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Predicting golf scores at the shot level

Christian Drappi and Lance Co Ting Keh*
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Abstract. We present the only model to date that predicts the discrete probability distribution of a golfer’s score for each
hole of a tournament on a shot-by-shot basis. We first generalized Broadie’s technique of score-based skill estimation to
allow a golfer’s skill (e.g. scoring average, driving spray, iron play, putting) to vary continuously by time-weighting data
with exponential decay. Training a single-layer 50-node neural network to predict probabilities of scoring by hole resulted
in an out-of-sample cross-entropy error of 0.974. We then added features of each hole (e.g. par, green size, sand area) onto
the model, representing golfers and holes in an N-by-M dimensional space and achieved an error of 0.953. Adding in course
features provided by ShotLink (e.g. fairway height, firmness, wind speed) dropped error to 0.9374. Finally, generalizing the
model to update probabilities per shot further reduced error to 0.891.

This work helps players understand which skill sets they should improve on, manage courses better (better to miss fairway
right or left on hole 13 of Bethpage Black?) and select the best tournament to enter. It also revolutionizes the viewing
experience of the PGA by live updating odds to win per shot (similar to WSOP) and helps sports books offer more accurate

betting lines.
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1. Introduction

1.1. Performance based on aggregate golfer skill
factors

There have been a number of efforts to quantify a
golfer’s performance. Much of the early work model
performance based on aggregate golfer skill factors.
These aggregate skills are means, percentages and
totals representing different parts of a golfer’s game.
Table 1 shows the core aggregate skill factors and
the abbreviations we will use in describing previous
literature.

Davidson and Templin (1986) performed a regres-
sion over the top 119 money golfers of the
1986 PGA season to forecast scoring average
and prize money earned based on driving profi-
ciency (composed of DRIVEDIST and DRIVEACC),
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GIR, TOTALPUTT and SANDSAVE. They found
that GIR, TOTALPUTT and driving proficiency
explained 86% of a players scoring variance, with
GIR being the most important skill factor [1]. Using
the same dataset but considering a larger number of
features that were min-max normalized, Shmanske
(1992) performed a regression to model dollar win-
nings. His work included DRIVEDIST, DRIVEACC,
GIR, SANDSAVE, TOTALPUTT, PUTTGIR and
the corresponding amount of time spent in prac-
tice for each of the skills. He found that PUTTGIR,
DRIVEDIST and GIR (in that order) were the three
most important skills that contributed to earnings [2].
Jones (1990) also modeled money earned in 99 of
the top 100 money winners of the 1980 PGA season
using TOTALPUTT, DRIVEDIST and GIR. Similar
to Shmanske, he found that TOTALPUTT and GIR
are the two highest correlated features to earnings [3].
As an extension to the findings of Davidson and Tem-
plin, Belkin, et al. (1994) analyzed a larger dataset
of PGA stats for years 1986 to 1988. Performing
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Aggregate Golfer Skill Factors Used in Prior Work

Abbreviation Name Description

DRIVEDIST Driving Distance Average length of drive [yards]

DRIVEACC Driving Accuracy Percentage of times the drive successfully ends in the fairway [%]

GIR Greens in Regulation Percentage of times the green is reached in regulation, which is
when the number of strokes taken to reach the green (on the
course) is at least two fewer than par [%]

SANDSAVE Sand Save Percentage of times the golfer gets par or better after hitting into
sand trap [%]

TOTALPUTT Total Putt Average Total number of putts made per round [puts/18 holes]

PUTTGIR Putts taken on GIR Average number of putts taken only on GIR [count]

PUTTNONGIR Putts not taken on GIR Average number of putts taken not on GIR [count]

stepwise multiple regression (a method that doubles
as a means of feature selection), they found that
the most important predictors of scoring average are
GIR, DRIVEACC and TOTALPUTT [4]. Dorsel and
Rotunda arrived at a similar conclusion by also per-
forming multiple regression on the same aggregate
features for the top 42 players of the 1990 PGA tour
[7]. They also show that GIR was the most important
skill. On the contrary, Engelhardt (1995) by perform-
ing arank order correlation between the top 10 ranked
money winners and top 10 ranked in each aggregate
skill category of the 1993 and 1994 PGA seasons,
argued that while GIR was seen to be the largest
contributor to success up to this point, the trend has
now shifted to DRIVEDIST and DRIVEACC being
more important than GIR [5]. Peters (2008) using
the same methodology, performed his analysis with
DRIVEACC, DRIVEDIST, GIR, PUTTGIR, SAND-
SAVE and years of experience as his regressors. His
dataset comprised of tournaments in the PGA tour
from 2002 to 2005. He found that PUTTGIR was
the most important skill, while DRIVEDIST, SAND-
SAVE and years of experience were insignificant
factors [6].

