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Abstract. In the literature, information on the rally length distribution is quite incomplete, fragmented and non-homogeneous.
In this paper we fill the gap deeply analyzing the distribution of rally length in professional tennis matches in the following
directions: i) we provide the empirical distribution of the rally length, not only for some categories, but for each single length;
ii) we consider different distributions for men and women and for different surfaces; iii) we find the statistical distribution best
fitting the data for each surface; iv) we show how the rally distribution depends on some variables, such as the probabilities
of winning a point at serve and players’ heights; v) previous points are based on a much larger sample size than other
works leading to very reliable results. Our analyses point out that the best distribution for rally length is a zero-one-modified
Geometric distribution, whose parameters are functions of the probabilities of winning a point at serve and of the players’
heights. Results suggest that the the players’ heights is the most impacting variable on the rally length distribution.

Keywords: Rally length distribution, height of players, Quasi-Poisson models, zero-one-modified geometric distribution,
zero-one-modified Poisson distribution

1. Introduction

A rally in tennis is the sequence of back and forth
shots between players, within a single point. A rally
starts with the serve, can involve any kind of shot and
ends when a point is scored.

Rally statistics, particularly rally lengths, are use-
ful to measure different styles of play, to define
strategies of play and to analyze different aspects
of the game (Makino et al., 2020). Usually players
dominant on serve tend to play shorter rallies while
baseliner players are often engaged in significantly
longer rallies. As the majority of points are 4 shots or
fewer, some analysts have stressed the importance of
a game strategy designed to close the point as fast as
possible.

∗Corresponding author: Francesco Lisi; E-mail: francesco.lisi
@unipd.it.

Besides the style of play, the rally length is affected
by several other factors: obviously, by the game con-
text but also by the court surface, by balls features,
by weather conditions and by the physical character-
istics and gender of players. Slower surfaces, as clay
courts, tend to produce longer rallies than hard and,
even more, grass courts. Hotter weather fosters faster
balls, helping the servers and, potentially, increasing
the 0–4 rally count. Likewise, taller players tend to be
associated to shorter rallies due to their strong service.

For all these reasons, the number of shots in a point,
i.e. the rally length, can and should be treated as a
random variable. As a consequence, we can wonder
which is the distribution of such a random variable.
Although this issue is very interesting, it has received
relatively little attention in the literature and, to date,
only very partial and incomplete results are available.
In the present work, we fill the gap on the rally length
distribution deeply analyzing it and improving the
existing literature in several directions: i) we provide
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the distribution of rally length for men and women,
and for each surface, not limited to the first 10–15
shots, as often done, but for any observed rally length.
This allows to appreciate the frequency of quite long
rallies; ii) our analyses are based on a very large sam-
ple size, around 500, 000 points for men and around
250, 000 points for women. This is by far the largest
number of points considered in literature. As a con-
sequence, results should be very stable also for not
too short rally lengths; iii) separately for men and
women and for each surface, we look for the best sta-
tistical distribution for the rally length, in particular
we consider the quasi-Poisson distribution, the Geo-
metric distribution and two of their variants, namely
the zero-modified Poisson/Geometric distributions
and the zero-one-modified Poisson/Geometric distri-
bution, specifically built to produce more accurate
estimates of the zero and one rally frequencies; iv)
for the same distributions we consider time-varying
parameter versions, where parameters depend on
other exogenous variables. This, in turn, allows us to
study which variables significantly impact on the rally
length. An interesting result is that players’ height is
particularly relevant for the rally length distribution.
To the best of our knowledge, this kind of study is new
and has never been done before. While many studies
assessed the importance of players’ heights to explain
the serve strength (Vaverka and Cernosek, 2013; Pas-
cual, 2023), to predict match outcomes (Bieniek and
Kwater, 2015; Gao and Kowalczyk, 2021) or within
the betting context (Candila and Palazzo, 2020), none
has connected the height with rally lengths.

In our analysis, we focus on parametric distri-
butions, mainly because it is much more complex
to generate data from a nonparametric distribution,
while anyone can easily generate data from a para-
metric distribution as soon as (estimated) parameters
are known. A parametric distribution is particularly
useful when the rally length is used in a simulation
context, as in Kovalchik and Ingram (2018) or in Lisi
and Grigoletto (2021), who used it to simulate the
duration of professional tennis matches. In addition,
the parametric approach allows a comparison in terms
of parameters’ values and is less sensitive to the pres-
ence of several zero frequencies, as observed in the
empirical distribution.
The rest of the paper is organized as follows. In Sec-
tion 2 the literature on rally length distributions is
reviewed. In Section 3 we introduce the dataset and
provide descriptive analyses. Section 4 is devoted
to describe some probabilistic models for the rally
length. Estimation results are discussed in Section 5

while the comparison among competitor models is
performed in Section 6. Section 7 concludes.

2. Literature review

In the current literature, information on rally length
distribution is quite incomplete, fragmented and non-
homogeneous.

Fernandez-Fernandez et al. (2008) analyzed eight
well-trained female tennis players, 6 of which were
ranked between 300 and 800 in the Women’s Tennis
Association (WTA) singles ranking (one player was
the current European Junior Champion) and, for out-
door clay-court surface, reported a mean rally length
of 2.5 ± 1.6 shots per rally.

In a four-set Davis Cup match, used as a case study,
Gomes et al. (2011) found that the number of strokes
per rally decreases during the match.

Carboch et al. (2019) analyzed the rally pace char-
acteristics and the frequency of rally shots in 7 male
(1738 points) and 23 female (2926 points) matches at
the Australian Open 2017 and provided a graphical
representation of the distribution of rally length for
men and for women up to 20+ shots1. They found
that the frequency of rally shots was similar for the
two genders. In the whole match, the rally finished
within the first four shots in 59% (men) and in 62%
(women) of cases; within 5–8 shots in 27% (men)
and 27% (women) of cases; 9 and more shots were
required in 14% (men) and 11% (women) of cases.

