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An analysis of curling using
a three-dimensional Markov model

Paul Brenzel∗, William Shock and Harvey Yang
Yale School of Management, New Haven CT, USA

Abstract. Using data from 1,199 matches containing 10,933 ends in the Canadian Men’s Curling Championships, we
developed both a three-dimensional empirical state space model and three-dimensional homogeneous and heterogeneous
Markov models to estimate win probabilities throughout a curling match. The Markovian win probabilities were derived
from the observed scoring probabilities using recursive logic.

These win probabilities allowed us to answer questions regarding optimal curling strategy. When presented with the choice
to score 1 point or blanking an end, we conclude that teams holding the hammer should choose to blank the end in most
situations. Looking at empirical results of conceded matches, we conclude that concession behavior is consistent with a
psychological win probability threshold of 2.57%. However, we also find that teams frequently concede when their win
probability at time of concession is, in fact, much higher than this threshold. This is true particularly after the 9th end,
suggesting that teams are conceding matches when they have up to a 15% chance of winning.
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1. Introduction

Curling is one of Canada’s most popular sports
and has been rising in popularity in the United States
since the 2010 and 2014 Winter Olympic Games,
as reported by Sports Illustrated (2012) and Carlson
(2014). The sport pits two teams against one another
in an effort to guide stones down an ice sheet towards
the ‘house’ which contains a target known as the
‘button’. Teammates use brooms to sweep the ice in
order to influence the movement of the stones in the
desired direction. Matches contain ten ‘ends’; indi-
vidual sets after which the sheet is cleared. Each team
is permitted to throw eight stones per end; the team
throwing last is said to ‘hold the hammer’. The team
with the stone closest to the button at the conclusion
of the end has scored. Points are awarded for each
stone which is closer to the button than their oppo-
nent’s closest stone. Figure 1 illustrates the layout of a
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‘sheet’, including the location of the ‘button’ and the
‘house’.

Teams who hold the hammer relinquish control of
the hammer if they score points during an end. They
do not forfeit the hammer if their opponents manage
to ‘steal’ the end and score despite not throwing last.
They also do not lose the hammer if no one scores (a
‘blank’ end). It is an assumption among competitors
at the highest levels of curling that teams with the
hammer can score at least one point during an end,
however, many teams choose to strategically blank
the end and maintain the hammer rather than take
one point but lose hammer control.

Each team is timed; teams currently have a total of
38 minutes per match (40 minutes from 2012-14) to
discuss their shots (Curling Canada, 2016). This is a
change from the previous timing rule, under which
teams had a total of 73 minutes to both discuss their
shots and throw their stones (Karrys, 2012). Once
a team has run out of time it may no longer throw.
Matches may be conceded at any time by either team;
the culture of the sport encourages teams which feel
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Fig. 1. Diagram of the playing surface in a curling match (Apollo Curling, 2018).

they have no chance of winning to concede rather
than prolong a decided game.

Given curling’s recent increase in popularity, as
well as the relative lack of research into applica-
tions of Markov states in the sport, we believe the
ability to estimate win probabilities for all given
states in curling unlocks a new analysis regime which
could materially impact curling decisions and strat-
egy. Empirical win probabilities are not sufficient for
understanding state win probability as comeback win
likelihood is censored by concession behavior which
will be discussed further in the analysis.

Researchers have applied state space models to
a wide range of other sports: Baumer, Jensen, and
Matthews (2015) applied it to baseball, Koopmeiners
(2012) applied it to American football, and Kaplan,
Mongeon, and Ryan (2014) applied it to ice hockey.
Researchers have also looked at sports outside the
“big four” in the United States: Nadimpalli and
Hasenbein (2013) examined tennis, and Jarvandi,
et al. (2013) used a semi-Markov decision process
to examine soccer.

Prior research by Willoughby et al. (2001) mod-
eled curling as a Markov process to find an ‘expected
point differential’ at each end. We propose to expand
on this analysis by estimating win probabilities of
different states in a curling match. These states are
defined as a function of end, hammer possession, and
score differential, with the probability mass function
of scoring being used to define the probability of tran-
sitioning between different states. Willoughby and
Kostuk (2006, 2005 and 2001) also researched what
teams should do with the hammer in the 9th end,
finding that it is always better to blank the 9th to keep
the hammer. We are curious to see if our model will
come to the same conclusion. Finally, Park and Lee
(2013) used statistical regressions to determine the

probability of winning based on holding the hammer.
They found that the most important end to hold the
hammer is the 9th.

We created both a three-dimensional empirical
state space model and a three-dimensional Markov
model in order to analyze win probabilities and
answer the following questions: First, what does the
Markov model say about win probabilities in the vari-
ous states and how does the empirical win probability
model compare to a Markov model? Next, how can
we use these win probabilities to help decide when a
team holding the hammer should choose to blank the
end? Finally, when should teams concede, and how
does this compare to when teams actually concede?

For the purpose of comparing this analysis to
prior work, the two most similar papers include
Willoughby et al. (2001) and Willoughby and Kostuk
(2005).

The Willoughby and Kostuk (2005) paper analyzes
a specific decision point facing curls in the 9th end.
The decision tree approach pursued in this paper will
produce the same results as a Markov model with the
same underlying scoring assumptions, but its use and
strategic recommendations are restricted to that one
end. Through the application of Markov recursive win
probability function, one can extend the same logic
recursively back to all states of the game.

