positrons, muons, and neutrinos [27–30]. The analytical expressions for a homogeneous cylindrical
phantom could also be used to assess imaging systems for a wide range of CT applications.

6. Conclusions

Analytical expressions were obtained for the reconstructed image of a homogeneous cylindrical
sample exhibiting beam hardening (or cupping artifact) due to a polychromatic X-ray source. The quan-
titative relationship between the cupping profile and the LAC and X-ray source spectra was derived
from non-linear projection data with respect to the penetration thickness by employing Ramachan-
dran filtering with an infinite Nyquist wavenumber. The cupping profile resulting from the analytical
expressions was in reasonable agreement with that generated by numerically simulated CT imagery
in conjunction with various reconstruction filters (Ramachandran, Shepp, and Chesler filters with a
finite Nyquist wavenumber), except for a few voxels near the sample rim. Application of the analytical
expressions to the best choice of the contrast agent that induced the least cupping artifact was also
demonstrated successfully. The exact solutions as determined in the present study are expected to have
applications in the analysis of cylindrical phantom data during the evaluation of real-world CT systems
using such practical reconstruction filters.
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Appendix 1: Filtered backprojection for a homogeneous cylindrical sample

The derivation of Equations (3) and (4) from Equation (2) using the conventional filtered back-
projection method [4, 16, 17] is described herein. First the one-dimensional Fourier transform of the
projection was calculated, second the Ramachandran filtering followed by the inverse Fourier trans-
form was performed, and finally the backprojection operation was employed for the reconstruction of
the one-dimensional image, f (r).

Applying a one-dimensional Fourier transform to the projection h(s), the quantity P(z) is
obtained as:

P(z) =
∫ ∞

−∞
h(s) exp (−2πizt) dt

= 2
∫ R

0
h(2
√

R2 − t2) cos(2πzt)dt,

(A1)

where z is the wavenumber and the parameter t ( = r sin θ) is as indicated in Fig. 1. The evenness of
h with respect to t is also incorporated into the above equation.

Equation (2) was substituted into Equation (A1) and the integral formula (ET I 11(8)) of [31] was
used to obtain:

P(z) =
N∑

n=1

Cn2n+1
∫ R

0

(
R2 − t2

) n
2 cos(2πzt)dt

=
N∑

n=1

Cn

(
2√
π

)n (R

z

) n+1
2

�

(
n

2
+ 1

)
Jn+1

2
(2πRz) ,

(A2)

where J(n+1)/2(2πRz) is the Bessel function of the first kind.
Ramachandran filtering (i.e., |z|) with an infinite Nyquist wavenumber was applied to P(z) to obtain

the quantity q(t), written as:

q(t) =
∫ ∞

−∞
P(z) |z| exp (2πitz) dz

= 2
∫ ∞

0
P(z)z cos(2πtz)dz.

(A3)

The evenness of the integrand was incorporated into the above equation.
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As a final step, the backprojection calculation was applied to Equation (A3) to obtain f (r), as:

f (r) =
∫ π

0
q (r sin θ) dθ

= 2
∫ ∞

0
zP (z)

∫ π

0
cos (2πzr sin θ) dθdz

= 2π

∫ ∞

0
zP (z)J0 (2πrz) dz.

(A4)

The Bessel’s integral formula for J0(2πrz) [32] was used in the conversion. The substitution of
Equation (A2) into Equation (A4) then yields:

f (r) = 2π

N∑
n=1

Cn

(
2√
π

)n

R
n+1

2 �

(
n

2
+ 1

)∫ ∞

0
z

1−n
2 Jn+1

2
(2πRz) J0 (2πrz) dz. (A5)

In the case that 0 ≤ r < R, the integral formula (11.4.41) of [33] can be applied to Equation (A5)
to obtain Equation (3). However, at r = R, different formulae were used as follows. According to the
formula (6.574) of [31], all the terms for n ≥ 2 on the right-hand side of Equation (A5) is zero. Only
the term for n = 1 survives in Equation (A5), and the formula (11.4.42) of [33] was applied to the term
to obtain Equation (4).

According to Equation (3) for 0 ≤ r < R, the limiting behavior at the sample rim is that f (r) −→
C1 as r −→ R. Thus, it should be noted that f (r) ≈ C1 in the immediate vicinity of the sample rim,
and is therefore independent of the N value (see Fig. 3) and the sample size (R). Because f (R) = C1/2
(see Equation (4) and Fig. 2d), there is a gap in the f (r) values between f (r) as r −→ R and f (R),
which often occurs in the case of a Fourier transform involving a discontinuity.