The studies up to this point in time made a very
reasonable assumption that traditional PGA golfer
aggregate skills can be used as determinants for per-
formance. While this is generally correct, one has
to question the variability of the coefficients of the
regressions and the variability in which skill factors
are most important across these studies. While some
of this effect can be attributed to the gradual evolution
of the game in time, a larger part of this discrepancy
is due to the fact that these aggregate features are
highly correlated, producing non-stable results. For
instance, putting is correlated with GIR in that when
a player hits the green in regulation, she will have
a longer than average putt. In the same way, golfers

who are better drivers are more primed to hit the green
in regulation.

1.2. Attempts at decreasing correlations between
skills

Alexander and Kern (2005) realized the correlated
skills problem and attempted to construct a pure mea-
sure of each skill. Using traditional aggregate stats
from PGA tournaments from 1992 to 2001, they con-
struct pure aggregate statistics for approach shots
(IRON) and putting skill. They computed the for-
mer by taking the residuals when GIR was regressed
from DRIVEDIST and DRIVEACC, and the latter by
taking the residuals when PUTTGIR was regressed
from IRON. Intuitively, this means the variation in
GIR that could not be explained by DRIVEDIST and
DRIVEACC can be attributed to iron playing skill,
with the same being is true for PUTTGIR and putting
skill. They find that pure putting skill is the most
important factor that contributes to a golfer’s success
(measured in earnings this time) [8]. Baugher, et al.
(2014) employed the same featurization and analyzed
PGA tournaments from 2006-2013. They also show
that putting skill is the most important determinant of
success [9].

With the isolation of pure golfer skill factors,
both authors Alexander, et al. (2005) and Baugher
(2014) have also studied the change in the impor-
tance of these skills in time [8,9]. Alexander, et al.
(2005) notes an increase in the marginal value of
DRIVEDIST and a decrease in the value of pure
putting skill in the PGA from 1992 to 2001. Among
other trends, Baugher, et al. (2014) notes the increase
inimportance of DRIVEDIST and DRIVEACC in the
PGA from 2008 to 2013. This increase in importance,
as they have mentioned in their work, coincides with
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the decision of the PGA Tour to increase the length
of the courses in time.

1.3. Variability caused by course difficulty and
field strength

Needless to say, changes in the course and rel-
ative golfer field strength affects performance of a
golfer. Moy and Liaw (1998) compared datasets from
the PGA, Senior Tour and LPGA for 1993 season
and found that different leagues have different appar-
ent skill factors for success. They report that the
PGA commands a more well rounded game with
PUTTGIR and GIR as the two largest factors of
success, while the Senior Tour and the LPGA, due
to its shorter courses, emphasize iron and putting
skills [10]. Pfitzner and Rishel (2005) and Shumanske
(2000) also investigate determinants of golfer suc-
cess in the LPGA and how they compare to the PGA
[11]. As expected, the relative importance of golfer
skill factors varies across tournaments. Since golf is
a ranking based sport, field strength also affects a
golfer’s individual performance in terms of money
earned. In later sections, we will talk more about
how researchers have taken a first crack at solving
this problem [11, 12].

1.4. Shot level analysis

In 2008, Brodie presents his work on shot level
analysis, currently known as “Strokes Gained” as
an alternative to the use of the traditional aggregate
skill factors [14]. The idea of shot level analysis,
wherein the value of a shot is measured by the dif-
ference in “state” between the location of the ball
before and after the shot was first introduced by
Cochran and Stobbs (1986) and Landsberger (1994),
but never gained popularity due to the lack of rich
data [13].

Shot level analysis provides a more granular way to
evaluate performance compared to the aggregate skill
factors described in early sections in that it achieves
isolation of individual shots (problem discussed in
section 1.b) and provides a way to distinguish large
and small errors (e.g. missing the green by 1 yard or
30 yards). Equation (1) shows the base strokes gained
equation for a shot.

