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Abstract. The cricket fraternity described “an unsettled batting position of number four” as one of the major causes for
India’s exit from International Cricket Council Men’s World Cup 2019. Consistent chopping and changing batsmen at the
sensitive fourth batting position proved to be a disaster for team India then. Therefore, ranking of all the batsmen, in the then
Indian cricket team, who were deemed to be eligible for this position remained a much-debated issue both before and after
the World Cup 2019. In the present paper, Kaplan-Meir curves are used to make multiple comparisons for respective batting
performances among the batsmen who have ever played in the middle order position. In this paper, frailty of these batsmen is
studied through Bayesian analysis at the start of their innings and during the time-interval of transition to their best playing
ability by considering respective run scores. Posterior summaries of innate player ability are obtained by deploying a Markov
Chain Monte Carlo algorithm which is then used to assess and compare the individual batting performances. Estimation of

incomplete innings is handled via censoring strategies.

Keywords: Game of cricket, mid-order batting position, Bayesian modelling, censored innings, Kaplan-Meir curves

1. Introduction

Game of cricket is played in three distinct for-
mats: Test Cricket, One Day International (ODI) and
Twenty20 (T20). One-day cricket was introduced in
the 1960s as an alternative to the Test Cricket charac-
terized by more aggressive batting, colorful uniforms
and fewer matches ending in draws. ODI cricket is
limited to fifty overs. The biggest event in ODI cricket
takes place after every four years when the World Cup
of Cricket (WCC) is organized by the International
Cricket Council (ICC) which is the global governing
body for cricket games. Later in 2003, T20 form of the
cricket game was introduced with focus on gaining
wider audience and with + emphasis on power hitting.
Cricket in T20 format is limited to twenty overs. The
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present research is related to the game of ODI. Swartz
et al., 2009 describe the play structure and related
terminologies in detail.

Batting is the heart of cricket and bowling is its
backbone. Cricket knowledge tells us that batting is
more difficult early in a player ‘s innings but becomes
easier as players familiarize themselves with the pitch
conditions. A player’s batting ability is primarily
assessed based on their batting average. However, ina
cricket match a player never begins an innings while
batting to the best of his ability as it takes time to
adjust both physically and mentally to the specific
match conditions. This process is nicknamed as get-
ting eye-in which is shaped by factors such as the
pitch conditions and opposition strategies. Accord-
ing to cricket experts a batsman is supposed to get
his eye-in after he looks very comfortable in hit-
ting boundaries (sixes and fours) and this confidence
comes to a batsman after spending some time on the
crease which enables him to read the pitch conditions
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and the bowler’s strategy against him. In other words,
a batsman is said to be ‘set’ when he gets his eye-in.
Batsmen are regularly seen to be dismissed early in
their innings while still familiarizing themselves with
the field conditions, which suggests that the proba-
bility of a batsman being dismissed on their current
score (called the hazard) remains high regardless of
their current score. Quantifying how well a batsman
is expected to perform at a given stage of his innings
identifies his batting potential could assist in the team
selection strategy.

India lost the semi-final game of ICC ODI world
cup 2019 (WC19) against New Zealand. Team India
(TT) was super favourite and was expected to be cham-
pion for the third time in ODI world cup cricket
history. Despite good play, excellent form of each
player and presence of a dynamic opener (Rohit
Sharma), an aggressive captain (Virat Kohli), the
calm strategist (MS Dhoni), along with the other
exceptionally talented players TI could not enter the
final game.

There may have been a variety of reasons for
India’s defeat but according to the great cricket
experts like Sunil Gavaskar, Sachin Tendulkar and
other seasoned cricketers it was the unsuitable player-
selection at the crucial ‘number four batting position’
(N4), since almost two years prior to the WCI9.
According to the experts, consistent chopping and
changing of TI players in the playing eleven and
failure to fix mid-batting order led to loss in self-
confidence of the batsman and hence his ability to
play with a clear mind set, which is known to hamper
the best playing ability (BPA) of a cricketer. N4 is a
huge responsibility for any batsman in ODI cricket
because he is expected to instantaneously pick up the
pace of the innings with which the top order batsmen
are batting or have batted. In other words, batsman at
N4 needs to assess the batting conditions very quickly
and take the ‘least time’ to get his eye-in which repre-
sents the transitional time interval between the initial
playing ability and BPA. The uncertainty and instabil-
ity for N4 started after the great number four Yuvraj
Singh left the Indian ODI squad twice, first due to his
health condition after ODI ICC world cup 2011 and
then again in June 2017.