In a paper focusing on how the use of new balls
affects the match characteristics and the frequency of
rally shots Carboch et al. (2020) provided observed
frequencies of rally length up to 13 shots. How-
ever, their results are based on a limited number of
matches: 23 female matches played at the Australian
Open (1141 points) and 24 male matches played at
the Australian Open (699 points), French Open (838
points) and Wimbledon (537 points) in 2017.

Mlakara and Kovalchik (2020) provided a graph-
ical representation of the rally length based on 66
male matches (8026 points) and 64 female matches
(4834 points) played during the 2017 Australian
Open tournament. However, since they were inter-
ested in analyzing time pressure rallies, they included
only points longer than 2 shots.

In a study aimed at establishing the prevalence and
importance of individual rally lengths within points

1Note that in the notation of Carboch et al. (2019) double faults
are represented by 1 shot.
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of 0, 1, 2, 3 and 4 shots in terms of winning elite grass
court tennis matches, Fitzpatrick et al. (2021) consid-
ered data from 211 male and 209 male Wimbledon
singles matches between 2015 and 2017. Their results
revealed an underlying prevalence of short points
(compared to medium length and long points) on
grass courts for both genders, with 66% (for women)
and 72% (for men) of all points played at Wimbledon
between 2015 and 2017 ending in fewer than 5 shots.
Based on the considered data, they also provided the
mean percentage of points played per match of 0, 1,
2, 3 and 4 shot rally lengths, both for men and for
women.

In his blog, Ingram (2021) studied how the average
rally length by surface changed over time in male ten-
nis and showed that, from 1970 to 2020, the average
length tended to become more homogeneous across
surfaces.

On the website tennisabstract.com, the
Match Charting Project provides the average rally
length for a number of players, as well as statistics
for rally length classified within the categories 1 − 3
shots, 4 − 6 shots, 7 − 9 shots and 10+ shots. Other
websites show classifications based on slightly dif-
ferent categories. Further pieces of information about
rally length frequencies can be found in specialized
websites, as Stat on the T (on-the-t.com) which
gives the frequency of rallies longer than four shots
for several professional players or the server win per-
centage by rally length.

To determine a reasonable distribution of the shots
per point Kovalchik and Ingram (2018) examined the
relationship between the number of shots per rally and
the service bonus and malus2 and the surface of the
match using data from 1582 male matches and 966
female matches. They suggested that the expected
shot count and variance could be accurately approx-
imated with a quasi-Poisson distribution conditional
on the service bonus. This is the only work which
attempted to pinpoint a statistical distribution for the
rally length, even if the authors didn’t give any detail
on how they found it.

3. The dataset

The dataset on which the analyses are performed is
based on data available on the Match Charting Project

2In their terminology, the service bonus is the sum of the prob-
abilities that two players have to win the point at serve, while the
malus is the absolute difference of the same probabilities.

(MCP), a crowdsourced effort to track shot-by-shot
data in professional tennis, created by Jeff Sack-
man and available on Github3. However, the rally
length of each point is not directly available, but has
been extrapolated by the information included in the
dataset, using an ad hoc code written in R language.
In this way we were able to obtain the rally lengths
for 5751 male and 3413 female professional matches
since year 2000. This permitted us to analyze the rally
lengths of 503, 946 points played in the male circuit
and 247, 392 points played in the female circuit. A
detailed description of the sample sizes for differ-
ent surfaces and gender, is given in Table 1. These
numbers are sensibly higher than those considered in
the works quoted in the introduction. This very large
sample size is important in order to have a good esti-
mate of occurrences of low-frequency rally lengths
and should ensure a good reliability of our analyses
for each single surface.

Note that, being MCP a crowdsourced project,it
does not contain all the matches played in a given
period.

3.1. Descriptive analyses

The definition of rally length is not uniform across
literature and blogs, depending on whether serve
counts as a shot or not. In this work we use the defi-
nition given in the MCP: the serve counts as a shot,
but errors do not. Thus, a double fault is 0 shots, and
an ace or unreturned serve is 1. A rally with a serve,
three additional shots and an error on an attempted
fifth shot counts as 4.

Figure 1 shows the empirical rally distribution for
men on each surface up to 25 shots. The absolute
frequencies for the whole distribution are listed in
Table 14 of the Appendix4, while Table 2 provides
some descriptive statistics.

Double faults occur around 3.5% of times on clay
and around 3.9% of times on hard surfaces and grass,
highlighting that, on the whole, there is no surface
strategy involving double faults apart from, maybe,
taking a little greater risk on grass and hard surfaces.
The largest differences among surfaces come in the
case of just one shot, which occurs in 24.0% of cases
on clay, in 30.9% of cases on hard surfaces and in
35.6% of times on grass. For number of shots greater
than one differences are less pronounced. For rally

3https://github.com/JeffSackmann/tennis
MatchChartingProject

4Digitalized versions of Tables 14 and 15 are available upon
request to the authors.
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Table 1

Matches and points sample sizes for men and women and for different surfaces

Men Women
Surface N. of matches N. of points N. of matches N. of points

Grass 710 70,333 912 65,705
Hard 3,332 290,340 1,833 130,235
Clay 1,709 142,253 686 51,449
Total 5,751 503,946 3,431 247,389

Fig. 1. Men: Rally distribution for the first 20 shots for clay, hard and grass surfaces.

lengths greater than four the observed frequency on
grass is always smaller than for clay and hard sur-
faces. This confirms that, on grass, players try to close
the point faster. On the contrary, starting from four
shots, the higher frequencies are those related to clay.
For all surfaces the rally length’s mode is 1 while the
median is 3 on clay and 2 for grass and hard. It is also
interesting to note that rallies lasting more that 15
shots occur in 2.6% of times on clay, 2.3% of times
on hard and only 1.1% of times on grass. Although
low, these frequencies are not completely negligible,
as assumed by several categorizations. In our dataset,
for men, the largest rally values are 83 for clay, 59 for
hard5 and 48 for grass.

