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Abstract. Evaluating players’ performance for decision-makers in the sports industry is crucial in order to make the right
decisions to form and invest in a successful team. One way of assessing players’ performance is to group players into specific
“types”, where each type represents a level of performance of its players within. In this paper, we develop a novel clustering
approach in order to cluster types of players in the NBA. The proposed methodology is initialized by a k-Means clustering,
then the prescribed clusters inform weights of a weighted network, in which players are the nodes and the arcs between them
carry those weights that represent a numerical similarity between them. We then call upon a weighted network clustering
approach, namely, the Louvain method for community detection. We demonstrate our methodology on six years of historical
data, from seasons ranging from 2014–2015 to 2019–2020. Considering these seasons allows us to use a new type of data,
called Tracking Data, instated into the league in 2014 which further differentiates our research from other player clustering
approaches. We show that our approach can detect outliers and consistently clusters players into groups with identifying
features, which give insights into league trends. We conclude that players can be categorized into eight general archetypes
and show that these archetypes improve upon the traditional five positions and previous research in terms of explaining
variation in Win Shares.

Keywords: Basketball analytics, NBA, weighted network clustering, community detection, k-means clustering, player clus-
tering

1. Introduction

Since the highest-level executives (i.e., decision-
makers) in the sports industry have started utilizing
modern analytics in helping inform their decisions,
sports analytics has gained an increasing popular-
ity for the applications of data science and statistical
analysis. The National Basketball Association (NBA)
is one of the leagues that is highly utilizing it for mak-
ing better decisions. While there are many different
avenues in which analytics can be applied, one of
the crucial concerns of the sports industry is how to
evaluate players’ performance. More specifically, in
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team sports, it is also important to analyze how play-
ers’ performances work together, since it is vital to
building a successful team. One approach that acts
as a starting point for player valuation is determining
which “types” of players exist within the league. Gen-
eralizing player types can help executives evaluate
their value within the context of a team setting.

Basketball traditionally labels players into five
positions; Point Guard, Shooting Guard, Small For-
ward, Power Forward, and Center. This classification,
however, is an oversimplified version of the types
of players that have emerged over the evolution and
growth of the game. It is widely accepted that play-
ers of the same position may not necessarily be
of the same type. For example, LeBron James and
Stephen Curry, are both listed as point guards for
the 2019–2021 seasons (basketball reference.com/
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2021). James, at 6’9” and 250 pounds, and Curry, at
6’3” and 185 pounds, have just about as much in com-
mon in their style of play as they do in their physiques.
James uses his size to post up smaller guards and
drive to the basket, while Curry makes 30’ shots from
behind the arc (3-PT line) look as though they are as
easy as free throws.

Although oversimplication of positions is cer-
tainly one motivation to perform cluster analysis of
players, the driving force that motivates a better clas-
sification of players goes beyond the cluster itself.
Decision-makers are often interested in building a
team consisting of different types of players that
would perform the best on the court. A more gran-
ular characterization of players can set the stage for
lineup optimization, and therefore can be of very high
value to decision-makers. For example, similar to this
idea, Chan et al. (2012) perform k-Means clustering
for professional hockey and determine the relation-
ship between team performance and player types by
using a regression model. Muniz & Flamand quantify
the interaction between player clusters by developing
a new metric that encompasses the synergy poten-
tial between “groups” that each player belongs to.
Note that these “groups” are provided by the analysis
of this paper. The authors incorporate these findings
into an optimization model that prescribes the optimal
team building decisions, including which new play-
ers to draft, which current players to trade with those
of other teams, and/or which free agents to acquire
in a way that maximizes team’s total value, includ-
ing players’ individual values as well as the synergy
potential among players on the team.

A more holistic evaluation can also better inform
decision-makers’ draft, trade, and free agent acqui-
sition decisions. When faced with comparing and
contrasting players such as James and Curry, exec-
utives need to know more than their position.
Specifically, an efficient cluster analysis would help
them in learning about how a player performs, what
makes him effective, what his strengths and weak-
nesses are.

The remainder of this paper is organized as fol-
lows. In the next section, we present a literature
review to summarize previous research. In Section
3, we describe the data used in our approach. In Sec-
tion 4, we propose and discuss our methodology in
detail. Section 5 presents a case study for a single
season (2018–2019) to fully demonstrate the utility
of our approach, including a detailed analysis of the
resulting clusters, while in Section 6 we explore the
previous six seasons to validate our approach and

develop insights in trends among the years. Section 7
presents our sensitivity analysis. Finally, we conclude
and provide suggestions into future work, specifically
in the context of the NBA, in Section 8.

2. Literature review

To address the large discrepancy between the tra-
ditional positions and the types of players that are
labeled by them, one approach that has been explored
in the literature is clustering players according to their
statistics. In a seminal study that won top prize in
the “Evolution of Sports” category at the 2012 MIT
Sloan Sports Analytics Conference, the author clus-
ters players using a technique known as topological
data analysis and identifies thirteen “new positions”,
which he eventually whittles down to ten (Alagap-
pan 2012). Since then, many different clustering
approaches have been explored. Zhang et al. (2016)
also use the traditional k-Means clustering approach
to classify guards (point guards and shooting guards)
in the NBA, and identify six different types of guards.
Patel (2019) also uses k-Means to cluster players, but
first employs dimensionality reductions techniques
to the data and identifies four groups of players.
Bianchi et al. (2017) use self-organizing maps and
fuzzy clustering procedures to develop a new set of
five clusters that are different than the traditional five.
Dehesa et al. (2019) use player and team statistics
and a two-step clustering with log-likelihood distance
and Schwartz’s Bayesian criteria to classify players
in both the regular season and playoffs; they identify
five player types for the regular season and four in
the playoffs.

In the literature, there are also studies that focus
on clustering players that would help in building
successful teams and lineups. Lutz (2012) presents
the first work that incorporates this idea and uses
multivariate cluster analysis to identify ten clusters
of players; the author then analyzes 2- and 3-way
interactions of clusters to determine which combi-
nations of players affect winning. Kalman & Bosch
(2020) first use model-based clustering to give soft-
assignments to players and clusters by assigning a
probability that each player belongs in a cluster. The
authors develop nine positions, similar to that of Ala-
gappan’s size of ten. Then, they investigate different
combinations of these cluster-lineups to determine
the most successful ones using random forest models.

Thus far, all existing clustering approaches use
a single data set, and primarily, a small set with
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limited amount of traditional or advanced statistics
(e.g., Alagappan (2012) uses only seven statistics to
inform his analysis). Alagappan (2012) builds a sem-
blance of a network structure to form player clusters,
though topological data analysis is more precisely a
geometric approach (Carlsson 2009). Other network
clustering approaches in basketball, such as Fewell
et al. (2012) and Xin et al. (2017), take an approach
such that the nodes consist of players and play-type
outcomes and ball movement as arcs. Skinner &
Guy (2015) present one of the first network-style
approaches to incorporate Tracking data, with the
aim of learning players’ skills and predicting the per-
formance of untested 5-man lineups in a way that
accounts for the interaction between players’ respec-
tive skill sets. Our work differs from theirs in terms
of the network structure of the model and the way
in which tracking data is incorporated. Specifically,
the network in their research models offensive struc-
tures and they use tracking data to describe the flow
of possessions through the network. This paper takes
a different approach, as summarized below.

The contribution of this paper is as follows: to
the best of our knowledge, this is the first study
that incorporates multiple data sets separately, which
allows for more information to inform our clusters
and develops a network-based methodology for clus-
tering player types. While the introduction of tracking
data allows for more information to be included in
the analysis of players, it is also difficult to preserve
all of the information encoded within it due to the
vast amount of new statistics. Bruce (2016) suggests
that the “high dimensionality” of this new tracking
data source can be troublesome, as it demands more
computational resources and reduces the ability to
easily interpret findings. He develops a new met-
ric using Principal Component Analysis (PCA) to
summarize the information, although the interpreta-
tion of this metric is still not immediately apparent.
In this study, we employ PCA on our multiple data
sets for reducing the dimensionality, while the results
are still interpretable, since information from each
data set from which we obtain clusters is encoded
into a weighted network. Once PCA is performed on
each data set, the proposed methodology is then ini-
tialized by several k-Means clustering models that
are independently applied to each data set. Then, a
weighted network is built, where each node repre-
sents a player and each arc represents the similarity
between two players (i.e., nodes). Prescribed clusters
that are initially obtained from k−Means clustering
models inform the weights of these arcs in the net-

work. Using our weighted network, we then perform
the Louvain method for community detection, which
is a weighted network clustering approach popular in
the fields of biology and social network analysis. The
network structure allows for a more thorough poste-
rior investigation of the relationships in the clusters.
One can call upon network metrics as well as exam-
ine the network itself to develop insights that are not
previously provided in other clustering approaches.
Newman & Girvan (2004) show community detec-
tion examples on networks of scientific authors with
links between co-authors, on networks of actors in
films with links between actors appearing in scenes
together, and on networks of interactions between
karate club members at an American university. We
apply this idea to sports by using k-Means clustering
to build ‘similarity’ among players. Our algorithm
proposes a new way to think about similarity among
players and results in the formation of new archetypes
of players in the NBA.

