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Abstract. Digital radiography system is widely used for noninvasive security check and medical imaging examination.
However, the system has a limitation of lower image quality in spatial resolution and signal to noise ratio. In this study, we
explored whether the image quality acquired by the digital radiography system can be improved with a modified convolutional
neural network to generate high-resolution images with reduced noise from the original low-quality images. The experiment
evaluated on a test dataset, which contains 5 X-ray images, showed that the proposed method outperformed the traditional
methods (i.e., bicubic interpolation and 3D block-matching approach) as measured by peak signal to noise ratio (PSNR) about
1.3 dB while kept highly efficient processing time within one second. Experimental results demonstrated that a residual to
residual (RTR) convolutional neural network remarkably improved the image quality of object structural details by increasing
the image resolution and reducing image noise. Thus, this study indicated that applying this RTR convolutional neural network
system was useful to improve image quality acquired by the digital radiography system.
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1. Introduction

X-ray digital radiography (DR) is an essential method for non-destructive detection in security check
and medical imaging examination, which can show internal details and structures of objects. However,
limited by the costs and the techniques, the images acquired by the digital radiography system usually
have low spatial resolution and a significant amount of noise. As a result, the images are often too
blurry to reveal the details of the region of interest (ROI). Thus, it is highly desirable to improve image
resolution and eliminate image noise to restore the image details.

The problem is resulted from single image super resolution (SISR) and x-ray image denoising.
The SISR is a classical ill-posed and inverse problem in image processing, which may enhance the
image quality and overcoming the resolution limitations of the acquired image data. The noises in
x-ray images are non-Gaussian, spatial-variant and related to surrounding structures which are hard
to eliminate while maintaining the surrounding details. It is difficult to solve these problems with
conventional methods due to the inherent physical limitations.

More recently, deep learning methods, especially deep convolution neural networks (CNNs), have
achieved impressive success in various computer vision tasks, ranging from segmentation, detection
and recognition [1-3]. It has also been applied in X-ray imaging for variety of applications [4, 5].

*Corresponding author: Peng Cong, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China.
E-mail: congp@tsinghua.edu.cn.

0895-3996/17/$35.00 © 2017 — IOS Press and the authors. All rights reserved

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0).


mailto:congp@tsinghua.edu.cn

858 Y. Sun et al. / Enhancement of digital radiography image quality using a CNNs

Meanwhile, deep learning based methods have been applied to low-level computer vision applications
such as denoising and super-resolution, which have been extensively investigated with great perfor-
mance [6-8]. Although great achievement have been made, most of the existing CNN based x-ray
image denoising models suffer gradient exploding/vanishing problem as networks go deeper. Further-
more, the number of network parameters, which has great influence on performance and speed, is not
taken into account in most CNN based methods.

In this study, we employed a modified neural network to solve the problems of x-ray image super-
resolution and denoising. In order to alleviate the gradient exploding/vanishing problem, we used a
skip connection method in the CNN model. Meanwhile, a deconvolution layer is introduced to the
model to improve the image resolution and restore the image details. In particular, we added a residual
image from the low-resolution image and its corresponding coarse image as an input for the neural
network, which is helpful for the model to extrapolate the image and reduce the noise.

2. Related works
2.1. Image super resolution

Limited by the imaging system, low-resolution image contains less information than a high-
resolution image. However, different from random signal, image features are locally correlative to
spatial domain, which indicates the possibility to restore the missing pixels from the neighboring
pixels. Image super-resolution can detect the mapping function from high-resolution (HR) images to
low-resolution (LR) images.

Image SR can be categorized into two main types of approaches: interpolation-based, and learning-
based methods. Interpolation-based methods generate HR pixel values by using weighted average of
neighboring LR pixel values (bicubic, Lanczos) [9]. While the interpolation-based method generates
smooth regions, the high frequency details (texture and edge) can’t be restored well. Using extracted
image features from external images, learning-based methods formulate the mapping function from
LR image to HR image, which is learned in a supervised manner. Extracting the image priors from
external data, the learning-based method has shown great potential in super resolution [10-12].