The Willoughby et al. (2001) uses a Markov model
to generate expected point differentials of all states in
the game. However, this Markov model is not used to
predict win probabilities, something we, the authors,
believe is of more relevance given its implications to
curling decisions. Curlers shouldn’t care what their
expected score differential is, but rather what the like-
lihood that their score differential is greater than zero
by the end of the match for any state of the game, as
that is the win condition.
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The recursive win probability function (equations 4
& 5) is the novel concept introduced which allows one
to solve for all state win probabilities simultaneously
with some assumption of underlying scoring dis-
tributions and boundary conditions. The cross-state
win probabilities unlocks the ability to extend curl-
ing strategy recommendations, such as blank versus
score, or analyze concession behavior for all possible
states of the game.

2. Methodology

2.1. Data overview

We analyzed matches played in the Canadian
Men’s Curling Championships (known for sponsor-
ship reasons as the Labatt Brier, Nokia Brier, or Tim
Hortons Brier) from 1998 to 2014. We restricted our
analysis to the post-Olympics curling era; curling was
first played at the Olympic Games in 1998. We believe
that the addition of curling to the Olympics improved
the quality of play (World Curling Federation, 2016)
and, therefore, did not see value in comparing dif-
ferent eras of the sport. Box score information was
retrieved from the Cassidys’ Curling Canada Stats
Archive (Cassidy and Cassidy, 2015). The score infor-

mation included the year of the match, round of the
tournament, match location, teams competing, score
in each end, final score, time remaining for each team,
and which team started with the hammer in the first
end. We used information from 10,933 ends reflect-
ing 1,199 matches. Figure 2 summarizes all observed
ends by end number and score differential.

We used these data to create a three-dimensional
empirical state space tracking three variables. The
empirical state space win probabilities were cal-
culated from the frequencies of eventual victories
given all observed games in a given state. We also
built a three-dimensional Markov model to predict
win probabilities assuming a homogeneous scoring
distribution. The three state variables used in the
models are the end, hammer state and score differ-
ential. Table 1 summarizes and explains each state
variable.

2.2. State space overview

To use Markov methodology to model the sport
of curling, one must define all possible scenarios
that could occur over the course of a game. All per-
mutations from all possible variable values (shown
in Table 2) collectively form the state space of the
model, where each permutation is a possible state.

Fig. 2. Summary of Dataset, Showing Total Observed Ends by Score Differential and End.
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Table 1

Discrete variables used in three-dimensional state space models

Variable Name Range Description

Score Differential −11 ≤ x ≤ 10 Reference team’s score less opposing team’s score
End 1 ≤ e ≤ 11 Beginning of end e
Hammer h ∈ {0, 1} 0: Reference team does not hold the hammer; 1: holds the hammer

Table 2

State space boundary conditions for state space Markov model

Assumption Description

wp(x ≥ k, e, h) = 1 Team expected to win with certainty once a lead of at least k
wp(x ≤ −k, e, h) = 0 Team expected to lose with certainty once trailing by k points
wp(x > 0, 11, h) = 1 Team wins if it has a positive score differential after 10 ends (beginning of the 11th end)
wp(x < 0, 11, h) = 0 Team loses if it has a negative score differential after 10 ends (beginning of the 11th end)
wp(0, 11, 1) Win probability with hammer advantage after 10th end (see geometric series below)
wp(0, 11, 0) Win probability without hammer advantage after 10th end

For example, a particular state may be that the
team in question is: down by 2 in the 8th end, and
holds the hammer. That state can be represented as
(x,e,h) = (–2, 8, 1). The objective of this analysis is to
define the eventual win probability of all states in the
relevant state space.

Due to the rules of curling, the possible transitions
from each state to the next state are limited. The end
of a state must always be greater than the end of
a prior state by a value of 1. In other words, ends
proceed sequentially throughout the game. Likewise,
the hammer possession transitions are defined by the
rules of curling, where the hammer possession of a
state depends on whether that team held the hammer
in the prior state and the end score recorded in that
state. Finally, the score differential of a given state
is equal to the score differential of the previous state
plus the end score.

In order to use a Markov model to exhaustively
estimate the win probability of every state in the state
space, one must also know all possible state transi-
tions and their associated probabilities. In curling this
is simply all possible scores than can be recorded in
a single end. From the data it is clear that the like-
lihood of scoring very much depends on whether a
team has the last shot advantage (holding the ham-
mer). The homogeneous model introduced assumes
that state transitions are only a function of hammer
possession and are thus independent of other param-
eters in the game such as end or score differential.
The heterogeneous model later introduced assumes
there is state dependence on the transition function;
specifically, that teams play differently based on their
current circumstances other than hammer possession.
State dependence of the transition function becomes
increasingly important in the 10th end, where the

team with the higher score at the conclusion of the
end wins.

For an example of this state dependence, one would
assume that a team down by 2, in the 10th end with
hammer advantage would play very differently than a
team tied in the 1st end with hammer advantage. The
difference in strategy and playstyle is not accounted
for in the homogeneous model, but is accounted for
in the heterogeneous model.

2.3. Empirical state space methodology

With the data prepared, the first step in inves-
tigating the state space model required looking at
empirical win percentages as a function of the vari-
ables described above. The total number of matches
that passed through each discrete state were counted,
as well as the eventual victors of those matches. The
win probability was estimated as the total number of
victors over the total number of matches that passed
through a particular state.

2.4. Markov methodology

The Markov model aims to develop the expected
win probability of any curling team given the cur-
rent state and all potential future transition states. The
expected win probability for any state is denoted as:
wp(x, e, h) where x is the score differential at the con-
clusion of end e and h equals 1 if the team holds the
hammer.