3. Data

In this study, we utilize several data sets from
NBA.com/stats (2020) for seasons ranging from
2014–2015 through 2019–2020 that span a variety
of categories. We extract the data using Python’s
nba_api (Patel 2020) package. To keep all data consis-
tent, the per-game averaged, pace-adjusted statistics
are obtained directly from NBA.com. These statistics
accounts for differences in team pace and posses-
sions. Categories and descriptions of all raw data sets
obtained are presented in Table 12 in Appendix A. It
shows the breadth of data collected for each player.
Although the General and Clutch data sets have over-
lapping statistics, we consider those separately, since
clutch scenarios are specific instances in which the
game is within five points in the last five minutes.
Players in these situations are on the floor presum-
ably because their coaches believe they have the best
chance of winning with them in the game.

Prior to the 2014 season, Player Tracking data
that is considered in this paper was not available
throughout the league. For this reason, most of
the existing clustering approaches use simple statis-
tics, typically coming from either the Traditional or
occasionally, the Advanced, data sets described in
Table 12 under the General category. In 2014, a
real-time tracking technology, SportVU, was intro-
duced into every NBA arena and the data offered
by such technology has been made available on
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Table 1

Master data set description

Data set Description Raw Source(s)

2/3 FG(M/A/%) Shooting
(Drive/Catch Shoot/Pull Up/Paint/Post/Elbow) Touch PTS and % Tracking Efficiency

Scoring PTS per (elbow/post/paint) touch Tracking Possessions
PTS (off TOV/2nd chance/fastbreak/in the paint) General Misc
USG%, Off. Rating General Traditional
DD2, TD3 General Traditional
AST %, AST:TO, AST Ratio General Advanced
Time of possession, touches (all & front-court), avg. sec & dribble per touch Tracking Possessions

Passing/ Drive passes, AST, TOV Tracking Drives
Playmaking AST, FT AST, Secondary AST, Potential AST, AST:Pass Tracking Passing

Pass/AST/TOV per (elbow, post, paint) touch Tracking Elbow, Post, Paint Touch
Screen AST Hustle

Rebounding OREB/DREB (Contest/Uncontest/Chance/Distance/Defer) Tracking Rebounding
Off/Def Box-outs, Box-out REBs Hustle

Defense STL, BLK, Def Rim FGM/A Tracking Defense
Def FGM/A, % difference (FG%) Tracking Defensive Impact
Opp 2nd chance/fastbreak/in-paint points Tracking Defense
Deflections, Charges Drawn, Contested 2/3 PT shots Hustle
Loose balls recovered Hustle

Hustle/ Personal fouls drawn General Traditional
Miscellaneous Drive personal fouls Tracking Drives

Distance traveled, average speed Tracking Speed Distance
Clutch USG%, PIE, Possessions Clutch Advanced

NBA.com. Its inclusion in our analysis allows for
a more thorough investigation of player tendencies,
since it covers statistics not previously seen before
such as speed and information on different types of
shots (i.e., catch-and-shoot and pull-up) and touches
(i.e., elbow, post, paint) and their efficiencies. While
these statistics are organized as in Table 12 accord-
ing to NBA.com, we reorganize the data sets and
categorize statistics into six general areas, namely,
Scoring, Passing/Playmaking, Rebounding, Defense,
Hustle/Miscellaneous, and Clutch, such that each
area forms a “Master data set” that includes statistics
related to each category, as shown in Table 1.

The decision to reorganize the data into these
six categories is deliberate. Basketball is a multi-
faceted sport consisting of both offensive and
defensive aspects. For example, we break offense
into Scoring and Passing/Playmaking to allow for
distinction between types of offensive players. Typ-
ically, rebounding is lumped in with defense, but
there are offensive components to it as well. Thus,
Rebounding becomes its own category. In addition,
Defense remains its own category. Normal defen-
sive metrics in traditional box-score statistics only
cover steals, blocks and rebounds, but our data set is
enhanced by both player tracking and hustle statistics,
which allows for a more comprehensive evaluation
of players’ defensive styles. We also introduce a

new Hustle category by combining hustle statistics
that were incorporated into the league in 2018 (Mar-
tin 2018) with information about aggressiveness and
speed to capture the previously intangible value of
player effort. Therefore, the statistics within the Hus-
tle raw source, were not included in their respective
master data sets (i.e., Passing/Playmaking, Rebound-
ing, Defense, Hustle/Miscellaneous) prior to 2018.
Finally, we separate Clutch scenarios from regular
scenarios to capture performance in unique situa-
tions. Prominent owners such as Mark Cuban have
made decisions such as the Jason Kidd acquisition in
2008 (Paine 2010) based on improved performance in
the clutch. Separating data sets into these categories
allows us to capture and evaluate player performance
from a multi-faceted viewpoint and cluster players
accordingly.

4. Methodology

In the previous section, we identified six cate-
gories of statistics that describe the different ways
in which players contribute to the game. In this
section, using the master data sets that are created
based on these categories, we propose a new clus-
tering approach in order to cluster players, namely,
Community Detection with k-Means (CD-kM). The
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Table 2

Sets, parameters, variables, and functions

Sets
D set of all master data sets
DPCA set of reduced dimension master data sets after performing PCA
P set of all players
K set of k values for k-Means clustering experiments
CkdPCA set of clusters prescribed by the k-Means algorithm performed

on data set dPCA for the given k value
Parameters

v percent variability to keep when performing PCA
qr, qc lower quantile threshold for minutes and games played

in regular (clutch) data sets
Variables and Outputs

δk
ij the number of times that pair of players (i, j) ∈ P × P appear in the

same micro-cluster together among the six sets of master data sets
for a given k value

δ
k

ij binned (discretized) value of δk
ij for the player pair (i, j) ∈ P × P

for a given k value
mk modularity of the community partition for a given k value
s′
k

percent of non-singleton groups (i.e., clusters that include more than
one player)

WN (k) weighted network built for given k value
k∗ best compromise k value that maximizes both mk and s′

k
(if applicable)

CWN
k

partitions resulting from community detection performed on WN (k)
using the specific value of k

CWN
k∗ partitions resulting from community detection performed on WN (k)

using the best compromise value of k∗, as defined above
Auxiliary Functions

PCA(d, v) perform principal component analysis on data set d,
retaining v variability; returns dPCA

k-Means(dPCA, k) k-Means clustering performed on reduced dimension data set dPCA

BuildWN (k, (i, j) ∈ P × P, δ
k

ij) for a given k value, build network such that each player in P represents a node
and each edge (arc) connects player pairs (i, j) ∈ P × P with their

corresponding weight δ
k

ij ; returns WN (k)
CD(WN (k)) community detection using Louvain algorithm on WN (k)
Plot(CWN

k
, mk, s

′
k
) for all k ∈ K, plot mk vs. s

′
k

(if applicable) on y-axis,
where the x-axis is |CWN

k
|; returns frontier

Selectk(frontier) if s
′
k

exists, choose k∗ such that mk, s
′
k

are balanced,
else, choose mk using elbow method, return CWN

k∗

proposed methodology has several advantages that
allow for a more holistic player evaluation.

Consider sets, parameters, variables and auxiliary
functions listed in Table 2. Note that parameters are
inputs that must be determined by the modeler. That
is, to implement CD-kM, one must decide upon a
set of k values, K, to use for k-Means clustering,
how much variability v to retain when implement-
ing PCA, and the percentage of players in the data
to drop to ensure adequate sample size in terms of
minutes and games played (qr for all of the regular
data sets, qc for the clutch data set). The user should
be aware that these inputs may affect the output of
their application. To this end, we conduct a sensitiv-
ity analysis in Section 7 to investigate this idea for our
application.

The proposed methodology is shown in Algorithm
1. It combines the use of two clustering algorithms
repeatedly, namely, k-Means and community detec-
tion. Both methodologies are implemented using
Python. Specifically, we use the scikit-learn library
to perform k-Means clustering (Pedregosa et al.
2011), and the community API package to imple-
ment Louvain’s algorithm for community detection
(Aynaud 2010). We use Louvain’s algorithm since it
is shown to outperform other community detection
methods in terms of computation time (Blondel et
al. 2008). Furthermore, in a recent article comparing
different weighted network clustering approaches,
Louvain was reaffirmed as “one of the state-of-the-art
[weighted network] clustering algorithms” (Arratia
& Renedo Mirambell 2021). We use k-Means for
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the underlying clustering due to its stability. scikit-
learn’s k-Means algorithm has a parameter called
“init” that represents the method of initialization of
the algorithm which takes the value of “k-means++”
by default to initialize cluster centers in “a smart
way to speed up convergence” (scikit-learn.org 2007–
2021). In addition, its “n init” parameter takes the
value of 10 by default which makes the algorithm run
ten times with different initial centroid seeds (scikit-
learn.org 2007–2021). Therefore the output returned
is the best in terms of inertia without the user having
to run the algorithm multiple times manually (scikit-
learn.org 2007–2021).