Analogously, Fig. 2 shows the rally distribution for
women on each surface up to 25 shots. Table 2 gives
some descriptive statistics for the whole distribution,

5But at at the Australian Open 2013 Gilles Simon and Gael
Monfils played a point of 71 strokes. Clearly, this match was not
included in our crowdsourced dataset.

whose absolute frequencies are listed in Table 15 of
the Appendix.

In female matches, double faults occur around
5.0% of times independently of the surface, a lit-
tle more often than for men. Even if the summary
descriptive statistics are quite similar to those for
men, the histogram in Fig. 2 globally shows less pro-
nounced differences among surfaces with respect to
men. Also, very long rallies are less frequent than
in male matches: for instance, rallies long at least 18
shots occur 0.5% of times on hard, 0.27% of times on
grass and 0.65% of times on clay for women, against
the corresponding 1.1%, 0.5% and 1.2% for men. In
our female dataset, the longest rallies lengths are 48
on hard courts and clay and 34 on grass.

It is however curious that the longest rally in pro-
fessional tennis was played by two women. During
the 1984 Virginia Slims tournament, the tennis play-
ers Vicki Nelson and Jean Hepner played a point
hitting 643 shots over 29 minutes.
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Table 2

Men: Descriptive statistics for rally distribution for each surface. SD=standard deviation; S=Skewness coefficient; K=Kurtosis coefficient;
qα=α−th quantile

Surface Mean SD Mode S K q2,5 q5 q10 q25 q50 q75 q90 q95 q97,5 Max

Grass 3.2 3.1 1 2.1 8.6 0 1 1 1 2 4 7 10 12 48
Hard 3.8 3.8 1 1.9 7.4 0 1 1 1 2 5 9 12 15 59
Clay 4.3 4.1 1 1.8 7.0 0 1 1 1 3 6 10 13 15 83

Fig. 2. Women: Rally distribution for the first 20 shots for clay, hard and grass surfaces.

Table 3

Women: Descriptive statistics for rally distribution for each surface. SD=standard deviation; S=Skewness coefficient; K=Kurtosis coefficient;
qα=α−th quantile

Surface Mean SD Mode S K q2,5 q5 q10 q25 q50 q75 q90 q95 q97,5 Max

Grass 3.5 3.1 1 1.5 5.5 0 1 1 1 3 5 8 10 12 34
Hard 3.9 3.5 1 1.6 5.8 0 0 1 1 3 5 9 11 13 48
Clay 4.2 3.6 1 1.6 6.4 0 1 1 1 3 6 9 12 14 48

4. Probabilistic models

Using the previously described dataset, this section
aims at finding probabilistic models able to suitably
represent the rally length distribution on different sur-
faces, both for male and female professional players.
Note that, while some authors consider only strictly
positive rally lengths (Kovalchik and Ingram, 2018),
in this work we try to model the whole distribution,
including the case of 0 length, i.e. double faults.

This is a challenging task, since empirical rally
length distributions exhibit over-dispersion as well
as less zero observations and more one observations
than would be allowed, for example, by the Pois-

son model. The same issues arise when adapting a
Geometric distribution.

This critical point requires, hence, to devote spe-
cific attention to zero and one frequencies. The need
to modify a discrete distribution in order to better
model the count of zeros is often encountered in
the literature. Zero-inflated (Lambert, 1992) and hur-
dle models (Mullahy, 1986; Heilbron, 1994) were
proposed to improve the fitting of e.g. Poisson, Geo-
metric or negative binomial count models which, in
their regular versions, were unable to yield realistic
zero counts. Likewise, the literature contains analyses
in which discrete distributions are modified for both
zero and one counts (Qi et al., 2019; Mohammadi
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et al., 2021). Below, when using these kinds of dis-
tributions, we will refer to them as zero-modified or
zero-one-modified. Most properties of a zero-(one-)
modified distribution follow easily from its unmodi-
fied counterpart.

In the next two subsections, first we consider
unconditional models which try to adapt some known
distribution to the data. In particular, we consider
the quasi-Poisson distribution and the zero-modified
versions of the Poisson and Geometric models, to
account for deflated zeros. Moreover, to improve
the fitting, for both distributions we propose fur-
ther variants that we call zero-one-modified. The
zero-one-modified Poisson distribution and the zero-
one-modified Geometric distribution are built to
jointly account for deflated zeros and inflated ones
values. In all these cases, the goal is to estimate the
models’ parameters, assumed to be constant, and to
find the distribution which best fits the data.

Secondly, in order to further improve the fitting,
for the quasi-Poisson model, the zero-one-modified
Poisson and the zero-one-modified Geometric distri-
butions, parameters are allowed to depend on some
exogenous variables. This permits also to analyze
which variables significantly affect the rally length.

4.1. Unconditional models

Since rally lengths are count data taking discrete,
non negative values occurring independently, we may
think of modeling them by means of a Poisson distri-
bution or a Geometric distribution.

However, in a Poisson distribution mean and vari-
ance coincide. In our case, instead, this assumption
is clearly violated: for instance, for the male matches
on hard surfaces, the rally’s mean is 3.8 while, due
to a very long right tail, the rally’s variance is 14.56,
and similar results also hold on grass and clay.

A possible solution to handle the over-dispersion
is to refer to the quasi-Poisson model. This is a
model, for a variable Y , assumes that E(Y ) = λ and
Var(Y ) = φ · λ, where the dispersion parameter φ is
unrestricted and is estimated from the data. The quasi-
Poisson model is not a distribution but, rather, a model
belonging to the family of generalized linear models
(see Nelder and Wedderburn, 1972 and McCullagh
and Nelder, 1989) with link function defined as

log(λ) = β0 + β1X1 + β2X2 + ... + βqXq, (1)

where λ is the mean of the response variable, and
X1, . . . , Xq are suitable regressors. The uncondi-

tional version of model (1) has no explanatory
variables and, thus, λ̂ = exp(β̂0).