The following equations may be helpful to the practical numerical calculation. We introduce
the coefficient Gn that is independent of the sample chemistry and the X-ray source spectrum as
defined by:

Gn = 2√
π

�
(

n
2 + 1

)
�
(

n+1
2

) for n = 1, 2, 3, . . . , N, (A6)

to rewrite Equation (3) as:

f (r) =
N∑

n=1

2n−1GnCn

(
R2 − r2

) n−1
2 for 0 ≤ r < R. (A7)

The ratio of the gamma functions in Equation (A6) can be readily simplified to obtain:

Gn = 2

π

n

Gn−1
,

and

G0 = 2

π
for n = 1, 2, 3, . . . , N. (A8)

The use of the compact recurrence relation, Equation (A8), may be helpful to the effective computer
programing for the calculation of f (r).
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Appendix 2: The relationship between the non-linear projection and the nth moment of the
LAC spectrum

The derivation of Equation (10) from Equations (8) and (9) is described herein. First, we derive
recurrence relations on the nth moment by differentiation with respect to s. Second, we combine the
recurrence relations with Equation (2) to relate μn (0) to Cn . Starting from Equations (7) to (9), we
can derive the following set of equations:

M0(s) = I(s),

dMn(s)

ds
= −Mn+1(s) for n = 0, 1, 2, . . . , N − 1,

dM0(s)

ds
= dI

ds
= −M1(s),

μn(0) =
∫ ∞

0
i0 (E) μ(E)ndE for n = 0, 1, 2, . . . , N,

μ0(s) = 1,

and

dμn

ds
= 1

I2

(
dMn

ds
I − Mn

dI

ds

)
= −Mn+1I + MnM1

I2
= μ1μn − μn+1

for n = 0, 1, 2, . . . , N − 1. (A9)

Using the expressions in Equation (A9) with respect to μn , we obtain:

μn+1 =
n∑

m=0

(−1)m
(

n

m

)
μn−m

dmμ1

dsm
for n = 1, 2, 3, . . . , N − 1, (A10)

where

d0μ1

ds0
= μ1, (A11)

and (
n

m

)
= n!

m!(n − m)!
. (A12)

Equation (A10) can be rewritten as:

dnμ1

dsn
= (−1)n μn+1 −

n−1∑
m=0

(−1)n−m

(
n

m

)
μn−m

dmμ1

dsm
for n = 1, 2, 3, . . . , N − 1. (A13)

The moment described can be related to the power-series projection, h(s). Based on Equations (1),
(9), and (A9), the first derivative of h(s) is expressed as:

dh

ds
= dI

ds

d

dI
(− ln I) = M1

I
= μ1. (A14)
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The substitution of Equation (2) into Equation (A14) then yields:

dnh

dsn

∣∣∣∣
s=0

= dn−1μ1

dsn−1

∣∣∣∣∣
s=0

= n!Cn for n = 1, 2, 3, . . . , N. (A15)

As a final step, Equation (A15) is substituted into Equation (A13) for s = 0 to relate μn (0) to Cn
using the following recurrence relation:

Cn+1 = −
[

(−1)n+1 μn+1(0)

(n + 1)!
+ 1

(n + 1)!

n−1∑
m=0

(−1)n−m n! (m + 1)!μn−m(0)

m! (n − m)!
Cm+1

]

= −
[

(−1)n+1 μn+1(0)

(n + 1)!
+

n−1∑
m=0

(−1)n−m μn−m(0)

(n − m)!

m + 1

n + 1
Cm+1

]

for n = 0, 1, 2, 3, . . . , N − 1.

(A16)

Equation (A16) can be simplified to Equation (10) using νn as defined by Equation (11). It should
be noted that if n = 0, according to the conventional rule, the sum operation of the second term of the
right-hand side of Equations (10) and (A16) is not performed and only the first term is calculated.

It may be helpful to explicitly show Cn for the first three values. These are:

C1 = μ1(0),

C2 = μ1(0)2 − μ2(0)

2
,

and

C3 = 2μ1(0)3 − 3μ1(0)μ2(0) + μ3(0)

6
. (A17)

The following simple relationship between the normalized X-ray intensity after sample penetration
(i.e., I(s)/I(0)) and νn should be noted:

I(s)

I(0)
=
∫ ∞

0
i0 (E) exp (−μ(E)s) dE =

∫ ∞

0
i0 (E)

∞∑
n=0

[−μ(E)s]n

n!
dE =

∞∑
n=0

νns
n. (A18)

The power-series (i.e., Taylor-series) expansion of the natural exponential function was employed
in the derivation of Equation (A18).