Algorithm 1 consists of four main steps. In Step 0,
we perform a Principal Component Analysis (PCA),
which is a process by which principal components,
low-dimensional linear surfaces that are closest to
the current observations, are computed (James et al.
2013). Performing PCA reduces dimensionality and
preserves variability in data sets. Dimensionality is an
important consideration when performing k-Means
clustering, because when dimensionality of the data
is high, the nearest neighbors in k-Means may not
actually be very close and may therefore lead to a
poor or misleading fit.

After PCA is performed, in Step 1, the main part
of the algorithm is initialized by k-Means cluster-
ing. We refer to the clusters yielded by the k-Means
clustering as “micro-clusters”. The value of k repre-
sents the number of micro-clusters that needs to be
pre-defined. In general, in order to determine the best
k value, one uses a scree plot or evaluates the sil-
houette scores among different k values, where the
optimal tuning for k is left up to the subjectivity of
the analyst. In this study, we implement the proposed
algorithm for a set of different k values and follow a
similar but an alternative approach to select the best k
value, which will be discussed later. For each k value,
a k-Means clustering is implemented on each of six
master data sets (with reduced dimensions). There-
fore, each of these six master data sets has their own
set of micro-clusters (i.e., grouping of players). As
shown in Table 2, δk

ij denotes the number of times
that player i and player j appear in the same micro-
cluster together among the six sets of micro-clusters
for a given k value. δk

ij may be considered as “simi-
larity between player i and player j”. Specifically, we
aim to identify similar scorers, playmakers, hustlers,
rebounders, defenders, and clutch players.

Once, for each k value, k-Means clustering is
implemented on six master data sets and δk

ij values are
obtained from them, in Step 2, a weighted network

WN (k) is built, in which players are the nodes, and
each arc that connects two players represent the simi-
larity between them with respect to the magnitude of
its associated weight. The weight of each arc is calcu-
lated by scaling and binning δk

ij values. We perform

scaling on δk
ij in order to avoid bias that would occur

on the number of times two players appear together,
in the case that two players do not individually appear
in all six master data sets. More specifically, we scale
the number of mutual appearances, δk

ij , by the number
of possible mutual appearances. For example, assume
that player i played in the requisite number of games
and minutes in the clutch scenario, while player j did
not. These players can appear in at most five micro-
clusters together except for the micro-clusters coming
from the “Clutch” master data set since player j does
not exist in it. Therefore if players i and j appear
in one micro-cluster together (i.e., δk

ij = 1), then its

scaled δk
ij value, that we refer to as “raw value”, is

calculated by δ̃k
ij = 1/5. Contrarily, if these players

individually appear in all six master data sets, this
value would be δ̃k

ij = 1/6. In this way, the raw value
ranges from zero (for players who never appear in the
same micro-cluster) to one (for players who appear in
the same micro-cluster every time they appear in the
same data set). We call this scaled value the raw value,
since we further discretize these values into bins to
be used as the weights of the arcs in the weighted
network. Using binned values as the weights pro-
duce the best results in our implementation, since
the discretization allows for more separation among
groups by creating a sparse network (if small ratios
are discretized to zero arc weight). Note that we use
fixed-width binning in our approach using an interval
of the same width for each bin.

For each weighted network that is created for a
given k value, the Louvain method for community
(i.e., cluster) detection is performed. This algorithm
is a heuristic with two phases repeated iteratively
in order to maximize “modularity” of communities.
Modularity is a measure of the density of links inside
communities as compared to links between commu-
nities. Therefore, the algorithm aims to cluster the
nodes such that each community includes elements as
similar as possible to each other. The first phase of the
algorithm allows local changes in community assign-
ment. Specifically, if removing node i from its current
community and placing it in its neighbor j’s commu-
nity improves modularity, then it is moved accord-
ingly such that the improvement is achieved. The
second phase builds another network whose nodes are
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Algorithm 1 Community detection with k-Means (CD-kM)
1: Step 0: Perform PCA for Dimension Reduction:
2: DPCA ← ∅
3: for d ∈ D do
4: dPCA← PCA(d) � PCA returns reduced dimension for data set d

5: DPCA ← DPCA ∪ {dPCA}
6: end for
7: Step 1: Perform k-Means Clustering:
8: Let CkdPCA denote the set of clusters prescribed by the k-Means algorithm performed on data set dPCA for

the given k value.
9: for k ∈ K do

10: for dPCA ∈ DPCA do
11: CkdPCA ← k-Means(dPCA, k) � k-Means prescribes a set of clusters
12: for (i, j) ∈ P × P do
13: for c ∈ CkdPCA do
14: if i ∈ c and j ∈ c then
15: δk

ij ← δk
ij + 1 � Tracks number of occurrences two players in same cluster

16: end if
17: end for
18: end for
19: end for
20: end for
21: Step 2: Build Weighted Network, WN (k), for Each k:
22: for k ∈ K do
23: WN (k)← Build(WN (k, (i, j) ∈ P × P, δ

k
ij).

24: Step 3: Perform the CD Algorithm on Each WN (k):
25: (CWN

k , mk, s
′
k)← CD(WN (k)) � CD (Louvain) algorithm prescribes partitions that maximize

modularity
26: end for
27: Plot(CWN

k , mk, s
′
k) � Build a modularity frontier based on mk vs. s

′
k values, if s

′
k exists. Otherwise, frontier

consists of mk only.
28: Selectk(frontier)← CWN

k∗ � By inspecting the modularity frontier, select the best compromise k value (k∗)
29: Return CWN

k∗

the communities found in the previous phase. These
two phases are repeated until no increase in modular-
ity can be gained (Blondel et al. 2008). The Louvain
method prescribes a set of partitions (i.e., clusters of
players) that we refer to as “macro-clusters”.

Note that the proposed methodology, (CD-kM),
is implemented several times by running multi-
ple experiments with different k values. Therefore,
among those, the k value and its associated imple-
mentation that achieves the best performance among
others should be chosen. One must consider the bias-
variance trade-off when choosing the k value. Given
this trade-off, using the results of several experiments
with different k values, we construct a scatter plot
that we call the “modularity frontier” and show an
example in Fig. 1 to visualize the bias versus vari-
ance trade-off. This frontier is designed to assist in

selecting the best compromise k value from the set of
experiments run in CD-kM algorithm.

We conceptualize bias as the over-simplification
of player types into a small number of groups. In this
way, the traditional five positions could be consid-
ered as being a biased assessment of actual player
types. On the other hand, we conceptualize variance
as the over-fitting of player types into a large num-
ber of individualized groups, where variance refers
to the amount by which the results would change if a
different training set (or group of players) was used
(James et al. 2013). If each player were to be assigned
to their own cluster, then the results would be highly
individualized and therefore we would conclude that
the variance of the model is high. For example, at an
extreme case, if the value of k is equal to the number
of players, then each micro-cluster would be of size
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Fig. 1. Example modularity frontier

one which would form a completely disconnected
weighted network. Therefore, the community detec-
tion algorithm would result in as many macro-clusters
as the number of players. These clusters would be
completely distinct, but practically useless, as we
could not draw any relationships among the group. On
the opposite end, if the value of k is too small (e.g.,
two), then the likelihood that players appear in the
same micro-clusters is very high. This would result
in a dense weighted network and therefore would be
difficult to perform any useful community detection.

5. Case study I: 2019–2020 Season

To first demonstrate our methodology in depth,
we use as a case study the 2019–2020 season. With
any unsupervised clustering algorithm, the user must
determine values of certain parameters to use. Thus,
we first discuss how parameter values are chosen,
then we discuss our results.