To face zero-deflation and one-inflation, we esti-
mate zero-modified and zero-one-modified Poisson
and Geometric distributions.

In detail, the zero-modified Poisson (zmPois) dis-
tribution is a discrete mixture between a degenerate
distribution at zero and a standard Poisson. If Y ∼
zmPois(p0, λ) its probability mass function is given
by:

P(Y = y) =
{

p(0) = p0

p(y) = 1−p0
1−e−λ f (y) y = 1, 2, ...

(2)

with λ > 0, 0 ≤ p0 ≤ 1 and f (y) being the proba-
bility mass function of a Poisson distribution with
parameter λ.

The probability mass function of a r.v. Y hav-
ing zero-modified Geometric (zmGeom) distribution,
Y ∼ zmGeom(p0, p), is given by

P(Y = y) =
{

p(0) = p0

p(y) = 1−p0
(1−p)f (y) y = 1, 2, ...

(3)

with 0 ≤ p0 ≤ 1, 0 < p < 1 andf (y) being the prob-
ability mass function of a Geometric distribution with
parameter p.

Generalizing the zero-modified distributions we
obtain the zero-one-modified distributions, which are
discrete mixtures between two degenerate distribu-
tions at zero and one and a standard distribution f (y).
For example, the probability mass function of a r.v.
Y having zero-one-modified Poisson (zomPois) dis-
tribution, Y ∼ zomPois(p0, p1, λ) is given by

P(Y = y)

=

⎧⎪⎪⎨
⎪⎪⎩

p(0) = p0

p(1) = p1

p(y) = 1−p0−p1
1−e−λ(1+λ)f (y) y = 2, 3, ...

(4)

with 0 ≤ p0 ≤ 1, 0 ≤ p1 ≤ 1, 0 < p < 1 and f (y)
being the probability mass function of a Poisson dis-
tribution with parameter λ.

Likewise, if Y is a zero-one-modified Geometric
(zomGeom) distribution, Y ∼ zomGeom(p0, p1, p)
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its distribution is

P(Y = y) =

⎧⎪⎪⎨
⎪⎪⎩

p(0) = p0

p(1) = p1

p(y) = 1−p0−p1
(1−p)2 f (y) y = 2, 3, ...

(5)

with 0 ≤ p0 ≤ 1, 0 ≤ p1 ≤ 1, 0 < p < 1 and f (y)
being the probability mass function of the Geometric
distribution with parameter p.

Parameters p0, p1, p and λ (depending on which
distribution is used) can be estimated by maximum
likelihood.

4.2. Conditional models

To improve the distribution’s fitting, and in agree-
ment with the approach followed by Kovalchik and
Ingram (2018), in this section we allow the distri-
bution’s parameters to be non-constant across the
matches. To achieve this goal, we write the distri-
bution’s parameters as a function of some variables
describing the matches’ features which, possibly,
affect the rally length.

As the quasi-Poisson model belongs to the GLM
family, representing the dependence of parameter λ

on some exogenous variables is quite straightforward
and consists in including the regressors in equa-
tion (1). For instance, Kovalchik and Ingram (2018)
considered a quasi-Poisson model where λ was writ-
ten as a function of just one variable X denoting the
sum of the probabilities of each two player to win
the point at serve. In particular, for their data, they
found λ̂ = 2.89 − 1 · X and φ̂ = 3.3, for men, and
λ̂ = 2.33 − 0.7 · X and φ̂ = 2.7, for women.

For the zero-one modified Geometric and Poisson
distributions we allow p(0), the probability of zero
length rallies, i.e. of double faults, to depend on the
surface but not on other variables. The reason is our
assumption that, on average, players try to minimize
the number of double faults in any situation, but they
may accept to take some risk on surfaces rewarding
good serves.

For the zomPois and zomGeom models, we make
parameters match-dependent by writing them as
functions of exogenous variables. In the case of the
the zomGeom model, and for the i-th point, as param-
eters p1,i and pi, which represent probabilities, we
write their logit transformation as a linear function of

q regressors:

log

(
p1,i

1 − p1,i

)
=

q∑
j=0

γjXi,j and

log

(
pi

1 − pi

)
=

q∑
j=0

βjXi,j , (6)

with Xi,0 = 1, so that for the i−th point we can write

p1,i =
exp

(∑q
j=0 γjXi,j

)
1 + exp

(∑q
j=0 γjXi,j

) and

pi =
exp

(∑q
j=0 βjXi,j

)
1 + exp

(∑q
j=0 βjXi,j

) , (7)

where γj and βj , j = 0, 1, ..., q are unknown param-
eters to be estimated and X1, . . . , Xq are known
explanatory variables. This representation assures
that p1,i and pi belong to the (0, 1) interval.

When considering a zomPois model, parameter
p1,i has the same representation while, since λi must
be positive, we write

λi = exp

⎛
⎝ q∑

j=0

δjXi,j

⎞
⎠ , (8)

where δj , j = 0, 1, ..., q, are parameters to be esti-
mated.

In this paper, all parameters are estimated by max-
imum likelihood.

5. Estimation results

In this section the previously described models are
applied to our dataset. For each surface and for both
genders, they consist of the sequence yi, i = 1, ..., N,
of rally lengths, where i is the point considered.

The set of explanatory variables Xj,i considered in
this work is:
- X1 = Pa + Pb, where Px is the probability that
player x wins the point at serve;
- X2 = |Pa − Pb|;
- X3 = log(Ha + Hb), where Hx is the height of
player x in cm;
- X4 = |Ha − Hb|.