2.4.1. Boundary conditions
To simplify analysis, the boundary conditions sum-

marized in Table 2 are used.
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2.4.2. Transition to subsequent states
In our analysis, we restricted the number of points

scored in a given end to 5 or fewer. Based on empirical
data, greater than 5 points are scored in fewer than
0.5% of ends played. Letting y denote change in score
during an end, the list of possible transitions from a
given state are:

• (x, e, h) → (x + y, e + 1, 0) if 0 < y ≤ 5

• (x, e, h) → (x, e + 1, h) if y = 0

• (x, e, h) → (x + y, e + 1, 1) if − 5 ≤ y < 0

(1)
where:

• 1 ≤ e ≤ 10 and h ∈ {0, 1} (2)

That is, from any given end, score and ham-
mer state combination, the following transitions can
occur:

• The team scores and will not possess the hammer
in the subsequent end

• The end is blanked and hammer possession will
not change in the subsequent end

• The team is scored upon and will possess the
hammer in the subsequent end

2.4.3. Probability of each transition
The probability of transitioning from a given state

to any one of the possible subsequent states is
estimated from empirical scoring distributions con-
ditional on hammer possession. Let P(y|h) denote
the conditional probability that a team scores y
points given the hammer state h. Because the scor-
ing probability is only dependent on the hammer
possession condition, this will be defined as the
homogeneous scoring distribution. A summary of the
scoring distribution conditional on hammer posses-
sion is visualized below.

Later models will incorporate additional condi-
tional information into the transition probability. Let
P(y|x, e, h) be the probability of a scoring transition,
conditional on the current state of the game as defined
by the current score differential, end and hammer
possession. This will henceforth be defined as the
heterogeneous scoring probability.

However, it is expected that the shooting strat-
egy will be similar across different groups of states.
Therefore, some states were grouped together for the
purpose of drawing from a common scoring distri-
bution. Specifically, groupings were chosen so that
unique scoring probability functions could not be
further distinguished within the grouping, but were

observed to vary substantially across groupings, due
to similar strategy for states within a grouping. The
groupings considered for the heterogeneous model
are as follows.

• End 1, tie game
• Ends 2–9, all score differentials
• Ends 10–11, individual score differentials

◦ Each score differential represents its own
groupings, given how proximate win con-
ditions affect observed shooting strategy

◦ Sub-groupings include ≤ –3, –2, –1,
0, 1, 2, ≥3. As observations for
P (y||x| > 3, e ≥ 10, h) were unavail-
able, it was assumed that P (y||x| > 3,

e ≥ 10, h) = P (y||x| = 3, e ≥ 10, h)

This segmentation yields a total of 9 different
groups. To populate the scoring distributions of
each grouping, all 10,933 ends were segregated and
categorized to one of the 9 groupings. A scoring dis-
tribution for each grouping would then be generated
with the model referencing the appropriate scoring
distribution given the state in question.

The complete visualization of all scoring distribu-
tions can be found in Fig. 12 in the appendix. As seen
in both the homogeneous and heterogenous scoring
models, there is a heavy spike at “End score = +1”.
This can be explained by curling scoring rules and
the fact that each team competing in the Brier is
highly skilled. Recall that the winning team at the
conclusion of an end is the one whose stone is closest
to the center of the target. Furthermore, the winner
of each end is awarded points equal to the number of
its own stones that are closer to the center than the
closest stone placed by its opponent. Thus, assuming
that teams competing in the Brier are (roughly)
equally and highly skilled, one can imagine the likely
outcome of an end being teams alternately placing
their stone closer to the center with each throw. The
team throwing last (hammer advantage) then places
its final stone closest to the center of the target,
thereby winning the end and scoring a singular point.

2.4.4. Boundary conditions/sensitivity analysis
Recall in Table 2 that a team is assumed to

automatically win when ahead by k points and
automatically lose when down by k points. In order
to determine which boundary condition k to use for
the model, one can recalculate the model assuming
different values for k.

By incrementally increasing the model parame-
ter k, one can observe the resulting effect on win



106 P. Brenzel et al. / A Markovian analysis of curling

probability. It is expected that increasing k beyond
some threshold will no longer yield substantial
changes to Markovian win probabilities. At this point,
the model is deemed to have diminished sensitivity
to further increases in k, at which point that particular
value of k will be used for the final preparation and
presentation of the model.

Proper selection of the k parameter allows for a
reduction in size of the total Markov state space, thus
saving computational effort. The sensitivity analysis
allows this selection to be done without sacrificing
integrity of the model results.

In practice, concession behavior presents its own
boundary for comeback wins, as losing teams tend
to concede when they believe the chances of win-
ning are sufficiently low. However, the intention
of the Markov model is to predict win probabil-
ity assuming teams played to completion, so it
is not within the scope of the Markov model to
incorporate concession behavior. Concession behav-
ior is further analyzed in the results and analysis
section by comparing to observed concessions
and the associated state specific Markovian win
probability.

2.4.5. Symmetry
It is important to note an important concept regard-

ing the likelihood of winning and scoring. Due to the
nature of the game, the win probability of both the
hammer team and the non-hammer team must sum to
1 for any given state of the game.

Likewise, the scoring probability of the non-
hammer team is exactly the opposite of the hammer
team. For any given state, the probability of the non-
hammer team to score y points in an end must be
the same as the hammer team scoring –y, with their
respective score differentials reversed.

Mathematically, the concept of symmetry with
regards to win probability can be represented as the
following: wp (x, e, 0) = 1 − wp (−x, e, 1).