Though WC19 preparation started a couple of years
ago yet TI remained indecisive regarding player at
the crucial N4. From August 2017 to July 2019,
India tried and tested seven batsmen, namely Ajinkya
Rahane, Ambati Raydu, KL Rahul, Dinesh Kartik,
Rishabh Pant, Vijay Shankar and Kedar Jadhav, who
had played a minimum of two innings at N4. Rishabh

Pant and Vijay Shankar were finally positioned for
mid-batting order in the WC19. MS Dhoni, Manish
Pandey and Hardik Pandya have also played at N4
on some occasions but they were never considered as
front runners for N4 by the TI’s management commit-
tee. Post WC19, Shreyas Iyer has consistently played
at N4.

The present paper focuses on the analysis and com-
parison of the batting performances of all the eight
TI players who have played at number four position
in ODIs after July 2017 till December 2020, initially
through survival probabilities which are estimated,
for the first time in this paper, through Kaplan Meir
method and subsequently through Bayesian formula-
tion adapted from Stevenson and Brewer (2017). The
present paper is motivated by the idea of ‘initial’ and
‘eyein’ states to decide about the choice of the middle
order batsmen. Concept of ‘positional cohort’ with
respect to N4 batsmen is explored through Bayesian
discrete event modelling in the present paper. Bayes
methodology takes care of the so called ‘curse of
dimensionality’ and use of statistical models eas-
ily handles the challenges which are posed by the
unpredictable and inconsistent nature of the game of
cricket. Analytical study of N4 assessment is impor-
tant for any cricket team to select a robust line-up of
batsmen.

Objective of the present work is to predict the bat-
ting abilities for the mid-order batsmen. The paper
is organized in six sections. Literature review related
to the statistical studies on cricket performances is
presented in Section 2. Section 3 describes the N4
backdrop for the data selection. Analysis strategy and
the proposed model are outlined under Section 4. Sec-
tion 5 undertakes empirical survival analysis of the
batsmen at N4. Section 6 is devoted to the posterior
analysis of the data. Section 7 concludes the study.

2. Existing parametric and non-parametric
methods

Data rich nature of cricket has been utilized by
numerous studies to optimize player and team per-
formance. See for instance Clarke, 1988; Clarke &
Norman, 1999; Preston & Thomas, 2000. Clarke &
Norman, 2003; Swartz et al., 2009; Norman & Clarke,
2010 focus on the decision making in cricket. Davis
et al. (2015) explore a novel metric for the notion
of ‘expected run differential’. Jayalath, 2018 focuses
on the identification of significant predictors of ODI
games, which have potential to influence the outcome
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of a game. Goel et al., 2021 study match predic-
tion under dynamic updation as the game of cricket
progresses.

Elderton & Wood, 1945 support the claim that a
batsman’s score could be modeled using a geomet-
ric progression. Kimber & Hansford, 1993 state that
geometric assumption does not necessarily hold for
all players, due to its difficulty in fitting the inflated
number of scores of 0 appearing in many players’
career records. Bracewell & Ruggiero, 2009 pro-
posed to model the players’ batting scores based on
the ‘Ducks ‘n’ runs’ distribution, using a beta dis-
tribution to model scores of zero, and a geometric
distribution to describe the distribution of non-zero
scores.

An advantage of estimating hazard function is that
it allows us to observe how a player’s dismissal prob-
ability (and hence their batting ability) varies over
the course of their innings. While Kimber & Hans-
ford, 1993 found batsman were more likely to get out
early in their innings, due to the sparsity of data at
higher scores these estimates quickly become unreli-
able and the corresponding estimated hazard function
is observed to jump erratically between the scores.
Cai et al., 2002 address this issue by using paramet-
ric smoother on the hazard function. However, given
the underlying function is still a non-parametric esti-
mator the problem of data sparsity remains an issue
and continues to distort the hazard function at higher
scores. Damodaran, 2006 provided a method which
allows for within-innings comparisons, but lacks a
natural cricketing interpretation. On the other hand,
Koulis et al., 2014 proposed a Bayesian stochas-
tic model for evaluating performance based on the
player’s form, however his focus remained only on
inter-innings comparison in terms of batting ability,
rather than intra-innings comparison.