In addition, as we consider different models for
each surface, estimated parameters also implicitly
depend on this variable. The first two variables X1 and
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Table 4

Statistical features of regressor variables. They were computed over the whole dataset, without distinction on surface

Variables Min. Q(0.05) Q(0.25) Median Q(0.75) Q(0.95) Max

X1 0.727 0.971 1.121 1.206 1.288 1.407 1.670
X2 0.001 0.028 0.112 0.194 0.280 0.399 0.693
exp(X3) 348 365 372 374 378 390 411
X4 0 0 0 2 7 15 41

Table 5

Men: Estimated parameters and, between parentheses, the corresponding p-value for conditional quasi-Poisson models. QPKI denotes the
Kovalchik and Ingram (2018) specification

Grass Hard Clay
Variables QP QPKI QP QPKI QP QPKI

β0 16.806 1.257 13.402 1.531 18.336 1.627
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

β1 0.0032 -0.084 -0.053 -0.157 -0.070 -0.136
(0.364) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

β2 -0.126 – -0.156 – -0.123 –
(0.002) – (<0.001) – (<0.001) –

β3 -2.645 – -2.017 – -2.829 –
(<0.001) – (<0.001) – (<0.001) –

β4 0.003 – -0.001 – -0.002 –
(<0.001) – (0.006) – (<0.001) –

φ 3.0 3.0 3.8 3.8 3.8 3.8

X2 were used also by Kovalchik and Ingram (2018),
while the (log) sum and the absolute difference of
heights have never been considered before. The abso-
lute difference and the sum of the probabilities of
winning the point at serve are often used to describe
the difference in quality and the overall quality of two
players. Intuitively, one can expect that the higher
the overall quality the longer the rallies because nei-
ther of the two players dominates the other one. On
the contrary, the higher the difference in quality the
shorter the rallies because the stronger player should
manage to quickly win the point. Of course, all these
considerations hold on average. The rationale behind
the consideration of the players’ height as a driver
for rally lengths is that a strong serve can make a
player have an upper hand after the serve, thus hav-
ing the opportunity to close up the point. In turn, the
service strength is favoured by the player’s height as
witnessed by the fact that great servers are usually
quite tall players (Bieniek and Kwater, 2015).

Thus, the (absolute) difference in the players’
heights may impact on rally lengths, especially on
a fast surface. However, the heights’ difference says
nothing about the actual players’ heights and this
motivate the consideration also of the sum of the play-
ers’ heights. As concerns the use of the logarithm of
the heights sum, it is just due to a better fit of models
to data with respect to the simple sum6. Note that

6The improvement in fitting has been verified ex-post.

even if X3 and X4 are related to the players’ height,
there are not collinearity issues because the two trans-
formations make them not very correlated: for men
their correlation is 0.295 while for women it is only
0.102.

Actually, we also considered the sum and the abso-
lute difference of ATP/WTA ranking but they never
resulted significant. In this work Pa and Pb are the
fractions of points won at serve by each player in the
match within which the i−th point was played. This
explains the large variability of X1 and X2 as shown
in Table 4, which displays some descriptive statistics
for these four variables in our dataset.

The estimated parameters and related p-values for
quasi-Poisson conditional models, for men, are listed
in Table 5, for two different specifications: the one
suggested by Kovalchik and Ingram (2018), including
only X1 = Pa + Pb and denoted by QPKI , and the
specification including all the X variables, denoted
by QP . The estimates of the same parameters for
women are listed in Table 6.

In the QP specification, all four variables are sig-
nificant, with the exception of X1 = Pa + Pb for men
on grass and of X2 = |Pa − Pb| for women on grass.
This gives a first suggestion of the relevance of the
height’s role on the rally length. For QPKI models,
parameters have been re-estimated on our dataset.
Both for men and women, while dispersion parame-
ters φ are quite similar to those found by Kovalchik
and Ingram (2018), estimated β1 parameters, defining
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Table 6

Women: Estimated parameters and, between parentheses, the corresponding p-value for conditional quasi-Poisson models. QPKI denotes
the Kovalchik and Ingram (2018). specification

Grass Hard Clay
Variables QP QPKI QP QPKI QP QPKI

β0 29.61 1.400 24.13 1.601 27.19 1.507
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

β1 -0.084 -0.123 -0.130 -0.213 0.156 -0.063
(0.001) (<0.001) (<0.001) (<0.001) (0.011) (0.011)

β2 0.034 – -0.070 – -0.463 –
(0.263) – (0.001) – (<0.001) –

β3 -4.821 – -3.86 – -4.415 –
(<0.001) – (<0.001) – (<0.001) –

β4 -0.0032 – 0.002 – -0.003 –
(0.001) – (<0.001) – (<0.001) –

φ 2.7 2.7 3.1 3.2 3.2 3.2

Table 7

Men: Estimated parameters and, between parentheses, corresponding p-value for conditional zero-one-modified Geometric and Poisson
models

Geometric Poisson
pi Param Grass Hard Clay Grass Hard Clay

γ0 -32.47 -33.50 -39.72 -33.01 -33.51 -39.72
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

γ1 0.298 0.246 0.140 0.302 0.245 0.140
(0.005) (<0.001) (0.055) (0.004) (<0.001) (0.057)

p1 γ2 0.115 0.210 0.372 0.110 0.210 0.372
(0.339) (<0.001) (<0.001) (0.359) (<0.001) (<0.001)

γ3 5.31 5.458 6.470 5.405 5.459 6.469
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

γ4 -0.004 -0.0001 0.005 -0.004 -0.0001 0.005
(0.021) (0.986) (<0.001) (<0.017) (0.982) (<0.001)

β0 -13.51 -8.156 -15.58 11.425 7.43 12.80
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

β1 -0.123 0.003 0.114 0.091 0.001 -0.080
(0.108) (0.923) (0.006) (0.008) (0.912) (<0.001)

p/λ β2 0.138 0.194 0.093 -0.099 -0.139 -0.066
(0.113) (<0.001) (0.055) (0.010) (<0.001) (<0.001)

β3 2.136 1.161 2.385 -1.694 -0.969 -1.853
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

β4 -0.002 0.001 0.003 0.002 0.001 -0.002
(0.057) (0.006) (<0.001) (<0.001) (<0.001) (<0.001)

the linear dependence of λ on Pa + Pb, are sensibly
different, even if in agreement with the sign.