Recently, the deep learning methods, especially deep convolution neural networks (CNNs), have
been widely used in various computer vision tasks with great success. A recent study adopted the
convolution neural network to solve the SISR problem and achieved state-of-the-art performance [13].
The proposed net comprises three layers corresponding to patch extraction, non-linear mapping and
reconstruction, which are also processed in sparse code methods. Then, Wang and colleagues [14]
combined the sparse representation with deep network. Similarly, Gu et al. [15] applied the sparse
coding to the entire image instead of overlapping patches done by previous works. Dong et al. [16]
used a method in which deconvolution layer is adopted to upscale the image in the last layer of the
network, which further increased performance in terms of both accuracy and speed. Kim et al. proposed
a very deep CNN (VDSR) with over 20 layers to predict the residual between the HR and LR images,
which observably boosts the convergence speed and performance [17].

2.2. Image denoising

As one of the classical problems in image processing, image denoising problem has attracted con-
tinuous attention for several decades. Estimating the denoised patch instead of estimating each pixel
separately, Dabov et al. proposed the BM3D algorithm that employs non-local similar patches for
denoising image patches [18]. Considering the denoising as a kind of low-rank matrix approximation
problem, Gu et al. proposed a weighted nuclear norm minimization (WNNM) to solve the problem [19].
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By extracting the image priors and learning the mapping function from noisy images to less noisy ones
in the training datasets, deep learning based denoising methods achieved much higher performance
than traditional denoiser. Most recently, Ahn and Cho proposed a block-matching convolutional neu-
ral network (BMCNN) that combines the BM3D and CNN, and achieved state-of-the-art performance
[20]. Recent studies have provided promising results by applying CNN based denoisers to X-ray images
[21, 22]. The CNNs are trained from normal-dose images and their corresponding low-dose images
generated by adding Poisson noises based on physical models. Kang et al. proposed a wavenet method
which combines a deep convolution neural network with a directional wavelet transform and achieved
much better performance [22].

2.3. Convolution neural networks

Convolution neural network, suitable for image processing, has shown great performance in image
classification and is gaining popularity in other computer vision fields. The classical CNN is composed
of convolutional layer, batch normalization layer and activation layer. The composition of convolutional
layer and non-linearity layer can written as

g=f(Wx+b) )

where X is the input, g is the output, W is convolution matrix, b is bias of convolution layer, and f is
activation function. It was shown that deeper network architectures have the potential to increase the
networks accuracy with stronger learning capacity [23]. However, limited by the vanishing/exploding
gradient problem, deep net can be far more difficult to train than a shallow net. As a result, simply
increasing the depth of network will result in degradation of training accuracy and severely impact
performance. Similar phenomenon was observed in the previous report [13], where SRCNN fails to
show superior performance with a deeper net.

To solve the vanishing/exploding gradient problem, the residual blocks and skip-connections intro-
duced by He and colleagues [24] was adopted to ease the training of deep CNNs, which reformulate
the deep layer to predict the residual information. The structure makes it possible to train a very deep
CNN and achieve amazing performance.

3. Proposed method
3.1. Proposed network

In this study, we propose a residual to residual network (RTR) based on a cascade of convolutional
neural networks (CNNs). The architecture of the network is outlined in Fig. 1, which consists of three
parts: adeep CNN of low-quality image, a CNN of residual image and a bicubic interpolation operation.

The bicubic image contains the same low-frequency information with high-quality image, while
the deep CNN is set to learn the residual image with high-frequency details, which aims at easing
the training process. Since the low-quality can be regarded as a degrading result of a high-quality
image. The coarse image is also a degrading result of the low-quality image, which can be obtained
by two steps: sub-sampling the low-quality image and adding noise, then up-sampling the result to
the same size of low-quality image by interpolation. The residual image is the difference between the
low-quality image and its corresponding coarse image. Containing the self-similarity information, the
residual image can be taken as input of a CNN, which could predict the residual of high-quality image
and low-quality image. Furthermore, the deep CNN of low-quality image is composed of three modules:
feature extraction, up-sampling and reconstruction. We will detail the architectures and functions of
each module in deep CNN later.
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Fig. 1. Network architecture of the proposed RTR method.