5.1. Parameters

In order to ensure that we have enough information
on each player, we limit observations in all categories
(except for the Clutch category) to players above the
25th percentile in minutes and games played. For all
data sets except those in the Clutch category, this rep-
resents observations with at least 12.6 minutes and 29
games. There are fewer situations in which games are
considered in a clutch scenario, and therefore, players
are more selectively chosen. Due to this, for those in
the Clutch category, we limit observations to players
above the 50th percentile, which represents 2.6 min-
utes and 16 games, respectively. Thus, this results 336

Table 3

PCA dimensionality reduction results

Master Dimensions
Data set Before After Reduction

Clutch 4 3 25%
Defense 16 10 37.5%
Rebound 36 15 58%
Passing 49 26 46.9%
Scoring 38 24 36.8%
Hustle 14 7 50%

players in the player set, P . This set consists of 65
point guards, 75 shooting guards, 58 small forwards,
68 power forwards, and 70 centers. Regarding pos-
sible k values, we consider K ≡ {3, 5, . . . , 51} for
implementation in the k-Means experiments, to be
performed on all data sets given in Table 1. We use
odd values of k to eliminate the need for tie-breaks in
the k-Means clustering and an upper limit of 51 such
that average micro-clusters should be no smaller than
51
336 ∼ 15% of the original size of the dataset. We
note that for PCA, we choose to retain 99% of the
variability within the data. Table 3 shows the origi-
nal and reduced dimensionality for each dataframe in
terms of the number of attributes that each dataframe
includes. While PCA is typically chosen to be 70-
80%, a large majority of the variability is kept in
the data since the independent variables (i.e., player
statistics) for each category are intentionally cho-
sen to embody that category, and we want to retain
as much information as possible. To discretize the
weights on each arc, we split the values into four
bins. That is, players occurring in the same micro-
cluster 0− 25% (not inclusive) of the time has an arc
weight of zero, 25− 50% (not inclusive) of the time
has an arc weight of one, 50− 75% (not inclusive)
of the time has an arc weight of two, and 75− 100%
(not inclusive) of the time has an arc weight of three
in the weighted network.

Note that other binning approaches (e.g., 0, 3, 5)
are also explored, as well as using the raw values
directly, and our experiments show that dividing the
raw values into four bins provides adequate separa-
tion among groups. In addition, note that we keep k

constant for all data sets within each experiment. This
approach also avoids a combinatorial search of using
different k-values for each data set. The interested
reader is encouraged to experiment with different
discretization approaches, k-values, and percent vari-
ability schemes that leads to the best results in their
use case. The values we ultimately decide upon are a
result of the best modularity frontiers. We aim for a
modularity of greater than 50% after comparing with
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Fig. 2. 2019–2020 CD-kM Modularity frontier

Fig. 3. Macro cluster visualization

recent community detection research. Specifically,
Newman & Girvan (2004) find that practical modu-
larity values range between 0.3-0.7 (see references in
Singh Ahuja & Singh (2016)). In a subsequent sec-
tion, we explore different scenarios in which these
decisions are altered to develop insights on their sen-
sitivity.

5.2. Results

Applying Algorithm 1, CD-kM(K,D,P), on the
given case study yields the modularity frontier shown
in Fig. 2. To select the best k value for our case, we
inspect the modularity frontier. In this case, since
we have singleton groups, the frontier shows both
modularity and non-singleton percentages. Our aim

is to simultaneously maximize modularity, whose
approximation is shown as the purple curve, and the
percentage of non-singleton groups, whose approxi-
mation is shown as the green curve. To this end, we
focus on the points between the modularity curve and
the non-singleton curve near their intersection. As a
result, k∗ = 43 is chosen as the best value, as it is
nearest to both curves’ intersection with both points
within their boundaries. Thus, our optimal player
clustering, or macro-clusters, are defined by CWN

43 .

5.3. Macro-cluster (group) analysis

In this section, we examine macro-clusters (i.e.,
groups) obtained by the proposed methodology for
the case study. Fig. 3 visualizes the macro-clusters
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Table 4

2019–2020 Group performance metrics: Mean (standard deviation)

Group Size PER OWS DWS WS USG%

0 37 19.156 (4.025) 3.065 (2.506) 1.812 (1.043) 4.879 (2.975) 27.442 (5.238)
1 32 20.791 (3.147) 3.194 (1.793) 2.235 (1.054) 5.435 (2.534) 21.615 (5.210)
2 30 14.574 (3.227) 1.435 (1.201) 1.456 (0.933) 2.897 (1.709) 18.444 (3.658)
3 40 12.348 (2.213) 1.357 (0.982) 1.200 (0.714) 2.552 (1.310) 16.472 (3.358)
4 24 10.294 (5.059) 0.494 (0.975) 0.806 (0.737) 1.294 (1.515) 16.075 (3.947)
6 57 13.906 (3.287) 1.259 (1.504) 1.379 (0.731) 2.627 (1.943) 21.224 (3.83)
8 36 15.411 (4.762) 1.202 (1.118) 1.068 (0.681) 2.272 (1.653) 15.764 (2.897)
9 36 10.335 (3.225) 0.441 (0.677) 0.657 (0.472) 1.089 (0.971) 15.874 (3.410)
10 41 12.160 (3.338) 0.524 (0.847) 0.812 (0.525) 1.334 (1.159) 17.401 (4.076)

in a scatter plot form. Specifically the plot shows
the weighted network, WN (43), upon which CWN

43
was built, without its arcs for clarity. Encoded in
this plot is information from all six data sets in
D and the underlying k-Means relationships. The
position of nodes (players) in Fig. 3 are determined
by the Fruchterman-Reingold’s force-directed algo-
rithm, which aims to build a graph such that all arc
lengths are uniform, that displays as much symmetry
as possible, and displays evenly distributed vertices
(nodes). That is, to visualize and better conceptual-
ize the weighted network, the Fruchterman-Reingold
algorithm assigns an (x, y) location to each player in
order to achieve these goals. Therefore, players that
are closer to each other in the Fig. 3 are more similar
than players further from each other, players central
to the frame share more in common (more connec-
tions) with the population of players, and players on
the outside are more unique or share fewer connec-
tions. In Fig. 3, the three singleton macro-clusters are
omitted. In addition, names of the selected players
are displayed for a better interpretation. In the fig-
ure, while some macro-clusters (denoted by colors)
are more clearly delineated, there is an amount of
overlap in them. For example, Group 0, with players
such as Kawhi Leonard, James Harden, and LeBron
James, is more separated from the other groups that
are overlapped towards the center of the figure.

Note that we examine statistical averages of
each macro-cluster, and characterize each of them
according to their playing tendencies. Characteristics
regarding the performance of players in each macro-
cluster are summarized in Table 5 along with notable
players in each group. Table 4 displays the size of and
average performance metrics for each group and their
standard deviations. Sizes of macro-clusters range
from 24-57 players, in addition to the three single-
tons. This would reflect that bias-variance trade-off
in choosing k∗ is managed, with no one single group
dominating the others in size. The performance met-

rics are developed as an attempt to quantify the value
of players. PER represents Player Efficiency Rating,
which is a measure of per-minute production stan-
dardized in a way such that the league average is 15
(Hollinger 2007). Table 4 shows that Groups 0, 1, and
8 on average have a PER higher than the the league’s
average. Offensive and Defensive Win Shares (OWS
and DWS) are an estimate of the number of wins
contributed by a player due to offense and defense,
respectively, while Win Shares (WS) is the sum
of these two values, and estimate the total number
of wins contributed by a player (basketball refer-
ence.com/ (2021)). According to Table 4, Groups 0
and 1 dominate in all three of these categories. Com-
paring OWS and DWS would provide us an idea
regarding the main role of each group. For exam-
ple, all of the Groups 2, 4, 6, 9, and 10 have higher
DWS than OWS that suggests that their role is more
defensive than offensive. This is understandable, as
Groups 0 and 1 seem to dominate the offensive role,
while Group 3 are the 3-PT specialists, and Group 8
can score and create for their teammates and also play
defense. Finally, USG% is an estimate of the percent-
age of team plays that a player is involved in while
he is in the game (NBA.com/stats/help/glossary/).
Groups 0 and 1 also dominate in this category, along
with Group 6. These summary statistics match the
characterizations in Table 5 and provide a deeper
understanding of each group.

The proposed methodology offers an improve-
ment from both a topological data analysis approach
and other traditional clustering approaches. In our
approach, not only can different types of players be
identified by utilizing community detection, but also
the creation of a network allows one to better under-
stand the groups and the relationships among them.
For example, Fig. 3 and descriptions on Table 1 show
that Groups 0 and 1 are more clearly delineated, being
the high performing triple-double and double-double
groups that they are, respectively. Results also reveal
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Table 5

2019–2020 Group summaries

Group Characteristics Notable Players

0 majority PG/SG; offensive powerhouses (PTS, AST); scoring: drives &
pullup shots; record most triple-doubles

LeBron James, James Harden,
Luka Doncic, Devin Booker

1 majority C/PF; record most double-doubles; rebound & hustle
specialists; create off screens & passing; efficient scorers inside

Anthony Davis, Rudy Gobert,
Joel Embiid, Nikola Jokic

2 majority PF; inside/outside defenders; ball protectors and efficient
scorers inside paint; solid rebounders

Carmelo Anthony, Rudy Gay,
Miles Bridges, Kevin Love

3 majority SG/SF; outside shooters (3-PT, catch & shoot); inside passers
(drive & paint AST); high AST/TO ratio

JJ Redick, Grayson Allen, Danny
Green, Seth Curry

4 majority PG/SG; passing specialists (high AST & AST/TOV ratio);
quicker players on offense & defense; above average FG3%

Trevor Ariza, K. Caldwell-Pope,
JJ Barea, Trey Burke

6 majority PG/SG; efficient w/ catch & shoot, pullup shots, esp. elbow;
offensive playmakers (AST categories); defensive hustlers

Chris Paul, Jamal Murray, Ja
Morant, Lonzo Ball

8 majority C; inside rebounders (both ends) & defenders; AST off
screens and from paint; efficient scorers from paint & post

Dwight Howard, JaVale McGee,
DeAndre Jordan, Nerlens Noel

9 majority PG/SG/SF; generally low offensive but high defensive ratings;
above average FG3% & AST statistics; quicker players

Kyle Korver, Emmanuel Mudiay,
Luguentz Dort, Alex Caruso

10 majority PF/SG/SF; generally below average offensive statistics, but
can shoot FG3; no outstanding characteristics

Doug McDermott, Jordan
Clarkson, Markieff Morris

that while Group 0 and Group 6 are close, their main
difference is that Group 0’s propensity to score and
shoot more, while Group 6 are passers first, but still
proficient scorers.