Estimation results for zero-one-modified Geomet-
ric (zomGeom) and Poisson (zomPois) are listed in
Table 7, for men, and in Table 8, for women. As
shown in equations (4) and (5), zomPois and zom-
Geom models have three parameters, i.e. p0, p1 and
λ the former and p0, p1 and p, the latter. Parameter
p0 is assumed constant, while the other ones depend
on regressors.

Apart for the constant, the only variable which is
always significant for all parameters, all models, all
surfaces and gender is X3 = log(Ha + Hb). This is
an evidence that the (log) sum of the players’ heights

is the most important variable to explain the rally
length.

Tables 7 and 8 show the estimation results for the
full models but successive analyses have been per-
formed re-estimating the models including only the
significant variables. To better appreciate the impact
of each (significant) variable on the models’ parame-
ters and, hence, on the probability distribution of the
rally length, we can use equations (7) and (8) and
observe how p1, p and λ change as a function of the
estimated parameters and of the X variables.

To isolate the effect of a single variable Xj , we
fix the values of all other Xi (i /= j) to their average
within our sample, while letting Xj vary between
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Table 8

Women: Estimated parameters and, between parentheses, corresponding p-value for conditional zero-one-modified Geometric and Poisson
models

Geometric Poisson
pi param Grass Hard Clay Grass Hard Clay

γ0 -47.86 -35.55 -50.39 -44.06 -37.57 -50.27
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

γ1 0.212 0.171 -0.162 0.214 0.180 -0.164
(0.027) (0.007) (0.172) (0.002) (0.005) (0.169)

p1 γ2 0.039 0.284 0.921 0.045 0.270 0.926
(0.723) (<0.001) (<0.001) (0.679) (<0.001) (<0.00)

γ3 7.950 5.840 8.382 7.302 6.183 8.363
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

γ4 0.004 -0.001 0.001 0.005 -0.001 -0.001
(0.066) (0.439) (0.785) (0.046) (0.434) (0.778)

β0 -32.00 -25.54 -28.25 25.43 20.23 23.14
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

β1 0.091 0.158 -0.214 -0.052 -0.112 0.151
(0.138) (<0.001) (0.001) (0.052) (<0.001) (<0.001)

p/λ β2 -0.072 0.037 0.470 0.044 -0.024 -0.334
(0.300) (0.425) (<0.001) (0.144) (0.201) (<0.001)

β3 5.27 4.129 4.642 4.072 -3.154 -3.687
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

β4 0.004 -0.001 0.005 -0.003 (0.001) 0.004
(0.014) (0.125) (0.001) (<0.001) (0.010) (<0.001)

the sample minimum and maximum. For example,
Fig. 3 shows the effect of the regressors on the param-
eters p1 and p of a zomGeom for men on grass.
For p1, we can see that the most impacting vari-
able is log(Ha + Hb) (panel in position (1,2)) which
causes p1 to vary from 0.29 to 0.47, with a range of
0.18. Also, Pa + Pb has a significant, although lower,
impact leading to a variation of p1 in a range of 0.08
(panel in position (1,1)). Much less important is the
role of the difference between the players’ heights
(panel in position (2,1)). Moreover, while increasing
log(Ha + Hb) leads to a higher probability of ral-
lies of length 1, the opposite occurs for |Ha − Hb|.
Indeed, a large heights’ difference implies that one of
the players is quite short and this, often, reduces the
serve power and, thus, the probability that the point
ends in just one shot. For p the only significant vari-
able is log(Ha + Hb), stressing the importance of the
players physical characteristics for the rally length.
Figure 3 makes also clear that the heights’ sum has a
lower impact on p, which varies in a range of 0.06.

Figure 4 focuses on the impact of log(Ha + Hb)
on p1 and p across different surfaces. We can see
that, for a given sum of heights and average values of
the other variables, the estimated distributions lead
to the the highest value of p1 for grass, followed by
hard surfaces and by clay. This is not surprising as
we know that on fast surfaces rallies of length 1 have
higher probability than on slower surfaces. At the
same time, we notice that the range of variation of

p1 due to log(Ha + Hb) is constant across surfaces:
0.18 on grass and hard and 0.17 on clay. This wit-
nesses that height is an important factor to define the
probability of one-shot rally on all surfaces, even if
this probability differs according to the surface.

The impact of log(Ha + Hb) on p is less impor-
tant but, on grass, this is the only significant variable.
Again, the range of variation of p due to log(Ha +
Hb) is not very different among surfaces: 0.06, 0.045
and 0.055 on grass, hard and clay, respectively.

Similar considerations also hold for the condi-
tional zom-Poisson but we have focused on the
zom-Geometric because in the following section it
will result to be best performing one.

6. Comparisons

In this section we evaluate the ability of the esti-
mated distributions to reproduce the observed ones.
We compare the performances of the proposed distri-
butions:
i) by summing the absolute differences between
observed (Pobs

i ) and estimated (Pest
i ) probability

masses of a rally of length i:

�M =
M∑
i=0

|Pobs
i − Pest

i | , (9)
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Fig. 3. Impact of the significant Xi variables on p1 and p on grass for men. Panel position (1,1): impact of Pa + Pb on p1; position
(1,2): impact of log(Ha + Hb) on p1; position (2,1): impact of |Ha − Hb| on p1; position (2,2): impact of log(Ha + Hb) on p. For a better
understanding, the tick labels refer to (Ha + Hb) instead of to log(Ha + Hb).

where M is the maximum rally length considered.
ii) by applying the Kolmogorov-Smirnov test to asses
the equality between the best distributions produced
by our models and the empirical distributions.
For a better insight, when computing �M , we con-
sider M = 10, 20 and the maximum observed length
on each surface.