Likewise, symmetry for scoring probability can
be represented as the following: P (y|x, e, 0) =
P (−y| − x, e, 1).

Because symmetry allows us to easily estimate
the probabilities associated with non-hammer states
given estimated probabilities from hammer states,
tables and figures in this work will only present prob-
abilities from the perspective of the hammer team.

2.4.6. Estimating win probability in extra ends
If two teams are tied at the conclusion of 10 ends,

extra ends are played. In the 11th end, there are two

possible outcomes: one of the teams scores one or
more points and wins the match, or the end is blanked
and the match continues for a 12th end. By analogy,
the possible outcomes for the 12th and subsequent
ends are the same.

Thus, the win probability for the team holding the
hammer in extra ends is:

wp(0, 10, 1) = P(Score in 10th) + P(Blank the 10th)

×wp(0, 11, 1) where

wp(0, 11, 1) = P(Score in 11th) + P(Blank the 11th)

×wp(0, 12, 1) and so on.

(3)
Because the strategy shouldn’t change in either

“next score wins” situation, we can assume the
probability distribution of scoring will be the same
for all ends after the 10th when the score is tied.
With that assumption, it can be inferred that the
probability of the team with the hammer winning
in extra ends is the sum of the resulting geomet-
ric sequence. From Fig. 3, P (y ≥ 1|1) = 68.23%
(the probability the hammer team scores one or
more points in a given end) and P (y = 0|1) =
12.42% (the probability of a blank end given hammer
possession).

Subsequently, we can calculate wp(0, 10, 1) =
0.6823

1−0.1242 = 77.91%. This is the homogeneous win
probability of a team tied in the 10th end with the
hammer.

Likewise, the same logic can be used to esti-
mate the heterogeneous win probability wp(0,10,1).
From Fig. 4, P (y ≥ 1|0, 10, 1) = 79.97% and
P (y = 0|0, 10, 1) = 0%.

Subsequently, we can calculate wp(0, 10, 1) =
0.7997
1−0.0 = 79.97%. Because there were no observed
blanks in a tied game in the 10th end, the heteroge-
neous win probability with hammer advantage in this
situation is the same as the probability for the hammer
team scoring more than 1 point.

2.4.7. Transition equation
The Markovian win probability of a given state can

be calculated as the probability-weighted average of
win probabilities associated with all homogeneous
possible state transitions j:

wp(x, e, h) =
∑5

j=1

[
P (y = j|h) × wp(x + j, e + 1, 0)

]

+P (y = 0|h) × wp(x, e + 1, h)

+
∑−1

j=−5

[
P (y = j|h) × wp(x + j, e + 1, 1)

]
(4)
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Fig. 3. Homogeneous Probability Mass Function of Scoring.

Fig. 4. Heterogeneous Probability Mass Function of Scoring of Select Groupings.

Likewise, the Markovian win probability of any
given state can be calculated using heterogeneous
state transitions j:

wp(x, e, h) =
∑5

j=1

[
P (y = j|x, e, h)

×wp(x + j, e + 1, 0)
]

+ P (y = 0|x, e, h)

×wp(x, e + 1, h) +
∑−1

j=−5

[
P (y = j|x, e, h)

×wp(x + j, e + 1, 1)
]

(5)

Given the boundary conditions per Table 2 and the
transition probabilities illustrated in Figs. 3 and 4,
the win probability of any given state in the game
can be estimated using recursive logic. Recursing win
probabilities back to all states forms the underlying
basis for the Markov model.

2.4.8. Uncertainty analysis
To estimate the uncertainty associated with the win

probabilities predicted by the Markov model, boot-
strapping can be performed using random resampling
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and replacement. The resulting variability in scoring
probabilities and Markovian win probabilities indi-
cates the uncertainty.

Specifically, each end in the dataset was substituted
with a randomly drawn end. The randomly drawn end
is generated by randomly selecting one of the 10,933
ends, recording the end score and associated state, and
repeating 10,933 times to generate a new dataset. For
that iteration, the new resampled dataset would cre-
ate a scoring distribution from which a new Markov
model could be generated with win probabilities for
each state. After 10,000 iterations, estimates of the
uncertainty associated with each scoring probability
and win probability were generated from the resulting
distribution.

This procedure was applied for both the homoge-
neous and heterogeneous models. It can be predicted
that the large dataset would yield low uncertainty for
the homogeneous model, as the probability of scor-
ing y points is built from a distribution reflecting
all 10,933 ends and thus not expected to vary with
resampling from such a large common distribution.
However, the heterogeneous model contains state
specific scoring distributions, thus necessitating iso-
lation of different groups of states as described earlier.
This segregation yields smaller sub-datasets support-
ing the scoring distribution for that grouping of states,
contributing to higher uncertainty for grouping in
which fewer ends were observed. Because each of the
10th end state scoring distributions were segregated
into separate groups, the uncertainty associated with
win probabilities in the 10th end is expected to be
high, thus reflecting the smaller supporting dataset.

3. Results & analysis

3.1. Sensitivity analysis results

Before the model was finalized, a decision regard-
ing model parameter k was required. Recall from
Table 2 that parameter k represents the boundary con-
dition for score differential at which the outcome of
the game is assumed to be a foregone conclusion.
As described earlier, Markovian win probabilities
exhibit diminishing sensitivity to k. Multiple versions
of the homogeneous Markov model were calculated
and presented in Fig. 5 for 5 ≤ k ≤ 10.

As can be observed, most win probabilities are not
sensitive to k across all model iterations. States which
were the most sensitive to k include those early in the
game and with lopsided score differentials.