3.1.1. Feature extraction

Most of the previous learning based methods extract the image features using filters artificially
designed or learned by a shallow net and cannot sufficiently extract the image details. As evaluated
previously by He and colleagues [24], the residual blocks with short connections can effectively
facilitate gradients flow through multiple layers, thus easing the training process of the deep network.
To solve the problem, the proposed method uses a structure with cascading feature extraction units.
Inspired by the Resnet from He and colleagues [24], the feature extraction unit consists of two cascading
convolution layers with skip connections to decrease the difficulty of training, thus the network has
stronger capacity to extract the image features. Furthermore, a convolution layer is set to the skip
connection without activation function, which may reserve the information of previous layer and
improve the representation power. The convolution layers are activated by Rectified Linear Unites
(ReLUs) acting as nonlinear mappings. Each convolution layer can be expressed as

C,=max(0, W, x C;— 1+ b)) 2)

where C;,W; and b; denote the output feature, the convolution filter and bias of the [ -th layer, respec-
tively. The convolution layers can be denoted as Conv(f;,n;), where the f; and n; represent the filter size
and the number of filters. To reduce the parameters of the network, all the convolution layers adopt
fi1 =3 filter size instead of larger size as reported previously [9, 10]. The number of filters n; is set to
be 16 while zero padding is adopted to preserve the spatial size of the output feature maps.

3.1.2. Up-sampling

The up-sampling operation is performed by a deconvolution layer, which upscales the previous
features extracted by cascading convolution layers. The deconvolution can be regarded as an inverse
operation of convolution, in which filters are also learned from input features. For the stride k, the
spatial size of the output feature maps is upscaled to k times of the input by reversing the forward and
backward propagation of convolution layers. For the image SR problem, the stride k determines the
upscaling factor.

The performance of different filter size of the deconvolution layer was described in the previous
study [16]. The proposed method uses a smaller filter size of the deconvolution is five. The output of
the up-sampling module is an upscaled image, thus the number of filters is set to be one. Meanwhile,
zero padding is adopted to preserve the spatial size of the upscaled image. Different from upscaling
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the images by interpolation method, the filters of deconvolution layer are learned from the training
dataset, which are meaningful and suitable for image SR.

3.1.3. Reconstruction

Directly generated by feature maps with small size, the output of the up-sampling module contains
less information than a high-quality image. To further increase the performance, two convolution
layers are introduced after the deconvolution layer to restore the high-quality image with the context
information of the upscaled image. For both effectiveness and efficiency, the convolution layers adopt
filter size 3 and the number of filters is set to be 16. The output feature map of the last convolution
layer combines the low-frequency information of bicubic image and reconstruct the final high-quality
images.

3.1.4. Summary
Compared to previous CNN based method, the improvements of proposed RTR are described below:

1. The introduction of internal connections allows us to adopt a deeper network which can obtain
larger image regions with more information for reconstruction.

2. The deep network is designed to predict the residual images with high-frequency details while the
low-frequency information is contained in bicubic image, which significantly boost convergence
of the training process.

3. Adopting the residual image as input, the proposed method adds the self-similarity information
of image in the network and further improves the performance.

3.2. Training

The aim of image super resolution is to generate an image as similar as possible to the ground truth
high-quality image. So given N training image pairs { X;, ¥;}/_,, the purpose of training process is to
learn W and b, which minimizes Euclidean loss between the generated HR image Y and the ground
truth image ¥:

2

Y, — ¥ 3)

W, b = arg min L ‘
wb 2N 2

The training process is conducted by the mini-batch stochastic gradient descent method with a batch
size of 64, momentum of 0.9, while all the filters of convolution layers are randomly initialized from
a zero-mean Gaussian distribution with standard deviation 0.01. To get the stable filters efficiently,
adjustable Gradient Clipping is used, the learning rate is initially set to 0.1 and decreased by a factor
of 0.1 until the validation loss is stabilized.