Tables 9 (for men) and 10 (for women) list the
�M indicators for unconditional models. Both for
men and women, it is clear that Geometric models
produce sizable better results than Poisson models
and that zero-one-modified models produce sensibly
better results than zero-modified models with the only
exception of clay for women, for which indicators
of zmGeom and zomGeom models are quite similar.
Within the class of unconditional models, thus, we
can doubtless conclude that the zero-one-modified
Geometric distribution is the one leading to the best
fitting.

Tables 11 (for men) and 12 (for women) list
the values of �M for conditional models. In this

case we consider two versions of the quasi Poisson
models: one using all regressors and one adopt-
ing the Kovalchik and Ingram’s specification, which
only considers X1. For the modified Poisson and
Geometric models we list results only for the zero-
one-modified versions, as results in Tables 9 and 10
suggest that zero-modified versions produce worse
fittings.

In general, and in terms of �M , conditional models
provide better results than unconditional ones except
in the case of zomGeom for women, for which the
unconditional model provides slightly better results.
The two versions of quasi-Poisson models show a
strong reduction of �M and provide extremely sim-
ilar results. For men, however, their performance is
worse than for both zomPois and zomGeom mod-
els. Differently, for women, they show values of �M

lower than those of the zomPois model. As for uncon-
ditional models, the zomGeom models is clearly the
best one. For men, the conditional zomGeom models
lead to an improvement ranging from 10% to 28%
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Fig. 4. Impact of log(Ha + Hb) on p1 and p across different surfaces. First column: grass; second column: hard; third column: clay. For a
better understanding, the tick labels refer to (Ha + Hb) instead of to log(Ha + Hb).

Table 9

Unconditional models for men: Values of indicators �M for each surface and for different fittings. QP=Quasi-Poisson, zm=zero modified,
zom=zero-one-modified

Men Grass Hard Clay
Distribution �10 �20 �all �10 �20 �all �10 �20 �all

QP 0.543 0.556 0.558 0.500 0.518 0.521 0.487 0.524 0.527
zmPois 0.554 0.601 0.606 0.590 0.663 0.672 0.582 0.666 0.676
zmGeom 0.152 0.162 0.165 0.157 0.168 0.172 0.061 0.067 0.069
zomPois 0.260 0.297 0.301 0.335 0.384 0.393 0.366 0.423 0.433
zomGeom 0.032 0.037 0.039 0.027 0.032 0.034 0.022 0.025 0.026

Table 10

Unconditional models for women: Values of indicators �M on each surface and for different fittings. QP=Quasi-Poisson, zm=zero modified,
zom=zero-one-modified

Women Grass Hard Clay
Distribution �10 �20 �all �10 �20 �all �10 �20 �all

QP 0.488 0.542 0.544 0.547 0.616 0.621 0.525 0.599 0.604
zmPois 0.469 0.522 0.524 0.524 0.592 0.597 0.494 0.565 0.570
zmGeom 0.049 0.054 0.055 0.058 0.062 0.063 0.051 0.056 0.059
zomPois 0.262 0.306 0.308 0.300 0.351 0.355 0.306 0.358 0.363
zomGeom 0.022 0.026 0.027 0.023 0.026 0.027 0.049 0.054 0.056

in terms of �10, with respect to the unconditional
zomGeom models.

To assess the statistical equality between the
model-implied distributions and the empirical ones,
we now apply the well-known Kolmogorov-Smirnov
test for goodness-of-fit. The test is applied to the
distributions produced by the conditional zero-one-

modified models, which are those leading to the best
fit in terms of �M .
To be independent of the specific sample drawn, we
apply the test as follows:
i) we generate 1000 iid samples of size n = 10000
from both the observed and the estimated distribu-
tions;



F. Lisi et al. / On the distribution of rally length in professional tennis matches 117

Table 11

Conditional models for men: Values of indicators �M on each surface and for different fittings. The letter V in the models’ name denotes
varying parameters

Men Grass Hard Clay
Distribution �10 �20 �all �10 �20 �all �10 �20 �all

QP-V 0.360 0.369 0.372 0.319 0.329 0.333 0.246 0.252 0.255
QPKI -V 0.360 0.369 0.362 0.321 0.330 0.334 0.246 0.252 0.255
zomPois-V 0.248 0.287 0.291 0.249 0.289 0.296 0.361 0.419 0.427
zomGeom-V 0.025 0.031 0.033 0.023 0.028 0.031 0.020 0.024 0.025

Table 12

Conditional models for women: Values of indicators �M on each surface and for different fittings. The letter V in the models’ name denotes
varying parameters

Women Grass Hard Clay
Distribution �10 �20 �all �10 �20 �all �10 �20 �all

QP-V 0.243 0.252 0.253 0.232 0.238 0.240 0.168 0.173 0.174
QPKI -V 0.245 0.253 0.255 0.230 0.237 0.239 0.173 0.177 0.179
zomPois-V 0.250 0.294 0.296 0.289 0.342 0.346 0.368 0.418 0.423
zomGeom-V 0.033 0.038 0.039 0.026 0.031 0.032 0.051 0.057 0.059

Table 13

Kolmogorov-Smirnov test: mean p-value over 1000 simulated
samples from the observed and estimated distributions

Mean p-value Grass Hard Clay
Men 0.297 0.302 0.416
Women 0.125 0.176 0.046

ii) for each couple of samples the two-sided
Kolmogorov-Smirnov test is applied and the p-value
is recorded;
iii) as final measure of goodness-of-fit we consider
the mean p-value over the 1000 simulations.
The results of this procedure are listed, for men and
women and for different surfaces, in Table 13. Apart
from the case of women/clay, for which the mean p-
value is borderline with respect the usual 5% level, in
all other situations the mean p-value is largely above
5%, suggesting that the distributions are statistically
equivalent.

Finally, Fig. 5 shows observed and estimated dis-
tributions of the first 25 rally lengths for men and
women, and for each surface, when zomGeom mod-
els are used. We can see that they are able to describe
quite well the very different level of probability of the
first rally lengths, including the zero frequency.