Because all state specific win probabilities sta-
bilized at k ≥ 8, it was concluded that this value
would be sufficient and was thus selected for further
analysis.

An alternative visualization of model sensitivity to
k is presented in the appendix in Fig. 13.

3.2. Empirical win probability

Before modelling win expectations, the likelihood
of any team winning the match in any given state was
estimated directly from the dataset. This was done by
isolating all score differential and end combinations
separately and tracking whether the hammer team in
that scenario emerges as the eventual victor. The frac-
tion of all observations in which the hammer team
eventually wins is considered the empirical win prob-
ability for that state. The results are summarized in
Table 3. While Table 3 describes the fraction of even-
tual victors for any given state, it does not count the
total number of observations for each state. Blanks
cells indicate no observations and thus, the empirical
win probability could not be estimated.

3.3. Markov model results

1. What does the Markov model say about win
probabilities in the various states? How does the
empirical win probability model compare to a
Markov model?

Figure 6 below illustrates the results of the homo-
geneous Markov model (solid lines) against those
of the empirical model (discrete points). The legend
indicates the score differential, while the horizontal
axis indicates the end in question. All win probabili-
ties are presented from the perspective of the hammer
team. Following a single line to the right would be
the equivalent of tracking the Markov win probabil-
ity of a team consistently blanking ends as the game
approached its conclusion.

One insight from the homogeneous model is that it
pays to start the match with the hammer: teams that
hold the hammer at the beginning of a match have a
58% chance of winning. This result is consistent with
the results reported by Park and Lee (2013) as well
as Willoughby et al. (2001).

Although the homogeneous model generally
reports the same win probability trends as the empir-
ical model when the match is close, it consistently
over-predicts the likelihood of comebacks compared
to actual match data.
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Fig. 5. Win Probabilities for Given States Assuming Different Model Parameters k.

Table 3

Empirical win probabilities at the beginning of each end with hammer advantage

Beginning Point Differential

of End –11 –10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

1 59%
2 0% 0% 5% 12% 28% 41% 60%
3 0% 0% 0% 0% 13% 8% 23% 47% 62% 82% 91% 100% 100%
4 0% 0% 0% 0% 0% 4% 10% 22% 45% 64% 78% 91% 95% 100% 100% 100%
5 0% 0% 0% 0% 0% 0% 0% 2% 9% 20% 48% 55% 80% 94% 100% 100% 100% 100% 100% 100%
6 0% 0% 0% 0% 0% 0% 3% 6% 27% 41% 65% 85% 91% 100% 100% 100% 100% 100% 100% 100%
7 0% 0% 0% 0% 0% 0% 10% 17% 36% 66% 83% 95% 100% 100% 100% 100% 100% 100% 100%
8 0% 0% 2% 1% 6% 22% 41% 64% 94% 98% 100% 100% 100% 100% 100%
9 0% 0% 0% 1% 10% 36% 63% 86% 100% 100% 100% 100%
10 18% 24% 44% 83% 95% 100% 100%
11 78%
12 100%

We subsequently extended our Markov analysis by
incorporating a state specific scoring distribution that
varied by end to arrive at the heterogeneous Markov
Model. Figure 7 below plots the results of this new
heterogeneous model (solid lines) against those of
the empirical model (discrete points). The results of
the heterogeneous model are largely consistent with
those of the homogeneous model, with improved

fit observed later in the match (e.g. for the 10th
end). This is due to the fact that the heterogeneous
scoring distribution aims to take into account the
state-dependence of the scoring distribution, which
becomes especially relevant in the 10th end due to
proximate win conditions. For example, the shooting
strategy of a team down by 2 with the hammer in the
10th end can be expected to be very different from
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Fig. 6. Homogeneous Markovian Win Probabilities at the Conclusion of Each End with Hammer Advantage (Modeled vs. Observed).

Fig. 7. Heterogeneous Markovian Win Probabilities at the Beginning of Each End with Hammer Advantage.

that of the same team up by 1. Segregating and fil-
tering the data set across these states yields different
observed probabilities of scoring.

In general, teams appear to play more defensively
when ahead in later ends of a match, which reduces
the likelihood of late-game comebacks. This is per-

haps unsurprising, as this sort of behavior is common
across many sports. It is worth noting, however,
that even the heterogeneous model overestimates the
likelihood of late comebacks for larger (>2) score
differentials. A possible explanation for this over-
prediction is that the heterogeneous model’s score
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distribution is not dependent on score differential
until the 10th end or later, thus defensive behavior
is not captured fully before the 10th end.

The results of both Markov models, in addition to
empirical win probabilities, agree with the conclu-
sions made by Kostuk and Willoughby (2004) who
determined that it is preferable to go into the 10th
end up by one without the hammer rather than down
by one with the hammer assuming the probability
of scoring one or more points with the hammer is
greater than 0.5. Our scoring probability mass func-
tion estimates a 68% chance of scoring one or more
points in an end when holding the hammer; our het-
erogeneous Markov model shows the win probability
is 56% entering the 10th end up by one without the
hammer and 44% when entering the 10th end down
by one with the hammer.