Swartz et al., 2009 proposed simulator for simula-
tion of one-day cricket matches, where the outcome
probabilities are estimated from historical data which
produce realistic results, with a caution for continu-
ously updating the database. Brewer, 2008 proposed
an alternative Bayesian parametric model to esti-
mate a player’s current batting ability (via the hazard
function), given his score, using single change-point
model. This allows for smooth transition in the haz-
ard between the batsman’s ‘initial’ and ‘eye in’ states,
rather than the sudden jumps of Kimber & Hans-
ford, 1993 and of Cai et al., 2002. Thus, one assumes
that batsmen are more susceptible early in their
innings and tend to perform better as they score more
runs.

Table 1
Batting scores of TI players in ODIs at N4 from August 2017 to
December 2020
Player Score (* indicates the not-out scores)
Ajinkya Rahane 79, 11, 8, 8,34*
Ambati Raydu 22%,73, 22, 100, 0, 24, 13*, 47, 40*, 0,
90, 13, 18,2
KL Rahul 0,9, 17,6, 108, 26

7,44%,103,52,62,2,38,19, 70, 53,7
64*, 0, 26%, 21, 33, 31%, 37

Shreyas Iyer
Dinesh Kartik

Rishabh Pant 26, 32,48, 4,32,20,0
Vijay Shankar 29, 14
Kedar Jadhav 1,5%, 12

Source: www.google.com.

3. Data

Survival times of players who get out during
the match are completely known. However, survival
times of the batsmen who remain at crease by the
end of match are said to be censored. One can refer
to Lee and Wang, 2003 for statistical definitions and
concepts related to survival times and survival dis-
tribution. ODI innings of all the players who were
declared as front runners for N4 either by the TI man-
agement or by the selectors at different points of time
are accessed (Table 1). Ajinkya Rahane had emerged
as the best choice for N4 during TI’s tour to South
Africa in January 2018, owing to the seaming con-
ditions at the pitch. He then played five innings in
the six match ODI series. In July 2018, KL Rahul
had played two innings at N4 against England. In the
same series, Dinesh Kartik was brought up at N4 to
play a single inning against England and thereafter
he continued to play at N4 in Asia Cup, Dubai dur-
ing September 2018. After Asia Cup, Ambati Raydu
assumed N4 until the start of WC19. An interestingly
surprise call was made by TI’s chief selector for N4
to be assigned to Vijay Shankar. However, due to an
injury incurred by him, just after playing two games
in WC19, Rishabh Pant was declared N4 batsman for
WC19.

4. Methodology

Table 1 presents the scores at which the batsmen
got out and their not-out scores in ODIs played by
them during July 2017-December 2020. Latter are
marked with * in the table. In this paper not-out scores
are considered as the right censored survival data and
the remaining scores as complete survival data.
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Fig. 1. KM curves for batting scores of Shreyas Iyer and Ambati
Raydu.
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Fig. 2. KM curves for batting scores of Dinesh Kartik and KL
Rahu.

4.1. Kaplan meir estimates

We adopt a non-parametric approach for gen-
erating survival function for individual players.
Survival probabilities are generated using product-
limit method developed by Kaplan & Meier, 1958.
The survival probability estimates are graphed as
survival distribution known as Kaplan-Meir (KM)
curves. KM curves are used for comparing batsmen’s
performance. KM curves (Figs. 1-5) represent sur-
vival probability over the study period for all players
under study. In the present paper, survival events rep-
resent total runs scored by an individual player before
getting out in an innings. The career period, con-
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Fig. 3. KM curves for batting scores of KL Rahul and Rishabh
Pant.
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Fig. 4. KM curves for batting scores of Dinesh Kartik and Rishabh
Pant.

sidered for the present analysis, is regarded as the
survival time. The ODI in which a player does not
get out is regarded as a right censored survival time.
For making a fair comparison we have considered
pairs of players with equivalent number of innings.
For example, Shreyas Iyer having played 11 innings is
compared with Ambati Raydu’s last 11 innings out of
his total 14 innings played at N4 before WC19. Sim-
ilarly, survival probabilities through KM estimates
are compared for Dinesh Kartik, Rishabh Pant and
KL Rahul taking a pair of two with their latest sur-
vival times or batting scores at N4. Thus, five pairs
of players are assessed through KM analysis.
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Player Name — Vijay Shankar Kedar Jadhav
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Fig. 5. KM curves for batting scores of Vijay Shankar and Kedar
Jadhav.