7. Conclusions

In this work we have analyzed the rally length
distributions for male and female professional ten-
nis matches. Their characteristics have been studied
separately on grass, hard and clay surfaces.

Our study differs from the other (few) available in
the literature for the extension of the sample size, giv-
ing quite reliable results. In addition, the rally length
has not been categorized, but each single value, up
to the maximum observed, has been specifically con-
sidered. In the Appendix the observed frequencies
for each rally length are provided for possible future
research.

We have focused on finding the statistical dis-
tribution most suitable to describe the observed
frequencies. To this end, we have considered both
unconditional and conditional models. For the lat-
ter, parameters were written as a function of other
variables.

Our results point out that the statistical distribution
which best fits the data is a conditional zero-one-
modified Geometric distribution, whose parameters
depend on the probabilities that players win a point
at serve and on the players’ heights. The estimated
distributions can be considered not significantly dif-
ferent from the observed ones. Results have also
shown that the (log) sum of the the players’ heights
is the most impacting variable on the rally length
distribution.

As a future research it will be interesting to analyze
and compare the rally length distributions of indi-
vidual players. This, in turn, could allow to cluster
players according to the features of their the rally
length distribution and to define the characteristics of
two opponents, possibly for each surface.
In addition, analysing player-specific rally length
distributions using the proposed methodology may
be useful to define betting strategies. Following the
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Fig. 5. Conditional zomGeom model: observed and estimated distributions of the first 25 rally lengths on grass, hard and clay and for men
(left column) and women (right column).
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approaches of Candila and Palazzo (2020) or Gao and
Kowalczyk (2021), the information contained in the
rally length distribution could be included in a wide
variety of features that could enter some statistical or
machine-learning models. For example, Candila and
Palazzo (2020) consider some variables related to the
fatigue accumulated by the players in the last matches
in order to define a betting strategy. As the tendency
to play long rallies is correlated to the match duration
and to physical stress, the features of the distribution
can provide other variables to include in the model.
Likewise, Gao and Kowalczyk (2021) consider com-
posite variables obtained combining simple variables,
i.e. the ratio between aces and double faults. Also
in this case, one can extract information from the
rally length distribution by building suitable indica-
tors. The skewness coefficient or the ratio between
the probability that a rally length is shorter than or
equal to two and the probability that is is longer than
two, are just a couple of possible indicators.
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Appendix

Table 14

Men: Absolute observed frequencies for the rally length

Rally Grass Hard Clay

0 2, 814 11, 399 5, 021
1 25, 080 89, 874 34, 250
2 11, 617 44, 456 22, 623
3 8, 708 32, 887 16, 604
4 6, 543 26, 975 14, 371
5 4, 156 18, 627 10, 352
6 2, 997 14, 562 8, 221
7 2, 209 11, 078 6, 323
8 1, 497 8, 554 5, 032
9 1, 140 6, 788 4, 093
10 877 5, 244 3, 202
11 629 4, 161 2, 604
12 519 3, 282 2, 124
13 350 2, 664 1, 654
14 309 2, 106 1, 252
15 278 1, 767 978
16 176 1, 376 790
17 128 1, 108 666
18 97 876 457
19 80 730 376
20 42 557 318
21 67 438 243
22 48 331 191
23 29 280 159
24 20 197 121
25 17 160 69
26 16 130 67
27 12 92 41
28 4 86 41
29 8 59 25
30 5 41 23
31 2 24 28
32 4 32 19
33 2 25 15
34 3 14 10
35 0 16 7
36 1 8 6
37 0 15 3
38 0 9 1
39 1 6 3
40 0 4 2
41 1 4 4

Rally Grass Hard Clay

42 0 2 0
43 0 2 0
44 1 4 1
45 0 1 2
46 0 1 0
47 0 0 2
48 1 2 1
49 0 0 2
50 0 1 0
51 0 1 0
52 0 1 0
53 0 0 0
54 0 2 0
55 0 0 0
56 0 0 0
57 0 1 0
58 0 0 1
59 0 1 0
60 0 0 1
61 0 0 0
62 0 0 0
63 0 0 0
64 0 0 0
65 0 0 0
66 0 0 0
67 0 0 0
68 0 0 0
69 0 0 0
70 0 0 0
71 0 0 1
72 0 0 0
73 0 0 0
74 0 0 0
75 0 0 0
76 0 0 0
77 0 0 0
78 0 0 0
79 0 0 0
80 0 0 0
81 0 0 0
82 0 0 0
83 0 0 1
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Table 15

Women: Absolute observed frequencies for the rally length

Rally Grass Hard Clay

0 3, 279 6, 600 2, 524
1 17, 761 33, 069 10, 806
2 11, 507 21, 219 7, 933
3 8, 186 14, 941 6, 126
4 6, 704 12, 935 5, 516
5 4, 697 9, 914 4, 092
6 3, 699 7, 650 3, 416
7 2, 722 5, 830 2, 544
8 1, 998 4, 412 1, 971
9 1, 426 3, 366 1, 580
10 1, 064 2, 598 1, 156
11 839 1, 949 829
12 541 1, 490 642
13 456 1, 166 508
14 307 850 354
15 193 656 290
16 149 494 200
17 118 367 134
18 63 265 108
19 50 186 94
20 36 147 80
21 32 107 44
22 15 79 33
23 17 48 24
24 13 52 14

Rally Grass Hard Clay

25 6 24 18
26 4 25 10
27 3 20 5
28 0 11 5
29 3 7 4
30 2 7 6
31 1 7 0
32 1 5 4
33 0 3 0
34 1 0 1
35 0 2 2
36 0 1 0
37 0 0 1
38 0 0 0
39 0 4 0
40 0 0 0
41 0 0 0
42 0 0 0
43 0 0 0
44 0 1 0
45 0 0 0
46 0 0 0
47 0 0 0
48 0 1 1