The proposed model is trained using the Caffe package on a workstation with an Intel 17 6800k CPU
and a GTX1080 GPU.

4. Experiments
4.1. Dataset

Dong and colleagues [13] reported that the effect of big data in low-level computer vision problems
is not as impressive as that shown in high-level computer vision problems. So 80 images acquired by
the digital radiography system were used as a training dataset for the experiments, which is sufficient
for the task. It contained DR images collected from 3 different cars with a 450kev X-ray machines and
1984 2.5 mm * 2.5 mm scintillation detector elements. The corresponding low-quality images were
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Fig. 2. An example image of the dataset.

simulated by reducing size and adding Poisson noises to each high-quality images. To avoid over-fitting
and make full use of the dataset, data augmentation techniques including rotation and flipping are used,
which generates 5 times more images for training. Figure 2 shows a typical image of the dataset, while
Fig. 3 shows an original ROI image and its corresponding low-quality image.

Since direct processing of the entire DR image is impractical, the training images are randomly
cropped to patches as the ground truth HR examples, which are proportional to depth of RTR network.
The size of the patches can be calculated as:

[2D+1) x n] x [2D+1) x n] 4)

where D is the depth of the network and n is the upscalling factor.

It should be noted that the training dataset used in this study is quite different from real application.
A better choice is to take a more practical way to generate the training data in real applications.
For example, we can choose images with longer exposure time and less statistical noises as ground
truth images while images with shorter exposure time and more statistical noises can be set as input
images.
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Fig. 4. Performance curves for different networks on the test dataset with an up-sampling factor 2.

4.2. Architecture analysis

To prove the efficiency of the network of the proposed method, the proposed method and its variants
are evaluated on a test dataset with 5 images acquired from the same system with the training dataset.
PSNR metrics are used for quantitative evaluation, which are widely used in image denoising and
SR problem. To investigate the impact of the introduction of each module on the final performance,
we trained the proposed network and its variant without bicubic interpolation image, without residual
image and without internal connection in feature extraction unit respectively. The experiment strictly
followed the above implementation details, and the upscaling factor of the network is set to be 2. The
number of filters of each convolution layer is set to 16, and the number of the feature extraction unit is
set to 4. To validate the proposed method, the SRCNN is also trained on the dataset. Figure 4 depicts
the PSNR convergence curves of the networks on the test set.
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4.2.1. Bicubic interpolation image

Our method introduces a bicubic image and trains the deep net to predict the residual image. As the
figure shows, the network with bicubic image converges much faster and shows better performance
than the network without bicubic image, which also can be observed in deep residual net. From the
experimental results, we could conclude that the introduction of the bicubic image plays a similar role
as the short connections in the deep residual net, which set the deep net to learn the residual image and
eases the training process of network.

4.2.2. Residual image

We add a residual image of the low-resolution image and its corresponding coarse image as an input
of the neural network. As the figure shows, the network with residual image shows better performance
than the network without residual image, which also can be observed in deep residual net. From the
experimental results, we could conclude that the image self-similarity is incorporated into the RTR
network to predict the target residual image, which improves the performance of the network.

4.2.3. Internal connections

As evaluated in deep residual net, skip connection is helpful to ease training and improve the
performance, which has been widely used to train deep CNNs. In this study, we introduce internal
connections in the feature unit. Meanwhile, we adopt a convolution layer without activation function
to avoid loss of the information from the previous layer caused by Relu layers. The results show that
the internal connections is an essential structure for the RTR network, which leads to a performance
improvement.