4.2. Bayesian model

Bayesian methods are primarily preferred as they
overcome the small number problem (Gelman and
Price, 1999) in field data. Bayesian principle appears
as a mechanism which efficiently implements the
likelihood principle (Robert, 2001). Bayes approach
takes care of the nuisance parameter in the likelihood
function (Basu,1988). Bayes principle also facilitates
incorporation of information beyond recorded data
through prior distributions. Other advantages of using
Bayesian approach for such analysis include its capa-
bility to account for missing data, measurement error,
incompatible data, and ecological bias (Haining &
Law, 2011). Posterior summaries thus obtained have
been found to be robust and more precise than those
obtained from the classical inference (Zellner, 1995).

Following the notations of Stevenson and Brewer,
2017, the effective batting average, m; is expressed
as,

Xi
mi= w2+ g —poesp (<) (M

1, the initial batting average is defined as the aver-
age with which batsman arrives at the crease. p;
the final batting average or the eye-in batting aver-
age which characterises the BPA of a batsman. The
transition time (L) between the initial and BPA is the
number of runs required to make this transition and is
also termed as e-folding time. Stevenson and Brewer,
2017 place analogy between the e-folding time and
‘half-life’ thereby signifying the number of runs to

be scored for 63% of the transition between p; and
W2 to take place.

Model (1) provides a basis for comparison among
all the N4 players in the terms of BPA i.e., their ‘eye-
in’ batting average and the number of runs scored to
make the transition between their initial ability and
BPA.

Model assumptions:

(1) X; represents the score of a batsman in the
i innings and is assumed to follow Poisson
distribution with mean m;.

(2) The batsman’s ability will not decrease after
arriving at the crease, hence ©1 < w».

(3) Transition between the two batting states can-
not be any larger than the player’s ‘eye in’
effective batting average, therefore, the value
of L < uy.

In order to incorporate the above assumptions as
constraints, we parameterize from ( ;1, w2, L) to (C,
2, D) suchthat 1 = Cup and L=D py, where C and
D are restricted to the interval [0, 1]. The effective
average model is now translated as,

X
m; = 2 + u2 (C — 1)exp (— DMz) ()

Likelihood function is thus formulated as L (x, m)
e Myt
~J] —F Fora=1.2.....n (3)
i x,-!

Since final batting average depends on the final
score at which the player gets out, hence the score X;
will include scores for those innings in which bats-
man had got out. Not-out scores have therefore been
excluded from further analysis. In the present paper,
the criteria for comparison are that the batsman with
higher eye-in average is considered as better and if
eye-in averages are nearly same for two batsmen then
comparison will be made in terms of parameter L
i.e., the number runs required to make the transition
between initial and best playing ability. The player
with lesser L value will be regarded as a finer player.

Under Bayesian paradigm one can report param-
eter estimates in terms of posterior probabilities.
Based on the collective batting performances in ODI
matches, in the present paper a threshold of 40 runs
for py and threshold of 20 runs for parameter L is
set up. There can be different choices for threshold
of 17 and L, but keeping in mind dynamics of ODI, a
batsman getting out at 40 runs and is not taking more
than 20 runs to transit from its initial playing to best
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Table 2
Posterior estimates and posterior probability for players whose batting capabilities were assessed through Bayesian model

Player [T w2 L 95% C.I (o) 95% C.1. (L) P (n2 > 40) P (L<20)
Ajinkya Rahane 2.176 21.3 11.8 (16.86,26.02) (6.01,17.54) 0 0.9728
Ambati Raydu 0.3519 43.8 22.35 (39.37,48.97) (16.96,28.47) 0.9397 0.2018
Shreyas Iyer 1.753 4297 14.67 (38.77,47.46) (10.59,19.7) 0.9753 0.8843
Rishabh Pant 0.7142 19.97 7.351 (16.72,23.52) (3.515,11.77) 0 1

KL Rahul 0.6896 29.2 16.5 (24.44,34.46) (10.54,22.95) 0 0.8611
Dinesh Kartik 1.002 16.98 2.55 (13.86, 20.55) (0.06789, 7.356) 0 1

playing ability is considerably good for team’s point
of view. Authors calculate posterior probability for a
batsman’s best playing average (u2) to be greater than
40 runs and probability for e-folding(L) time to be
less than 20 runs (Table 2). This calculated posterior
probability for each batsman enables comparison for
batting performances with stronger evidence. Specif-
ically, for Ambati Raydu and Shreyas Iyer whose 11
remains close to each other (Table 2).