Regarding the lower modelled likelihood of a
comeback versus empirical results, we offer the fol-
lowing hypotheses to help explain the difference.

a. Conceding a match is a practice considered
polite once a team realizes that the probability of
winning a match is sufficiently low. The empir-
ical data records concession as a loss without
recording the possible alternative of a come-
back win. This behavior will likely polarize win
probabilities (lower in disadvantaged situations,
higher in advantaged situations) and lead to the
observed discrepancy between the model and
the empirical. Essentially, concession behav-
ior in curling censors the dataset and prevents
observations in comeback probabilities.

b. The homogeneous model also assumes that the
scoring distribution is only a function of ham-
mer possession and does not depend on ends or
point differential. From our knowledge of curl-
ing strategy, teams generally play defensively
when holding the lead. This lowers the vari-
ability of scoring, thus lowering the likelihood
of a comeback if the strategy is successfully
executed. The model does not account for this
particular state dependence.

i. Further support for this hypothesis is the
fact that the Markov Model assuming
a heterogeneous scoring model (which
has more granular scoring distribution
assumptions for the 10th end) offers a
better fit against empirical results for
the 10th end vis-á-vis the same model
assuming a homogeneous scoring model.
This suggests that increasing the state-

dependence of our end-to-end scoring
assumptions reduces the current overesti-
mating of comebacks and improves overall
fit. However, the improved prediction for
comeback situations is primarily observed
in later ends. The heterogeneous model
does not seem to produce better predic-
tions for comebacks in earlier ends. It is
likely that the first explanation dominates
in these situations as an extreme imbalance
in early ends will likely result in a con-
cession, censoring the dataset to prevent
observed comebacks.

3.4. Model uncertainty

Uncertainty was estimated in the model using stan-
dard bootstrapping analysis. Figures 6 and 7 contain
error bars which were derived from the distributions
accumulated via resampling and replacement. The
span of the error bars represents a 95% confidence
interval.

Predictably, the homogeneous model exhibits low
uncertainty. The large dataset was not segregated as
there was no state dependence on the probability of
scoring. Thus, all 10,933 ends were resampled to pro-
duce new iterative scoring distributions, leading to
minimal model variation. The average span of the
95% confidence interval is 0.55% across all states.

The heterogeneous model exhibits higher uncer-
tainty. Because all 10th end states were grouped
separately far fewer observations were recorded
for each grouping. Therefore, bootstrapping yields
higher variability which can be observed by the wider
confidence intervals moving into the later ends.

3.5. Data validation

We further validated our Markov analysis by plot-
ting the heterogeneous model against empirical win
probability implied by 2015 and 2016 Brier Tourna-
ment results. These years were not included in the
data set used to develop the model: therefore, testing
against this additional data would further validate our
model. Similar to the section above, Tables 4 and 5
summarize the empirical win probabilities for each
state with hammer advantage for the 2015 and 2016
tournament years.

Figure 8 below show the results when the heteroge-
neous Markov Model (solid lines) are plotted against
those of the empirical model for the 2015 and 2016
tournaments (discrete points).
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Table 4

Empirical win probabilities at the beginning of each end with hammer advantage for 2015 and 2016 tournaments

Beginning Point Differential

of End –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

1 61%
2 50% 29% 54% 74%
3 0% 0% 0% 25% 33% 61% 81%
4 0% 0% 6% 23% 32% 69% 92% 100% 100%
5 0% 0% 0% 0% 0% 38% 42% 79% 89% 91% 100%
6 0% 0% 0% 11% 27% 30% 72% 88% 100% 100% 100% 100% 100%
7 0% 0% 0% 0% 0% 36% 32% 60% 93% 100% 100% 100% 100% 100%
8 0% 0% 0% 6% 0% 21% 40% 57% 86% 100% 100% 100% 100% 100%
9 0% 0% 0% 1% 10% 36% 63% 86% 100% 100% 100% 100%
10 18% 24% 44% 83% 95% 100% 100%
11 78%
12 100%

Table 5

Heterogeneous Markov model strategy matrix. Values show the marginal win probability advantage of blanking over scoring 1. Green
indicates blanking is the optimal strategy

Decision Point Differential

End –5 –4 –3 –2 –1 0 1 2 3 4 5

1 3.2%
2 0.9% 1.5% 2.3% 3.0% 3.4% 3.4% 3.0% 2.3% 1.5% 0.9% 0.5%
3 0.8% 1.5% 2.3% 3.1% 3.7% 3.7% 3.1% 2.3% 1.5% 0.8% 0.4%
4 0.7% 1.4% 2.2% 3.2% 3.8% 3.8% 3.2% 2.2% 1.4% 0.7% 0.3%
5 0.6% 1.3% 2.4% 3.6% 4.5% 4.5% 3.6% 2.4% 1.3% 0.6% 0.2%
6 0.4% 1.0% 1.9% 3.0% 3.8% 3.8% 3.0% 1.9% 1.0% 0.4% 0.1%
7 0.3% 0.9% 2.6% 5.2% 7.5% 7.5% 5.2% 2.6% 0.9% 0.3% 0.1%
8 0.0% 0.3% 0.2% –0.2% –0.2% –0.2% –0.2% 0.2% 0.3% 0.0% 0.0%
9 0.0% 0.0% 5.0% 14.0% 24.8% 24.8% 14.0% 5.0% 0.0% 0.0% 0.0%
10 0.0% 0.0% 0.0% 0.0% –19.3% –19.3% 0.0% 0.0% 0.0% 0.0% 0.0%
11 –19.3%

The results of this analysis generally agree with
the initial validation in the above section. The
heterogeneous model continues to overestimate the
likelihood of late comebacks of score differentials
greater than 2. The 2015 & 2016 Brier empirical
win rates seem to indicate that the model over-
estimates the likelihood of a comeback to an even
larger extent compared to the 1998–2014 dataset.
A possible explanation for this over-estimation is
that teams have become more consistent and precise
over the years, reducing variability of scoring and
thus, reducing likelihood of a comeback. Because the
model was derived from scoring probability of the
1998–2014 dataset, the hypothesized reduced vari-
ability of scoring in later years wouldn’t reflect in the
model. Thus, the model would appear to over-predict
comebacks to an even greater degree. This contribu-
tion would be cumulative with the aforementioned
effect of the concession behavior, where concession
behavior would be expected to reduce likelihood of
comebacks.