Note that in each cluster, there may exist some
oddities due to the complexity of player types in the
NBA. For example, Kyle Korver’s presence in Group
9 may not be considered as a good fit alongside Alex
Caruso. However, Fig. 3 shows that while they are
in the same group, their distance is not remarkably
close. Specifically, Kyle Korver is located at the edge
of his cluster, far from its centroid that represents that
he may not fully embody all characteristics of his
clusters. The network visualizations for each group
in Fig. 6 in Appendix B also show that players cluster
towards the center of the network more greatly, which
embody the characteristics in Table 5. The further out
they appear, the less strongly connected to the group
they are.

Note that CD-kM also allows for outlier detection
as well as optimal clustering. The outliers (single-
tons), identified in the 2019–2020 season, are Giannis
Antetekounmpo, Ben Simmons and Marc Gasol.
Giannis Antetekounmpo was the NBA’s 2019–2020
Defensive Player of the Year and Most Valuable
Player, becoming only the third player to win both
awards in a single season. Obtained micro-clusters
show that Giannis is very dynamic and unique. Sim-
ilarly, they also reveal uniqueness of Ben Simmons.
In the 2019–2020 season, Simmons was First Team
All-Defensive and fifth in the league in triple dou-
bles. He is often criticized for his reluctance to shoot

from outside, specifically behind the arc, but he is
still a prolific scorer, preferring instead to shoot from
inside the arc, and doing so with 58.3% accuracy
for the 2019–2020 season. For Marc Gasol, a for-
mer three-time All Star, the 2019–2020 season was in
his thirteenth season in the league. He was an aging
player on a team who just won the NBA champi-
onship the prior season but lost a majority of their
stars to free agency. Our analysis shows that Gasol
does not appear in a micro-cluster of his own for
any of the six categories, which already sets him
apart from Antetekounmpo and Simmons, who dis-
tinguished themselves as unique at the micro-cluster
level. Instead, Gasol matches with different groups in
different categories, which show that his connections
split among multiple groups.

5.4. Network (micro-cluster) analysis

We consider the micro-clusters underlying the cre-
ation of the macro-clusters. Recall that an arc between
players i and j, shown in Fig. 6 in Appendix B, rep-
resents an occurrence of players i and j appearing in
the same micro-cluster (k-Means with k∗ = 43) for
at least one of the six master data sets. While these
connections are examined between individual play-
ers, one can also examine the connections at group
levels. To this end, we examine common connections
that frequently occur between groups, in terms of cat-
egories. We first look at the distribution of categories
of matches among each group as shown in Fig. 7
in Appendix C. Recall that the Clutch data set con-
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tains only a subset of the players, as these situations
are more scarce, so there are fewer opportunities for
matches. As shown in Fig. 7, Groups 4, 8, 9, and 10
have zero percent of their matches in the Clutch cate-
gory. Since these groups are the generally low usage
groups, as shown in Table 4, these players may not
be involved in many clutch scenarios, in which the
outcome of each possession is critical. In addition,
our analysis reveals that among the other groups with
matches in the Clutch category, Group 0 leads the way
with nearly 10% of their matches. This would occur
due to the fact that this group contains the high-usage
All-Star level players, who may be the ones chosen
to have the ball in their hand in a clutch situation.

As shown in Fig. 7 in Appendix C, a majority of
the matches in Group 0 are in the Passing (Playmak-
ing) category, followed by Scoring. Their similarity
distribution is among the most consistent, with no
one category dominating or lagging behind. Group 1
has nearly half of their matches in the Passing cate-
gory, followed by Scoring and Defense. They contain
the second highest percentage of Clutch matches,
as this group contains the high-usage effective big
men. Group 2’s matches are dominated by Scoring.
Recall that these players are effective scoring inside
from the point and paint. Group 3’s matches are
also dominated by Scoring. Recall that these play-
ers are the 3-PT catch and shoot specialists. Group
4 also sees a majority of matches in Scoring, but
Defense is a closer second, which would be expected,
given that they are highlighted as quick players defen-
sively. Group 6 sees matches in Scoring and Defense
in nearly the same percentages, following by Pass-
ing. This group is highlighted as being efficient
catch/shoot and pullup scorers, playmakers with high
assist stats across the board, and the defensive hus-
tlers. Group 8 sees the least matches in scoring (other
than clutch in which they do not appear), but more
consistent matches in Defense, Rebounding, Passing,
and Miscellaneous (Hustle) to a lesser extent. This
agrees with their description in Table 5, since this is
the group of inside rebounders, who can score from
the paint and post, and create assists off the screen
and from the paint. Group 9 has a majority of their
matches on Defense, and low elsewhere. Finally, a
majority of their matches in Group 10 is in Miscella-
neous. According to Table 5, it may be concluded that
this is a negative match since this group has generally
low hustle stats and low distance traveled on both ends
of the court. Note that players assigned to clusters
may not fully embody all characteristics of the gen-
eralizations such as those in Table 5. However, with

further investigation into the network structure, the
user can gain a better understanding of why clusters
were chosen.

In the next section, we apply CD-kM to all seasons
with tracking data, beginning with the 2014–2015
season. This allows us to verify our approach for
multiple years and also distinguish trends in clusters
among the years.

6. Historical data

In the previous section, we explore the utilities of
our approach on a single season (2019–2020). In this
section, we summarize results from the prior five sea-
sons (2014–2015 through 2018–2019) alongside the
2019–2020 results for validation, as far back as NBA
tracking data is available for the entire league. Look-
ing at historical data, we identify trends among the
types of players in the league. This extends the utility
of our approach beyond simply classifying players
into groups. The ultimate aim is to be able to use
these classifications in a practical sense. For coaches
or general managers, the aim may be to build a team
of the best combination of players, and these clas-
sifications of players provide a starting point. We
summarize the results of CD-kM on these six seasons
in Table 6.

Table 6 shows that beginning with the 2014–2015
season, CD-kM identifies 14 macro-clusters, four of
which are singletons, for a modularity of 73.15%,
which is the highest exhibited among all six years
examined. For the 2015–2016 season, CD-kM iden-
tifies 13 macro-clusters, four of which are singletons,
for a modularity of 65.88%. For the 2016–2017 sea-
son, CD-kM identifies 12 macro-clusters, three of
which are singletons, for a modularity of 69.81%,
followed by 10 macro-clusters with one singleton
(modularity of 66.54%) in the 2017–2018 season,
and 14 macro-clusters with three singletons and one
group of two (modularity of 71.96%) in the 2018–
2019 season.

With singletons removed, all seasons have a total
of nine or ten macro-clusters. By inspecting the group
averages for each of the six master data sets for each
group and each year, we conclude that groups can be
placed into one of eight general archetypes: Support-
ing Guards, Pass First Guards, Shoot First Guards,
Versatile Forwards, Role Playing Bigs, Superstar
Guards, and Superstar Bigs. These groups’ advanced
statistics are summarized in Table 7.
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Table 6

2014–2015 through 2019–2020 CD-kM results

Season k∗ Modularity Total # Groups Singletons
(Non-Single)

2014–2015 51 73.15% 14 (10) Zach LaVine
Ronnie Price

Nikola Pekovic
Shane Larkin

2015-2016 47 65.88% 13 (9) Joakim Noah
Iman Shumpert

DeMarcus Cousins
Stephen Curry

2016-2017 45 69.81% 12 (9) Manu Ginobili
Luc Mbah a Moute

Salah Mejri
2017-2018 39 66.54% 10 (9) Steven Adams
2018-2019 49 71.96% 14 (10) John Wall

James Harden
Isaiah Canaan

(Russell Westbrook, Paul George)
2019-2020 43 66.94% 12 (9) Giannis Antetokounmpo

Ben Simmons
Marc Gasol

Traditional role-playing guards are split into three
archetypes: Supporting Guards, Pass First Guards,
and Shoot First Guards. Supporting Guards, similar
to Group 9 from 2019–2020, are not outstanding in
any of the traditional guard roles, such as scoring
and passing, and they are the generally lower usage
guards. However, they rebound at a higher rate than
their traditional role-playing guard counterparts on
both offense and defense.