4.2.1. Prior specifications

Experts believe that a batsman in an ODI match
gains a lot of confidence after hitting his first bound-
ary and that is the time when he starts gaining his
confidence to play his shots. This subjective opinion
is incorporated as prior density in the model. Priors on
the parameters of the proposed model are chosen so
as to reflect this common cricket knowledge. Batting
average cannot be negative and Gamma distribution
has a non-negative support. The prior elicitation for
the parameter w, is, therefore, taken as Gamma (12,
3) where mean eye-in batting average of four runs is
assumed. Mean initial batting abilities and e-folding
times are regarded as one-third and one-sixth of a
player’s eye-in effective average respectively. In addi-
tion, since parameters C and D lie between 0 and 1,
therefore Beta (1,2) and Beta (1,5) distributions for
parameters C and D are chosen, respectively.

5. Results
5.1. Non parametric analysis

KM estimates for selected five pairs of batsmen are
obtained and drawn using R software (Figs. 1-5). On
observing the survival curves from Fig. 1, itis inferred
that Shreyas Iyer is more susceptible to get out at
the start of his innings and has a higher chance of
getting a half century than Ambati Raydu. Although
Raydu has a lower chance of getting 50 runs but he
has higher probability of scoring 75 runs or getting a

ton (100 runs). Getting a ton at N4 is always desir-
able as it inevitably turns out to be a match winning
innings specially when the top order batsmen fail
to score high. Therefore, Ambati Raydu should be
preferred over Shreyas Iyer to be at N4, considering
his higher probability of getting 100 runs. Figure 2
shows comparison between batting performances of
Dinesh Kartik and KL Rahul. Dinesh Kartik has a
higher probability of getting 30 odd runs than Rahul
but again Rahul seems to be a sustaining player for
longer innings than Kartik. Also, Rahul has higher
probability of getting a hundred which makes him a
preferred N4 batsman than Kartik. From Fig. 3, KL
Rahul is evidenced to get out earlier in his innings
than Rishabh Pant but he has a higher probability of
getting more runs than Rishabh Pant and is therefore
regarded as a better batsman at N4. Figure 4 reflects
that the innings played by Pant before WC19 did not
indicate any reasonable probability for high scoring
game while on the other hand Kartik has moderate
chances of scoring 50 or more runs. There were very
few innings played by Jadhav and Shankar at N4 prior
to and during WC19. KM curves from Fig. 5 which are
based on two innings played by them reflect higher
probability of more scoring runs for Kedar Jadhav.
In context of survival analysis, number at risk is the
number of remaining observations at particular time
in the risk set. In Figs. 1- 5 we can see five time
points (0, 25, 50, 75 and 100) demarcated at x-axis
in form of scores of a batsman at which the survival
probability is calculated, number at risk is calculated
at these time (score) points. For example, at score
of 25 the remaining number of innings for Shreyas
Iyer are 7 i.e., 70, 53, 44, 103, 52, 62, 38 out of total
11 innings played 70, 53, 7, 7, 44, 103, 52, 62, 2,
38, 19.

5.2. Posterior analysis

Bayesian analysis of the model described in sec-
tion 4 is undertaken in OpenBUGS software. Bayes
estimates are obtained through posterior distributions
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Fig. 12. Density plots.

which are in form of complex integrals and difficult to
compute without computing. Smith & Gelfand, 1993
showed that simulation can be used to draw sam-
ples from such complex integrals. Metropolis et al.,
1953 and Hastings, 1990 developed Markov Chain
Monte Carlo (MCMC) algorithms which iteratively
produced sequential samples of dependent draws.
The dependency appears as autocorrelation since the
long stream of numbers are generated from a Markov
Chain (Spiegelhalter et al., 1996). MCMC simulated
chains converge to the desired posterior distribution.
In the present work MCMC algorithm is utilised to
simulate 20,000 data points out of which the initial
2000 generated data points are discarded as burn-in to
make dependency in the posterior samples redundant.
Such trimmed samples are then aggregated to obtain
posterior summaries. Box-plots based on posterior
summaries for effective batting average, m; for each
player is plotted in Figs. 6—11. Box plot represent the
dispersion in the value of effective batting average
obtained through equation (1) and (2) for each inning
of batsman estimated under Bayesian setup. Effective
batting average foreach inning can be given as pos-
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terior mean like we have presented for components
(p1, 2 and L) of effective batting average in Table 2
but in order to represent the dispersion in MCMC
generated posterior sample values for effective bat-
ting average and to reflect on batsman’s consistency
through number of innings in which effective batting
average remains above combined effective batting
average of all the innings represented by central line
authors presented box-plots instead of mean of pos-
terior sample. Posterior summary for all components
of effective batting average (m;) i.e., i1, n2 and L
are obtained and presented in Table 2. Performance
analysis of each batsman is demarcated by poste-
rior mean and posterior probabilities. It is evident
from Table 2 that Shreyas Iyer leading with high-
est estimated values for p1 and u; Posterior mean
and probability for L < 20 is higher for Rishabh
Pant and Dinesh Kartik indicating that these bats-
men get less number runs to get their ‘eye-in’ and
play their shots with highest ability. Posterior density
and trace plots are shown in Figs. 12 and 13, respec-
tively. Density plots and trace plots are diagnostic
tools for detecting convergence in generated MCMC
sample for the parameter under interest. If the shape
of the density plot is bell curved and distribution is
unimodal then the parameter under interest is said
to achieve convergence. Convergence diagnostics for
MCMC generated samples for the parameters under
interests adopted are well utilised from OpenBUGS