In addition, the heterogeneous model overesti-
mates the likelihood of comebacks during the middle
of a match – specifically, between ends 4 and 6. There
also appears to be high deviation in the empirical
win probabilities around ends 5 and 8: the likeli-
hood of a comeback decreases until the halfway point
whereby comebacks become increasing likely until
end 8 before decreasing again. This phenomenon is
also observed in the initial data set to a lesser degree.
This suggest the pronounced inflections in the 2015
and 2016 data may be due to additional noise from
a smaller dataset or a peculiarity in these tournament
years.

3.6. Model implications and use cases

The Markov model allows us to graph the expected
win probabilities for each team over the course of a
match in a manner similar to those supplied on pop-
ular websites for other sports. Figure 9 provides an
example of this win probability scoreboard for the
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Fig. 8. Heterogeneous Markovian Win Probabilities at the Conclusion of Each End with Hammer Advantage. Empirical data shown for
2015 and 2016 tournament years (Modelled vs. Observed).

championship match of the 2014 Brier between Team
BC and Team Alberta.

2. How can we use these win probabilities to help
decide when a team holding the hammer should
choose to blank the end?

We can see that the relative advantage of holding
the hammer increases as the conclusion of the match
approaches, most starkly at the conclusion of the 9th
end. Teams are commonly faced with the following
decision: score one point and give up the hammer in
the subsequent end or blank the end to retain posses-
sion of the hammer in the subsequent end. Looking
at win probabilities this decision can be modelled
mathematically as:

wp(x, e + 1, 1) > wp(x + 1, e + 1, 0). (6)

If this inequality holds true, the team should choose
to blank the end, assuming that teams are sufficiently
skilled to blank the end with 100% certainty. Other-
wise, the team should take the point, also assuming
that the teams are sufficiently skilled to score one
point with 100% certainty. If we check this inequal-
ity for every possible state of the match using the
heterogeneous Markov model, Table 5 is produced.

The analysis indicates that prior to the seventh end,
it is always preferable to blank the end, regardless of
other factors.

However, there are two broad recommendations
that are intriguing at first glance. First, the matrix
suggests blanking in the 9th end if down by one or
tied, which aligns with the general intuition that it is
preferable to retain the hammer in the 10th end for
close matches.

In the eighth end, the matrix suggests that it is
preferable to score one rather than blank for score
differentials between –2 and +1 (inclusive). This rec-
ommendation should generally agree with intuition
since this will allow the team holding the hammer in
the 8th end to regain the hammer for the 10th end in
a close match. However, the marginal advantage of
scoring one versus blanking in the 8th is minor and
within the margin of error presented in the bootstrap-
ping analysis.

Our recommendation for the 9th end is consistent
with that of Willoughby and Kostuk (2005), which
concludes that it is always preferable to blank in
the 9th in order to retain the hammer. Willoughby et
al. (2005) assumed an empirical scoring distribution
conditional on score differential and end, while our
analysis considers either a homogeneous scoring dis-
tribution as a function of only hammer possession,
or a heterogeneous scoring distribution as a func-
tion of end, score differential (for the 10th end only)
and hammer possession. The conclusion, however, is
the same. Furthermore, the Markov model can use
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Fig. 9. Sample “Alternative Scoreboard” for the 2014 Brier Tournament Championship Match.

recursive logic to extend the strategy recommenda-
tion back to all possible states of the game and finds
that this recommendation holds in most cases.

We can further generalize the strategy implica-
tions to a hypothetical curling match with infinite
ends. In this situation, each team will want to max-
imize the expected value of their point differential.
When a team with the hammer scores, the immedi-
ate point(s) associated with that score are realized,
but the team loses the value associated with hammer
possession. When the non-hammer team is scored
upon, that team’s point differential is reduced but
is partially compensated for with the benefit of sub-
sequently controlling the hammer. Suppose v is the
value of the hammer possession, r is the number of
expected points scored per end with hammer posses-
sion, and p is the probability of maintaining hammer
possession through the next end. We can see that the
following equation must hold:

v = r + (p × v) − [(1 − p) × v] (7)

Solving for v, this reduces to . . .

v = r

2(1 − p)
(8)

Assuming the homogeneous scoring probability
mass function illustrated in Fig. 3, we can see that:

r =
∑5

j=−5
[P (y = j|1) × j] = 0.838

and p = P (y ≤ 0|1) = 0.318

Therefore, the value of holding the hammer is equal
to 0.614.

When considering a situation where the team with
hammer possession is deciding between shooting
aggressively or blanking the end with complete cer-
tainty, then the following inequality must hold true to
justify scoring over blanking an end:

γ − v > v or γ > 2v (9)

where � is the threshold number of points expected at
which the aggressive strategy is preferred to blanking
the end.

We can see that given the value of the hammer of
0.614 points, the aggressive strategy must yield at
least 1.23 points on average to be justified, or two
points in practice. If the decision involves blanking
versus scoring one point, blanking is always the opti-
mal strategy in infinite curling, which is consistent
with the recommendations presented in Table 5 for
finite curling (with some minor exceptions).