Pass First Guards, similar to Group 4 from 2019–
2020, assist and subsequently turnover the ball at a
higher rate than their traditional role-playing guard
counterparts. In fact, their assist ratio (not shown in
Table 7), or number of assists on average per 100
possessions, is higher than any other group’s.

Shoot First Guards, similar to Group 3 from 2019–
2020, are the 3-point specialists of the guards. Not
only do they shoot 3-pointers at the highest rate
(3PAr), but their True Shooting Percentage (TS%,
a shooting percentage that considers three-pointers
and free throws values as well as the conventional
two-pointers (NBA.com/stats/help/glossary/)) is the
highest among the traditional role-playing guards
groups. Among the traditional role-playing guard
archetypes, they score the most catch-and-shoot,
pull-up, and drive points per game. PER and WS
both increase among these three traditional guard
archetypes in order of Supporting Guards, Pass First
Guards, and Shoot First Guards, although they are the
lowest in both categories among all archetypes.

The traditional “bigs” (forwards and centers) are
split into two archetypes: Versatile Forwards and
Role-Playing Bigs. Versatile Forwards, similar to
Group 2 from 2019–2020, can shoot from inside and
outside the 3-PT arc, they rebound and block at rates
higher than the traditional guards but lower than the
traditional bigs, yet they assist and steal at rates higher
than the traditional bigs but lower than the traditional
guards. They excel in the catch-and-shoot scenar-
ios from both 2- and 3-PT range but also get a fair
amount of their point on second-chance opportuni-
ties and in the paint. Behind the Superstar groups
that will be covered shortly, they lead all other groups
in double-doubles. Among the traditional roles (both
guards and bigs), Versatile Forwards have the highest
WS.

Role-Playing Bigs, similar to Group 8 from 2019–
2020, are characterized by their inside dominance.
Their jobs are mainly to protect the paint, rebound,
and create for their teammates in ways that are some-
times underappreciated. They rebound at the highest
rates among the traditional roles (both guards and
bigs), and aside from the Superstar Bigs, they have
the highest block percentage (BLK%). Though their
AST% is the smallest among all archetypes, not
reflected is their ability to create assists from screens,
which is a statistic in which they are second only to
the Superstar Bigs. Among the traditional roles (both
guards and bigs), Role-Playing Bigs have the highest
PER.
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For the traditional roles thus far, “bigs” may be
viewed somewhat more valuable than guards in terms
of PER and WS. This is compensated for in our two
archetypes of Outstanding Guards: Superstar Guards
and Scoring Guards. Superstar Guards, similar to
Group 0 from 2019–2020, set themselves apart from
all other guards in all categories. They have the high-
est usage percentage among all archetypes, which
means they are involved in the highest percentage
of team plays when they are on the court. In addi-
tion, they have the highest PER and WS among all
other guard archetypes. They lead all guards in scor-
ing, primarily off of drives and pull-up shots, but also
off of second chance and fast break points, assists,
and steals. Coupled with their ability to rebound, they
tally the most triple-doubles of all archetypes.

Scoring Guards, similar to Group 6 from 2019–
2020, separate themselves from traditional guards
primarily in their ability to score, which is reflected
in a higher USG% and WS in their advanced statis-
tics. They average the second highest points per game
behind the Superstar Guards. Their primary form of
scoring is off the catch-and-shoot, in which they score
the highest points per game among all archetypes.
They also excel at scoring off of drives and pull-up
shots, on the fastbreak and off of turnovers, second
in all these categories only to Superstar Guards. In
addition to their offensive ability, they exhibit hus-
tle on defense and have the highest block percentage
among guards and second highest steal percentage.
Both Superstar and Scoring Guards set themselves
apart from the traditional guards through their PER
and WS ratings. Specifically, these are guards that
are above and beyond the traditional guard roles with
their respective characteristics.

Finally, one archetype of “bigs” set themselves
apart from the traditional bigs: Superstar Bigs, sim-
ilar to Group 1 from 2019–2020. These Superstar
Bigs have the highest value in terms of both PER
and WS. They dominate the paint with both boards
and blocks. In addition, they create more for their
teammates in terms of assists, as compared to the
traditional big archetypes in elbow, post, and paint
assists, as well as screen assists, they score efficiently
and often from the elbow, post, and paint. They dom-
inate other groups in terms of double-doubles due to
their ability to score and rebound consistently.

Identifying these eight archetypes reveals a trend
over the course of the past six seasons consistent with
the evolution of professional basketball. The game
has evolved over the past couple decades, from a post-
dominated league with teams revolving around a star
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center (e.g., the Los Angeles Lakers with Shaquille
O’Neal or San Antonio Spurs with Tim Duncan in
the early 2000’s), to “Small Ball” (i.e., a style of play
that trades size for speed, agility, and 3-PT shooting)
teams dominating the league. This transition is appar-
ent in a specific subset of two archetypes identified in
Table 8 as two additional sets, since they do not fit into
the original eight archetypes. The first archetype is a
hybrid between Supporting Guards and Versatile For-
wards. The players in this archetype are a near 50/50
split between guards and bigs which would repre-
sent a hybrid group. The second archetype is another
group of players similar to Role Playing Bigs but
that do not quite fit into the regular archetype. These
groups appear in the first three seasons (2014–2015
through 2016–2017) where there is a post-dominated
league. With two to three other groups of bigs (both
Superstar and Role-Playing) in these seasons, these
groups distinguish themselves in a sense that they are
not good enough to fit the Role Playing Big archetype.
In fact, they exhibit statistics below those of Role
Playing Bigs in nearly every category, both in Table
8 and in the master data set averages.

Note that there may exist overlap among group
characteristics and therefore fluidity between players
in groups throughout the years. For example, Scor-
ing Guards and Superstar Guards have some overlap
in characteristics, and players such as Chris Paul,
James Harden, Jimmy Butler, and Kawhi Leonard
fluctuate between the two over the six seasons exam-
ined. Similarly, Pass First Guards and Supporting
Guards overlap, as players such as Vince Carter and
Dante Exum fluctuate between the two over the years.
Finally, Superstar Bigs share characteristics with both
Role Playing Bigs and Versatile Forwards. Players
such as Montrezl Harrell, Hassan Whiteside, and
JaMychal Green are a few examples of players who
fluctuate between Superstar Bigs and either of the
similar groups mentioned.

As previously shown in Table 6, CD-kM also
identifies singletons for different seasons. Note that
Stephen Curry, a singleton in 2015–2016, was also
that season’s MVP (i.e., Most Valuable Player) and
the first player to win the title with a unanimous vote
on a team that broke the single season win record
with 73 wins. He also broke Ray Allen’s single season
3-PT shots made record that year. The other single-
tons in that year consisted of two bigs: Noah, who
was seemingly on a decline in his career, as it was
his last season with the Chicago Bulls after which
time he was traded to the New York Knicks, and
ultimately phased into retirement from there, and
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Table 9

Archetype ∼WS OLS Results

Archetype Coef p-value

Intercept 1.5249 0.000
Misfit SG/VF –0.0481 0.280
Pass First Guard –0.0482 0.202
Role Playing Big 0.1785 0.000
Scoring Guard 0.2711 0.000
Shoot First Guard 0.1285 0.001
Superstar Big 0.5929 0.000
Superstar Guard 0.5348 0.000
Supporting Guard –0.1452 0.000
Versatile Forward 0.2843 0.000

Variance Explained
Archetypes 34.9%
Original Positions 5.1%

Cousins, who was seemingly at the peak of his career
as he received his first All-Star Game nod and earned
42.9% of the All-NBA Voting Shares (basketball ref-
erence.com/ 2021). Shumpert was an average guard
on the championship Cavaliers that year, whose stats
were likely bolstered from playing alongside LeBron
James. Among the other years, the 2018–2019 sea-
son has particularly impressive singletons, namely,
Wall, Harden, Westbrook/George. Wall, a five time
consecutive All-Star at that point, failed to make the
All-Star team in this season due to the fact that albeit
putting up similar number to his previous seasons,
his team saw little success. Harden, coming off of
a league MVP and Scoring Title season in 2017–
2018, notched another Scoring title, led the league in
Usage Percentage (USG%), made the All-Star team
for the sixth consecutive season, and finished sec-
ond in the MVP Award Voting Shares (basketball
reference.com/ 2021). Westbrook and George both
finished in the top five in Defensive Win Shares,
where George led the league in steals per game and
Westbrook finished fourth in that category. On the
offensive end, George finished third in field goal
attempts while Westbrook finished eighth, while sim-
ilarly they finished third and eighth in field goals
missed, as well (basketball reference.com/ 2021).
Other seasons have particularly unimpressive single-
tons, namely Price, Pekovic, Larkin in 2014–2015,
and Luc Mbah a Moute, Mejri, Ginobili in 2016–
2017 according to their overall lackluster statistics.
In addition, note that Zach LaVine is identified as
a singleton in his rookie year, which is the only
one to do so in our analysis. He has blossomed
into an All-Star guard since then, as his scoring and
defensive abilities have continued to improve each
year.