software (https://www.mrc-bsu.cam.ac.uk/wp-cont-
ent/uploads/2021/06/OpenBUGS _Manual.pdf).

6. Discussion and conclusion

Cricket fraternity comprises of different experts
each of whom have a distinct analysis strategy for
the outcomes of matches based on their individual
logic. Cricket is game of uncertainties and dynamics
of a particular game changes very rapidly which also
depend on the form of players on a particular match
day. Selectors pick players in TI considering their per-
formance in domestic cricket and in Indian Premier
League (IPL). It is always difficult for captain and
team management to drop or pick when there is close
competition among two players. Here, we present a
statistical approach which gives an unbiased opinion
on comparison of performances for closely compet-
ing players. This analytic approach might augment
the existing selection strategies utilised by the cricket
analytic experts to support selection committee of
Board of Cricket for Control in India (BCCI).

The present paper proposes a simple survival anal-
ysis approach which allows analysis of individual and
pairwise player-assessment at a time (Fig. 1-Fig. 5).
Such an assessment, undertaken for the first time
in sports related research, enables quantification of
how players’ abilities differ, taking into account the
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fact that the information about any player is lim-
ited by the finite number of innings that they have
played.

Also, Bayesian modelling approach is adopted for
analysing initial and final playing abilities of a group
of Indian batsmen who have played at the fourth posi-
tion for team India in ODI cricket. Table 2 represents
posterior estimates which reveals Shreyas Iyer to have
highest BPA. Criteria for comparison and selection of
N4 batsman is based on the final batting average 'm,’
which is the indicator of best playing ability of a bats-
man. Another important indicator i.e., number of runs
required to transit from initial playing ability to final
or best playing ability is the e-folding time ‘L’ which
is used for performance ranking whenever two bats-
men show a tie on the final batting average. The latter
one will be more relevant criteria of comparison in
case of shorter formats like T20s. The present analy-
sis for ODIs show that Shreyas Iyer has the best final
batting average and so is the corresponding posterior
probability. As far as future scope for this research
is concerned, we can assess performance of different
batsman in T20’s by setting up threshold of 30 runs
and 10 runs for uy and L, respectively.

The present work proposes modelling for runs
scored in a ODI by an Individual batsman who have
potential to sustain themselves for longer period on
the field, in pursuit of devising strategies for selection
of the right players in the middle order batting posi-
tion. Initial playing ability is the intensity with which
batsman plays when he first arrives at the crease and
is shy of playing his shots and is sometimes tentative
because gets beaten by the swing offered by the fast
bowlers and tries to adjust the pace, bounce and turn
offered by the pitch. Therefore, we are able to see
the low posterior estimates (Table 2) for initial play-
ing ability. Adapting quickly to pitch conditions and
understanding the opposition plan of attacking are the
key to get your ‘eye-in’ quickly and score runs. Such
an adaption of batsman is quantified in the present
research which analyses the performance of batsman
playing ability fragmented into three parts i.e., initial
playing ability, final playing ability and the transi-
tion time between the two through adopted Bayesian
model. Box-plots for effective batting average, m;,
of individual player’s innings (Fig. 6-Fig. 11) repre-
sents variation in batting performance or consistency
of the batsman. Also, box plots indicate how many
times out of total innings considered for a batsman, he
had played above the combined posterior mean of his
effective batting average. Shreyas Iyer, Rishabh Pant
and Dinesh Kartik are observed to be more consis-

tent and their effective average of individual innings
remains above combined effective batting average of
all the innings played.
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