StrOkesgained = u (disteng) — u (distsarr) -1 (1)

where u (dist.,q) represents the global average
strokes to hole out from the final position of the ball

after the shot and u (disty,) represents the global
average strokes to hole out from the starting posi-
tion of the ball before the shot. The notion of strokes
gained is intuitive, it is a measure of whether a par-
ticular shot gained or loss fractional strokes relative
to average.

In 2011, Brodie published an extension to his
work where he computes benchmarks for average
strokes to hole out not only based on distance
but also based on shot type (tee, putt, recovery,
etc) [15].

strokes_gained = u (dist_end, shot_type_end)

—u (dist_start, shot _type_start)—1 2)

The tee shot function u (dist, shot_type = tee_
shot) was modeled as a piecewise polynomial func-
tion for par-3, par-4 and par-5. Shots within 50 yard
(sand, rough or fairway) were simply means over each
shot type. Putting is a probabilistic model that is a
combination of a one-putt and three-putt model. The
one-putt model was based on an intuitive physical
model developed by Holmes (1991), where a nor-
mal distribution was fit for both distance the ball will
travel and the angle of putt error. The three putt model
was simply selected by Brodie based on statistical
data fit and is defined in equation (6) of his paper. The
resulting putting model assumes four putts and above
have zero probability, hence the two-putt probability
is simply the probability that the golfer neither one-
putts or three-putts. u (dist, shot_type = putt_shot)
would then be the expected value of the said discrete
probability distribution [15].

1.5. Adjusted shot level analysis

The latter half of Brodie’s (2011) paper adjusted
strokes gained based on round and course diffi-
culty similar to the method performed by Connolly
and Rendleman (2008). The golfer’s 18-hole round
score was expressed as the sum of player skill
(that is allowed to vary over time), course level
difficulty and round level difficulty by iteratively
fitting a smoothing cubic spline on time varying
individual player skill and then course and then
round level difficulty [16]. This allowed Brodie to
rank players based on their skills in different types
of shots while accounting for course and round
difficulty.
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2. Contributions

Our contribution to the field is in the development
of amodel that predicts golfer scores on a shot by shot
basis. This framework forecasts golf scores based on
its atomic unit (a shot) similar to a pitch-level analysis
of baseball data.

While prior work can be seen as predictive in
nature, the goal of most past studies have been largely
focused on evaluating, quantifying and comparing
golfers’ performances. Our shot by shot predictions
predict the discrete probability distribution of the
golfer’s score in a hole based on the current state
of the shot (shot number, distance from the hole, lie),
golfer skill features, course features, hole features and
wind speed. Predicting shot-level probabilities allows
us to forecast many other quantities with simplicity.
For example, one can compute hole-by-hole proba-
bilities by evaluating the shot-probability function in
the tee box state. Also, one can approximate the joint
distribution of a golf tournament using Monte Carlo
sampling.

The first part of our work involves the construc-
tion of individual golfer feature vector based on the
golfer’s skills per shot type. As discussed above,
Brodie’s assigned player skill by taking the aver-
age strokes gained per shot type of each player [15],
thereby equally weighting historical skill for each
shot type. Connolly and Rendlemen allow a golfer’s
overall skill to vary in time [ 16]. We build on these by
allowing each shot type skill of each individual golfer
to vary in time. This involves two important consid-
erations: normalizing data against course and round
level difficulty and dynamically weighting past data
to estimate current skill levels. Our method eliminates
the need to arbitrarily choose a weighting schedule
to assign current skill given past skill. For example,
putting performance is noisier and are less repeatable
than iron play. This is reflected in our data-weighting
model.

The next part of our work constructs hole and
course level features. As described in section 1.3.,
there has been previous work in quantifying holes
and courses based on players’ performance on them.
We introduce our method of mining spatial data to
infer certain attributes of each hole.

Lastly, by the atomic nature of forecasting shot-
by-shot, we are able to derive exactly how much the
improvement of each individual golfer’s particular
skill will contribute to his odds of winning specific
tournaments, accounting not only for the course, hole
and the weather, but also for the other golfers who

are competing in the same tournament. This indi-
vidualization is an improvement to previous studies
(as presented in Section 1.1.) that are only able to
compute improvements in general for an average
PGA golfer. Another interesting by-product of shot-
by-shot forecasting is our ability to compute live
probabilities for hole scores as shots are being taken.
Akin to how the world series of poker tour shows
viewers probabilities to win of each player’s hand, the
PGA tour can also show viewers score probabilities
that can help boost viewership and engagement. This
is especially practical for finding opportunities in bet-
ting markets, where a single shot can cause drastic
movements to tournament-level win probabilities.
To our best knowledge, we present the most gran-
ular and comprehensive prediction model for golf.