3. When should teams concede? How does this
compare to when teams actually concede in real life?

The heterogeneous Markov model assumes that a
team has zero chance of winning if the deficit reaches
eight points, with this assumption being supported
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Fig. 10. Observed number of concessions against conceding team’s win probability at time of concession when conceding team holds the
hammer.

Fig. 11. Observed number of concessions against conceding team’s win probability at time of concession when conceding team does not
hold the hammer.

by the sensitivity analysis presented earlier. Implicit
in this assumption is the expectation that the teams
play out regardless of either team’s win probability.
However, concession behavior censors observed win
likelihood in high point differential situations. None
of the major authorities including the World Curl-
ing Federation, the U.S. Curling Association, and the
Canadian Curling Association, have strict guidelines
on when teams should concede.

To answer the first question we assume that there
exists a threshold, w* such that if a team’s win prob-
ability dips below this threshold, the team should
concede the match per curling etiquette. Summariz-
ing all conceded matches in the 1998–2014 Brier
Tournaments, we arrive at Figs. 10 and 11 illustrat-
ing the frequency of concessions by win probability
at time of concession.

Intuitively, teams are observed conceding when
their win probability is sufficiently low, with the mean
win probability at time of concession being 2.28%
when the team possessed the hammer and 3.58%

when the team did not possess the hammer. There-
fore, it appears that most teams have a psychological
threshold for w* of around 2.57% averaged across
both situations. Given this value of w* and the Marko-
vian win probabilities, Tables 6 and 7 illustrate states
in the game where one would expect to see the losing
team concede.

This is compared to the observed concessions and
the implied Markov win probabilities at the time of
concession as represented in Table 8.

As illustrated, teams do not appear to concede
above the 2.57% average threshold with the notable
exception of the 9th end, where there were 53
observed concessions in a state where the win prob-
ability was above 15%, and 88 observed concessions
with a win probability of 4%. Furthermore, teams
who held the hammer but were down two points after
the 9th end conceded 33 times, even though they still
had a 15% chance of winning the match!

These exceptions may be partially explained by the
fact that the Markov model currently does not take the
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Table 6

Expected concession behavior given win probability threshold of 2.57% with hammer advantage

Table 7

Expected concession behavior given win probability threshold of 2.57% without hammer advantage

Table 8

Observed number of concessions and associated state win probability

clock into account. Prior to 2012, teams had 73 min-
utes to make all of their shots in a game. From 2012
forward, this rule was modified to provide teams with
38 minutes of “thinking time”. As the data did not
differentiate situations where the clock had expired,
these observations were not excluded. The win proba-
bility in a state where the team’s clock is near expired
is likely lower than the probability predicted by the
model thus, many of the concessions may still have
been made adhering to the 2.57% average threshold
mentioned earlier.

In addition, the win probability at time of conces-
sion only accounts for the win probability assuming
the concession occurs before any stones are thrown.
However, it is possible for a team to concede in the
middle of the end, at which time they have a better
assessment of the situation given additional condi-
tional information which could affect win probability.
For example, a team down by two, with the hammer,
in the beginning of the 9th end is considered to have
a win probability of 15%. However, if that end is
proceeding poorly for that team, they may accurately
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assess that their win probability has decreased below
15%. If that team concedes before the end is con-
cluded, no score will be posted and that game will
appear to have ended before any stones were thrown
in the 9th end.

In this situation, the modelled win probability will
not incorporate the change in the situation which
occurred during that incomplete end. Therefore, the
team making the decision may have more information
than what is available in the data, thus the analy-
sis likely overestimates win probability at time of
concession.

3.7. Summary

In this study we used 18 years of tournament data
from the Canadian Men’s Curling Championships
to develop empirical as well as homogeneous and
heterogeneous Markov models to analyze win prob-
abilities in curling.

Both the homogeneous and heterogeneous Markov
models suggest a lower likelihood of comeback ver-
sus empirical results, with a possible explanation
being that concession behavior censors potential
comeback wins, thus biasing observations towards
fewer comebacks.

The heterogeneous model improves on the homo-
geneous model with a better fit line for states at
later ends, due to state-specific scoring probabilities
diverging from the average towards the end of the
game as the proximate win conditions alter the opti-
mal shooting strategy. However, larger uncertainty is
also observed in the heterogeneous model, as fewer
state-specific observations yield greater variability in
the bootstrapping analysis.

The results of the models have afforded us new
insights that can be applied to curling strategy. For
example, when presented with the choice to score
one point or blank the end, teams should always
blank the end regardless of situation, prior to the 7th
end. However, teams should only blank the 8th for
score differentials between –2 and 1 (inclusive), and
should attempt to score for other score differentials
in the 8th end. Finally, if we assume that teams have
a psychological concession threshold of a 2.57% win
probability, our analysis would indicate that teams
concede matches more frequently than they should,
which could encourage teams to continue to play out
matches they currently concede.

In addition, the win probability changes presented
in table 5 allow one to formally evaluate the “blank vs
score 1” strategic question. With minor exceptions, it

is always favorable to blank in the first 9 ends. This
largely agrees with the quantitative analysis of curling
available in other literature. However, the degree of
favorability depends on the state of the game, with the
8th end representing the exception where blanking
isn’t expected to yield an advantage compared to the
alternative strategy of scoring 1.

In general, extending the Markov analysis to all
possible states yields interesting insights and allows
for a more rigorous analysis of curling behavior and
strategy.
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Appendix

Fig. 12. All Heterogeneous Scoring Probabilities by Grouping.

Fig. 13. Alternative Visualization of Sensitivity Analysis.