Finally, we note that the majority of archetypes
have an average PER below 15, which is a statistic
designed to represent the league average per-minute
production. The only groups above this threshold, in
fact, are the Superstar Guards and Superstar Bigs.
Therefore, our archetypes support the notion that
the NBA is a Superstar-driven league (Kaplan et al.
2019). Just below the threshold are the Role Playing
Bigs and Scoring Guards. This hints to the impor-
tance of having different combinations of (Superstar
and/or Scoring) guards and (Superstar and/or Role
Playing) bigs on a team.

6.1. Performance attribution to player
archetypes

In this section, we examine the relationship
between the individual metric of WS and the
archetypes. This metric has been developed to rea-
sonably approximate a players’ value and is a “top
down” metric, or one built upon the production of the
whole lineup (Shea & Baker 2013). Table 9 presents
the ordinary least squares (OLS) results when regress-
ing the archetypes as categorical variables on WS.
That is, we use the archetype and corresponding
WS value for each player from the data for seasons
2014–2015 to 2019–2020 as the independent and
dependent variables, respectively. We consider the
same player in different seasons independently from
each other. Furthermore, the comparison group (rep-
resented by the intercept) is the Misfit Role Playing
Bigs.

All archetypes, less Misfit SG/VF and Pass First
Guards, are statistically significant in the OLS regres-
sion model. The model has an adjusted-R2 of 34.9%,
meaning archetype assignment explains over a third
of variation in WS. Comparatively, using original
positions as the independent variables in an analo-
gous regression model corresponds to an adjusted-R2

of 5.1%.
Shea (2014) recognizes Alagappan (2012)’s work

as the first to suggest the task of redefining player
positions, however, he notes that his work is sim-
ply not reproducible since the details of his methods
or data has not been released (Shea 2014). For this
reason, we offer, as a further contribution of this
research, access to all data and Python notebooks
used to develop this research on Github. Although
we cannot compare our work with Alagappan (2012),
we compare our Archetypes with that of the fully
reproducible work of Cheng (2017). The author uses
data from the 2014–2017 seasons from basketball
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reference.com/ (2021). He uses Per-100 Possessions,
Advanced and Shooting Metrics with a total of 56 fea-
tures. He limits his data to players that played at least
40 games, which resulted in a total of 547 players.
Similar to our methodology, he reduces dimension-
ality of his data using Linear Discriminant Analysis,
as opposed to Principal Component Analysis, before
performing k-Means clustering. His optimal clus-
tering results in a total of eight groups: Offensive
Centers, Combo Guards, Scoring Wings, Defensive
Centers, Shooting Wings, Floor General, 3-and-D
Wings, and Versatile Forwards. Limiting our data to
the same seasons (and therefore to the same play-
ers) and regressing on WS, our archetypes have an
adjusted-R2 of 36.8% as compared to Cheng (2017)’s
of 4.4%. Notice that the R2 values displayed in clus-
ters of Cheng (2017) are actually a reduction from
the original positions. We conclude that incorporat-
ing Tracking data into clustering techniques using
our methodology is an improvement from previ-
ous research and traditional clustering techniques
alone.

Note that to visualize his groups, Cheng (2017)
reduces his data to two principal components using
PCA and plots one on each (x, y) axis. While the plots
do show separation among the groups, the interpre-
tation is difficult without knowing what the principal
components represent. However, in our visualization
of the clusters, such as those in Fig. 6 in Appendix B
or Fig. 3, the interpretation is straightforward since
it is a network of players with associated similarities
distinguishing among them.

7. Sensitivity analysis

In this section, we perform a sensitivity analysis of
the parameters. Specifically, we conduct two exper-
iments using the 2019–2020 data. For the first, we
run a full factorial experiment, varying the param-
eters shown in Table 10, where highlighted values
are originally used ones in Case Study I. Figure 4
shows the distribution of modularity for the different
binning schemes among all experiments where the
resulting Macro-Cluster size, |CWN

k∗ |, is four, eight,
twelve, and sixteen. In all cases, the raw and total
δ values perform the worst with regards to modu-
larity, thus confirming the choice of discretizing the
values into bins for increased performance. While
binary bins seems to perform the best, upon further
inspection, this results in many disjoint (i.e., single-

Table 10

Experimental design #1

Parameter Test Values

qc 0.1, 0.25, 0.5
qr 0.1, 0.25, 0.5
v 0.7, 0.8, 0.9, 0.99
# Bins 2 [binary], 3, 4, 5, 0 (weighted [raw] and

unweighted [total] δ)
Method k-Means, hierarchical

Note: We perform an initial sensitivity analysis for the parameters
shown in the first column above. The values in bold are those used
in the previous sections and serve as a baseline for comparison.

ton) groups. Among three, four, or five bins, three
bins results in the largest variability in modularity,
whereas four and five bins result in similar modularity
distributions.

Thus, for the second experiment, we use five bins
and examine hierarchical versus k-Means clustering
separately. We also vary qc, the threshold of play-
ers appearing in clutch scenarios to drop, with two
different instances: 0.1 and 0.5. Recall that 0.5 was
the originally chosen parameter, so we aim to check
if including more players into the clutch categories
makes a difference. Recall that the value for qr, the
threshold of players appearing in the regular data sets
to drop, was previously 0.25. In these experiments
this value is reduced to 0.10 to include more play-
ers. To vary the amount of variation kept in PCA,
v = 0.70, 0.80, and 0.90 are used as opposed to the
previously used value of 0.99. Note that k is still kept
constant in the underlying micro-clusters in order to
avoid a combinatorial search to tune k. It also keeps
group sizes consistent among the micro-clusters for
each data set. In Table 11, we present the results
of each experiment and report the number of play-
ers in the sample size |P| , the total number groups
resulting from running the algorithm |CWN

k∗ |, the min-
imum, maximum, average and standard deviation of
the group sizes, as well as the best k value k∗ and
resulting modularity mk∗ .

The last column of Table 11 shows that the run-
time of Algorithm 1 grows as the sample size grows,
and that hierarchical clustering performs faster. While
typically faster run-time is preferred, we defend our
use of k-Means due to the stability of its implemen-
tation. That is, the randomized seeding technique
known as “k-means++” used was shown to obtain an
algorithm that is O(log k), competitive with the opti-
mal clustering (Arthur & Vassilvitskii 2007). There is
no such guarantee in hierarchical clustering because
it is a bottom up approach that requires tuning for
the linkage criteria. Note that the run-time is directly
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Fig. 4. Experiment #1 results
Note: For each box plot, the x-axis represents different binning schemes for the discretization of arc weights: binary, 3, 4, 5, 0 (raw) and 0 (total) as shown in
order in Table 10. On the y-axis are the resulting modularity scores from the macro-cluster partitioning. To compare experiments with similar results, we show
the resulting partitions (macro-clusters) of size 4, 8, 12, and 16.

Table 11

Experiment #2 design and results

Parameter Settings Group Size Information

qc qr v Method |P| |CWN
k∗ | min max avg std k∗ mk∗ Time (s)

0.10 0.10 0.70 hierarchical 456 8 15 93 57.000 27.323 41 0.585 125.04
0.10 0.10 0.70 kmeans 456 9 9 97 50.667 32.992 47 0.617 135.74
0.10 0.10 0.80 hierarchical 456 8 29 92 57.000 23.670 37 0.577 126.27
0.10 0.10 0.80 kmeans 456 9 1 93 50.667 30.590 49 0.612 136.52
0.10 0.10 0.90 hierarchical 456 9 17 82 50.667 22.159 49 0.637 127.39
0.10 0.10 0.90 kmeans 456 8 28 106 57.000 31.708 41 0.606 136.52
0.50 0.10 0.70 hierarchical 387 10 2 85 38.700 24.454 13 0.747 49.88
0.50 0.10 0.70 kmeans 387 7 3 101 55.286 29.848 9 0.713 60.11
0.50 0.10 0.80 hierarchical 387 10 2 83 38.700 24.051 13 0.757 47.24
0.50 0.10 0.80 kmeans 387 13 2 69 29.769 15.369 17 0.828 59.69
0.50 0.10 0.90 hierarchical 387 13 2 107 29.692 26.871 19 0.819 48.81
0.50 0.10 0.90 kmeans 387 9 3 130 43.000 37.283 13 0.771 60.84

Note: The first four columns show the parameter values that varied for each experimental unit. |P| shows the resulting number of players in
the data. |CWN

k∗ | shows the resulting number of Macro-Clusters. Columns under Group Size Information give information about the size
of the Macro-Clusters. k∗ and mk∗ give the best k determined by modularity frontier and modularity, respectively. The final columns shows
run time of the experiment.

related to the cardinality of K, so these values should
be chosen judiciously. This also relates to the reason
of not choosing to perform a combinatorial search to
optimize k for the macro-clusters since the run time
may not be worth the extra effort.