3. Dataset

We used PGA tour’s ShotLink™ dataset [18] in
our analysis. With about 250 volunteers per tour-
nament, the dataset captures the ball location and
various properties of each individual shot taken.
Aside from ball coordinates and distance to hole,
the dataset captures the ball’s lie, the ground slope’s,
wind speed and various other features.

For our work, we consider all shots taken by all
players from 2009 to 2016. There were over 8 mil-
lion shots recorded within this time period. Unlike
previous papers that only took the top active golfers
per season, we analyze all golfers by fitting priors
on golfers with less historical data. We used 2009 to
2015 as our training set and 2016 for our test set.

4. Featurization

Our goal is to predict the probability distribution
of a golfer’s score at any moment. This probabil-
ity updates for every shot that he has taken. Before
we describe the modeling, we first explore the four
classes of features that we used, golfer features, hole
features, course features and game-state features.

4.1. Golfer features

The most important aspects to consider when con-
structing features that describe a golfer’s skill factors
is weighing past data to measure current skill lev-
els and normalizing observed skill based on course
difficulty. The golfer skills that we ultimately want
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Table 2

Golfer Features Used in the Model

Player Feature Description

Scoring Average
Driving Distance
Driving Spray

SSG: long approach
SSG: short game
SSG: putting

Adjusted scoring average

Average Driving distance (yards)

Mean absolute deviation of tee shots from center of fairway
Smoothed Strokes Gained on long approach shots
Smoothed Strokes Gained for short approach shots
Smoothed Strokes Gained: putting

to produce are Scoring Average, Driving Distance,
Driving Spray, SSG(Smoothed Strokes Gained): long
approach, SSG: short game, SSG: putting (see Table 2
for more details). The terminology used in this table
will be explained in later subsections.

4.1.1. Smoothed strokes gained

Broadie’s strokes gained metric has revolutionized
the golf world by describing where each player gained
or lost strokes over the course of a round. Some of
these times, however, a golfer enjoys good luck that is
not repeatable. For example, if a player makes a hole
in one on a par 3 that takes the average player 3.1
shots, he receives +2.1 strokes gained to iron play. In
reality, this will overestimate the player’s iron ability,
as hole outs from long distances are more luck than
skill. We propose an adjustment to strokes gained,
called Smoothed Strokes Gained (SSG), to eliminate
such noise.

The definition for SSG is simple: compute strokes
gained from each shot exactly as Broadie defined it,
except add on a penalty function — Stroked Drained
— to shots that holed out from a long distance. We
chose a Gamma CDF with shape =3.5 and scale =6.5
to penalize a shot that holed out from X yards. Above
is a plot of strokes drained per shot made versus yards
of hole out.

4.1.2. Skill normalization

Normalizing a golfer’s performance based on the
difficulty of the course is not a new concept and has
been explored by previous authors as described in
earlier sections. Equation (3) captures this method of
normalization:

’

Uy = Vt—acmual + mean (Ufieldfactual)
—mean (vfield—preround) 3

We basically say that for round ¢, the normalized
quantity we assign to a player’s performance v; (any
one of the features in Table 2) is equal to the actual
observed performance v;_gemq plus the difference
between the average actual performance observed for

all players in that round and the average pre-round
skills of the same set of players. This allows us to
account for players playing in different tournaments
at different points in time in our model.

To compute a feature F (any of the quantities in
Table (2)), we weight each player’s normalized values
and regress them to the mean with a prior. For a skill
F and a set of weights wy,

P (PriorValue (F)+ > w; * v,) @
~ PriorWeight (F) +>_ w,

4.1.3. Iterative updating

We iteratively update time weighted features and
normalized data until the difference of the two mean
terms converges. That is to say we compute the value
for the feature F' as stated in equation (4) and use
that value as the skill we assign each player when
We COMPULE V field— preround ON €quation (3). The new
skills we derive v; are fed back to equation (4) to
recompute the next iteration of weights and skills.

4.1.4. Weighting past data to measure current
skill levels

There is a core tradeoff between sample size and
recency of the data, and this tradeoff varies for differ-
ent types of skills. Above, we compute each feature
F by choosing a weight function wt and running
the above procedure. Choosing this weight function
is not straightforward; practitioners and researchers
alike have made varying decisions. For example,
the Sagarin rankings use a 52-week rolling average,
whereas some fantasy golf players use as little as
10 rounds. We ran an ensemble over many different
weighting functions wt to arrive at the best weight-
of-weights for each skill.