5. Results
5.1. Performance differences of using more or less parameters

The reconstruction performance can be improved by adopting more parameters at the cost of running
time. A suitable parameter number selection would accelerate the reconstruction while maintaining a
good performance. The RTR network consists of M convolution layers and a deconvolution layer and
the filter number of each layer is N. Due to the filter size of each convolution layer is set to 3. The
parameter number can be calculated as

9(N2 x (M — 6) + 6N) + 50N (5)

As a result, width and depth are two sensitive variables which decides the parameter number of the
network. To evaluate the relationship performance and parameter numbers, different depth and width
of RTR were tested in this study. Different settings are named as RTR-d-w, where d is the number
of feature extract units and w is the number of filters. In this study, RTR-1-16, RTR-1-32, RTR-1-64,
RTR-2-16, RTR-2-32, RTR-2-64, RTR-4-16, RTR-4-32, and RTR-4-64 are tested on a 128%128 ROI

Table 1
Average PSNR and test time comparison on test dataset of different methods

Method RTR-1-16 RTR-1-32 RTR-1-64 RTR-2-16 RTR-2-32 RTR-2-64 RTR-4-16 RTR-4-32 RTR-4-64

Parameters 13184 49408 190976 20096 77056 301568 33920 132352 552752
Time (s) 0.10 0.24 0.62 0.14 0.33 0.83 0.21 0.53 1.02
PSNR (db) 30.43 30.63 30.71 30.67 30.84 30.91 30.79 30.95 30.98
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Table 2
PSNR comparison on three ROI images with different methods
Method Bicubic WHHM BM3D SRCNN RTR
ROI1 26.09 27.95 28.05 29.06 30.08
ROI2 26.99 29.65 29.78 29.87 30.77
ROI3 28.45 31.57 31.76 31.65 32.45
Mean 27.18 29.72 29.86 30.20 31.11

o m—

(d) BM3D (e) SRCNN (f) RTR

Fig. 5. Enhancing results of ROI1 with upscaling factor 2.

image. The results of RTR with different depth and width are shown in the Table 1. From the table,
we can observe that both the increase of width and depth improve the performance. However, RTR-
4-32 get better performance with less parameters and time consuming than RTR-1-64 and RTR-2-64,
which indicates that the increase of the depth of the network is a more effective way to improve the
performance. Although most of image denoising network adopt 64 filters for each convolution layer,
the performance difference between RTR-4-32 and RTR-4-64 is not remarkable, which indicates that
the parameters of RTR-4-32 is sufficient for the dataset to represent the image features. The running
times of processing the ROI image of the RTR are in one second, however it’s still time consuming
for RTR to process a large x-ray image. Thus, RTR-4-16 is recommended to balance the processing
speed and performance on this dataset, while different options should be tested on different datasets.

5.2. Comparison with conventional methods

The experimental results with the proposed RTR method clearly differ from those with other methods,
namely the Bicubic, WNNM, BM3D and SRCNN. In the test, the upscale factor of the low-quality
image is 2, and the WNNM and BM3D are operated on the bicubic image, while SRCNN is trained
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Fig. 6. Enhancing results of ROI2 with upscaling factor 2.

(c) WHHM

- - e —

l LEL‘IE ==

(d) BM3D (e) SRCNN (f) RTR

Fig. 7. Enhancing results of ROI3 with upscaling factor 2.

on the same dataset with RTR. Table 2 summarizes the quantitative performance (PSNR and test
time) for different upscaling factors. The proposed RTR method outperforms the previous methods
on the PSNR values. It is shown that larger data is beneficial to the final performance, thus further
performance improvements of our method can also be expected when using more training images.
Figures 5-7 show the enhanced images processed by different methods. The high-quality images
generated by the proposed RTR method are much clearer than other results with sharper edges and

less artifacts.
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6. Conclusions

In this study, a residual to residual CNN method has been proposed and tested to enhance low-quality
DR image with increased image resolution and signal-to-noise ratio (denoising). The RTR network
incorporates the image self-similarity by adding the residual image from the input image and its coarse
image as an input. Study results showed that the proposed method effectively suppressed the noise
and enhanced DR image quality, which indicates a great potential for applying deep learning to DR
image processing. In addition, study has also demonstrated that selecting an appropriate number of
parameters could boost the processing speed while maintaining excellent performance.
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