Our goal is to predict future normalized values
using some combination of past normalized values,
each with a different weighting function. Coeffi-
cients with higher values correspond to stronger
weighting methods. To carry this analysis out,
we employed stochastic search variable selection
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Weights of different weighting methods for different skills

Weighting Method Scoring Average Driving Spray SSG: Iron Play SSG: Putting
12-week rolling average 0.08 0.16 0.17 0.02
Half-life 50 days 0.17 0.31 0.18 0.11
Half-life 150 days 0.31 0.25 0.29 0.25
Half-life 400 days 0.26 0.14 0.27 0.21
Half-life 800 days 0.15 0.09 0.13 0.2
Intercept 2.16 0.4 -0.19 0.13
@ M =

-y -

]

3
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b

Fig. 1. Featurized Scoring Average in Time for Representative Golfers.

(SSVS), a Bayesian method for model selection. The
main advantage of Bayesian methods is that one can
choose priors to combat the high collinearity of fea-
tures. Specifically, SSVS allows one to explicitly
give coefficients a high probability of equaling zero
exactly. We used Zellner’s g-prior (Zellner, 1986)
[17] over the coefficients and Gibbs sampling to fit
the model. We present a table of coefficients for a few
features in Table 3 and show a plot of one of the nor-
malized and time weighted features, scoring average,
for four representative golfers in Fig. 1.

4.2. Hole features

Computing hole features was an exercise in manip-
ulating spatial data. Hole features built include
par (categorical), green size, sand area, normalized
penalty strokes, and fairway width. These are shown
in more detail in Table 4.

Fairway width and par values were readily avail-
able in ShotLink, while we computed the green size,
sand area and normalized penalty strokes.

4.2.1. Convex hull to estimate green size

Convex hull is a known technique for which given
a Euclidean plane, the smallest convex set that con-
tains all points X is computed. Figure 2 shows a
visualization of convex hull.

ShotLink gives both the labeled location (i.e. Tee
Box, Green) as well as the spatial (X, y, z) coordi-
nates of each shot. To estimate the green size, we
can filter for all shots from the Green and compute
the convex hull around these points to estimate the
size. On average each green has about 700 putts
on it per standard tournament, giving us enough
data points for a decent estimate. Figure 3 shows
an example of hole 1 at Silverado CC in Napa,
California.
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Table 4

71

Hole Features Used in the Model

Hole Feature

Description

Par

Green Size

Sand Area

Normalized Penalty Strokes
Fairway Width 250
Fairway Width 275
Fairway Width 300
Fairway Width 325

Fairway Width 350

Par of the hole, treated as a categorical variable
Size of the green in square feet

Size of the sand area in square feet

Average # of penalty strokes taken this hole
Width of the fairway 250 yards from the tee
Width of the fairway 275 yards from the tee
Width of the fairway 300 yards from the tee
Width of the fairway 325 yards from the tee
Width of the fairway 350 yards from the tee

Fig. 2. Convex Hull of a set of points.

Fig. 3. Putts on the Green of Hole 1 in the Safeway Open.

The reason convex hull is ideal for putts on the
green is because there is only one green per hole. This
is not the case for sand bunkers, hence we employ
K-nearest neighbors to classify points in the space.
It is no coincidence that the points above form four
clusters. Each cluster corresponds to a round of the
tournament; the course superintendent changes the
location of the hole after each round. Note that this
method will slightly underestimate the size of each
green, as there will be locations on the green outside
the hull boundary on which no shots are recorded.

Table 5
Course Features Used in the Model

Course Feature Description

Difficulty Difference between field’s scoring
skill and observed scoring average

Fairway Height Height of the fairway in inches

Rough Height Height of the rough in inches

Stimp Stimpmeter rating of the green

Wind Speed In miles per hour

As rated on a scale from 1 to 3
As rated on a scale from 1 to 3

Fairway firmness
Green Firmness

4.2.2. K-Nearest neighbors to estimate the size
of sand bunkers

Using the (X, y, z) coordinates labeled as sand
bunkers in ShotLink, we employ K-nearest neighbors
with K =1 to classify all points in the course. While
data scientists rarely choose K =1, this context is an
exception: once we know the label of an (X, y, z)
coordinate, it will not change. In addition, increas-
ing K will bias toward predicting the most common
locations (the fairway or the green).

4.3. Course features

Computing for course features was more straight-
forward as most features came directly from ShotLink
and only needed minor validation. Course features
that we computed are shown in Table 5. They include
difficulty, fairway height, rough height, stimp, wind
speed, fairway firmness and green firmness. The only
feature that we derived was the difficulty feature for
the course. This was computed by taking the resid-
ual of when actual scoring average is regressed with
the scoring average feature; that is, the difference of
mean terms from 4.1.2.

4.4. State features

The last set of features used were game state fea-
tures. These features are purely descriptive in nature,
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Table 6 Table 7
State Features Used in the Model Model Results
Hole Feature Description Model OOS Cross Entropy Error
Distance From Hole Distance in yards from the hole (Benchmark) Skill + par only 0.974
Lie Categorical variable describing the Neural Network
current lie of the shot (e.g. green, (Benchmark) Add in hole length 0.953
sand bunker, fairway, etc) to Neural Network
Hole level: All features Neural 0.937
Network
and just spell out the state of the ball when predic- Shot level: All features Softmax 0.924
P . Regression
tlons.are made. The two fee'ltures that descr'lbe state Shot Tevel: All features Random 0.903
are distance from hole and lie. Table 6 explains these Forest
features. Shot level: All features Neural 0.891
Network

5. Summary results

We trained on ShotLink PGA 2009 — 2015 data
and held out 2016 as a test set. We excluded putts
from less than 4 feet when evaluating, as putts from
inside this range are holed with a very high probability
regardless of the player, hole or setting.

To establish a benchmark, we trained a single hid-
den layer neural net of 50 nodes with golfer skill
features described in section 4.1 and hole par. This
resulted in an out-of-sample cross (OOS) entropy
error of 0.974. Examining the results, we clearly saw
that scoring errors were mainly due to longer and
shorter holes with the same par. We added in hole
length and an interaction feature between hole length
and driving distance skill and retrained the model to
achieve an OOS error of 0.953.

We trained a more comprehensive neural net with
all the features described in section 4, golfer skill fea-
tures (section 4.1), hole features (section 4.2), course
features (section 4.3) and game state features (sec-
tion 4.4). The full model resulted in an OOS error of
0.937.

Lastly, we re-featurized our dataset to predict
scores on a shot-by-shot basis. This was a simple
transformation where we updated the distance to the
hole based on the (X, Y) coordinates of the ball pro-
vided by ShotLink and updated the prediction result
by subtracting the number of shots taken for the hole
thus far from the final hole score.

We used three algorithms to forecast shot-by-shot
probabilities: softmax regression, random forests and
a single-layer neural network. For the regression, we
allowed the following interactions: driving spray and
fairway widths, driving accuracy and rough height,
SSG: approach and bunker area and SSG: long
approach and green area. We allowed 50 estimators in
the Random Forest and maintained the same single

hidden layer neural network of 50 nodes. Softmax
regression resulted in an OOS cross-entropy error
of 0.924, random forest resulted in an OOS cross-
entropy error of 0.903 and neural net results in an
OOS cross-entropy error of 0.891. These results are
summarized in Table 7.

Here are some examples of the model’s predic-
tions. In the 2016 Players Championship, on Jason
Day’s R3, 15th hole 4th shot, the ball starts a few
feet just outside the green. At that point the model
predicted Jason’s score probabilities for the hole to
be <par: 0.15, bogey : 0.81, double bogey : 0.03, dou-
ble bogey+: 0.0 >. Jason ends up saving the par
and proceeds to win the tournament decisively. In
the 2016 U.S. Open, on Dustin Johnson’s R4, 18th
hole 2nd shot, his probabilities were < eagle: 0.012,
birdie: 0.09, par: 0.73, bogey : 0.16, double bogey
2 0.01, double bogey+: 0.009>. Dustin makes the
birdie and wins the U.S. Open.

6. Conclusions

We presented a granular forecasting model for
the PGA by leveraging its ShotLink dataset. The
result is a function that computes a probability dis-
tribution over each possible score on a hole, given
a player’s state and skill level, difficulty of the
hole and course conditions. Furthermore, these state
variables are accessible in real-time, which moti-
vates exciting applications. Applications that range
from player development, course management, and
tournament selection to audience engagement and
improved sports books can easily be derived from this
model.
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