Although k is kept constant in these experiments,
we do not just optimize k for each data set but instead,
use the information from these results to inform the
weighted network. Based on our investigation, it is
found that if using traditional k-Means clustering on
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each data set, the optimal k value for each data set
according to silhouette score is two. We refer back to
Fig. 2 where using small values, less than five, results
in poor modularity in the macro-clusters. To this end,
rather than optimizing k for the micro-clusters, we
tune the value of k by way of the modularity frontier
to find comprimising k∗ that maximizes modularity
and balances the bias/variance trade-off.

Table 11 reveals a few observations. First, the
amount of variation v kept using PCA does not appear
to have a significant affect on the results. Second,
there is not a significant different between using k-
Means and hierarchical clustering in terms of the
results. Third, when there are more players in the
data sets (i.e., when qc and qr are low), modularity
ranges between 0.566-0.637 and consistently results
in eight to nine groups with only one case of a single-
ton: Oshae Brissett who only averaged seven minutes
in 19 games. The value of k∗ in these scenarios range
from 37-49. However, when the sample size is smaller
due to fewer clutch instances (i.e., qr is higher), mod-
ularity improves to range between 0.713-0.828 with
k∗ ranging between 9-19 and the number of groups
ranging from 7-13 with instances of smaller groups.

Recall that the data sets in Section 5 had 336 play-
ers. When we increase sample size, in both of these
instances, the singletons are distinguished due to their
lack of statistical impact. There were five players
appearing in groups of three or less: Gary Payton
II, Carsen Edwards, Javonte Green, Chris Clemens,
and Oshae Brissett. Only Gary Payton II appears in
the original case study. He averages nearly 15 min-
utes per game in 29 games and is classified as a Pass
First Guards. The four other players average under
10 minutes per game. These five players, on aver-
age, had a VORP of 0.0 with a standard deviation of
0.158. Note, VORP is an estimate of the points per
100 team possessions that a player contributed above
a replacement-level player, it acts as an estimate of
each player’s overall contribution to the team (basket-
ball reference.com/). Therefore, with more players, it
is harder for the algorithm to determine outstanding
singletons, such as Giannis Antetokounmpo and Ben
Simmons.

Examining the macro-clusters resulting from each
experiment reveals that, most of the time, players
are consistently clustered in the same group. Fig-
ure 5 shows that 97.3% of players in the Superstar
Guards are always grouped together in all our experi-
ments given in Table 11, followed by Scoring Guards,
Superstar Bigs, and Role Playing Bigs. This shows
that the results for those groups are particularly

Fig. 5. Experimental results - proportion of players always
grouped together

robust, given their statistics are very distinct. For
Versatile Forwards, Shoot First/Pass First/Supporting
Guards, and the Misfits, the percentage of matches
ranges from 29.3% to 56.7%; nearly a third of the
players to just over half always appear in the same
group in these experiments regardless of the param-
eters. This shows that due to the prominence in their
statistics or style of play may be harder to distinguish.

Overall, our sensitivity analysis shows that the
number of players in the sample, which is affected
by qr and qc, has an affect mostly on the outliers
(i.e., singletons or group sizes of two to three). In
general, the smaller the sample size, the better modu-
larity the algorithm is able to achieve, which is largely
influenced by the ability to detect outliers. Overall,
with outlier groups removed, the experiments largely
result in 8-12 groups, consistent both with previous
research and those found in Sections 5 and 6.

7.1. Comparison of CD-kM with k-Means

In this section, we provide a brief comparison of
the proposed methodology with a traditional clus-
tering algorithm, k-Means. In particular, our aim is
to show the benefits of the proposed methodology,
and explain why we do not cluster players by simply
combining all of the data into a single data set and
performing one pass of a clustering algorithm. To
address this, we first combine data sets into a single
data set for the 2019–2020 season using the same 336
players and perform PCA retaining 99% of variation.
We then perform k-Means clustering with several k

values. The resulting optimal value of k suggests that
it to be between 9 and 11. Given that the number of
macro clusters in our methodology is 12, we note that
this is similar to what our methodology suggested.
Although it is hard to compare cluster strength of
these methodologies since clustering is unsupervised,
we observe that our methodology provides clusters
with more consistent number of members when com-
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pared to k-Means clustering. Specifically, k-Means
results in group sizes ranging from 12 to 60, with no
singletons, while the proposed methodology yields
those ranging from 24 to 57. This implies that k-
Means is unable to identify players in a way that
the proposed methodology does. For example, while
we have two clusters; Superstar Guards and Scoring
Guards, k-Means suggests a single cluster including
players from both of these clusters. We believe that
the most significant benefit of the proposed method-
ology is that it provides more opportunity to obtain
deeper insights about players’ characterization. For
instance, when k-Means clustering is performed on a
single data set, the only information obtained is the
centroid of each cluster. However, it does not provide
any information about whether a cluster is assigned
because they perform similarly in clutch instances, or
in passing/playmaking instances, etc. In addition, it
does not provide any information on a pairwise level
(i.e., player to player), which similarities they carry
(e.g., defensive similarities, hustle similarities). Our
methodology, on the other hand, by using the master
data sets independently, allows one to post-process
the macro-clusters and examine their micro-clusters
to observe, for example, which players ‘matched’ in
clutch instances, or passing/playmaking instances, or
defensive or hustle instances. We also note that since
the single data set includes much larger dimensional
space, it is possible that k-Means clustering leads to
poor or misleading results or becomes computation-
ally involved in certain cases.

8. Conclusion

In this paper, we develop a novel clustering
approach in order to classify players in the NBA into
different types by utilizing community detection on
similarity graphs. The proposed approach would help
decision-makers in making better decisions to invest
on the “right” players they need in order to form
successful teams.

In contrast to previous research, which uses a
small set of simple statistics, we aim to lever-
age the vast amount of data provided by the
NBA. To this end, we first use a set of six
master data sets, which characterize six differ-
ent aspects of how the game is played, namely,
scoring, passing/playmaking, rebounding, defense,
hustle/miscellaneous, and clutch. The dimension of
each of these data sets is reduced by employing
a PCA method. Then, on each of these data sets,

we perform k-Means clustering to build, so-called
“micro-clusters”. Based on the six obtained sets of
micro-clusters, the number of times each pair of
players appear in the same micro-cluster is counted.
That informs weights on arcs of a weighted net-
work which we further built. Since the nodes of
the network represent players, the weight on each
arc that connects a pair of players show “similar-
ity” between these two players. Once the weighted
network is built, we utilize the Louvain algorithm
to perform community detection, which prescribes
so-called “macro-clusters”, which is the final clas-
sification of players. Note that this approach is run
multiple times with several k values for the k-Means
clustering performed initially. Then based on the
macro-clusters obtained from each experiment, we
form a modularity frontier, which helps us in select-
ing the best k value that considers the bias-variance
trade-off.

We first demonstrate our approach and its utility on
the 2019–2020 season data. We show that not only
the proposed approach can identify logical groups,
but also it can identify outliers, at both the micro- and
macro- group level, in both the positive (e.g., Giannis
Antetokounmpo, 2019–2020) and negative direction
(e.g., Marc Gasol, 2019–2020).

We also apply our methodology to the data of past
six seasons in order to show that our approach cap-
tures the league trends. Our results show that in the
past six seasons, one can identify a set of groups
that are consistent in size. We show that players in
each year fit into eight general categories: Supporting
Guards, Pass First Guards, Shoot First Guards, Versa-
tile Forwards, Role Playing Bigs, Superstar Guards,
and Superstar Bigs. The trends in the changes in
archetype makeup of each season reveals the evo-
lution of the NBA from a center-dominated league to
a guard-dominated league.

Our approach takes a more holistic approach to
classifying players. We also explore many insights
provided by the network structure, such as the
strength and distribution of matches according to the
six different categories of data sets. These insights
can be of use to executives who may be considering
different trade and free-agent acquisition decisions,
in which they must evaluate which types of players
they want to acquire. To that end, in a follow-on paper,
these archetypes are used in an optimization model
in order to decide on which players to acquire in
a way that maximizes the total team value, includ-
ing cumulative individual values and synergy among
these archetypes (Muniz & Flamand 2022).
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Note that when performing any type of unsuper-
vised clustering, the decisions of the user may affect
the results. To this end, we conduct a sensitivity anal-
ysis which shows that the results for most archetypes
are robust to the parameters proposed in our Algo-
rithm 1. Note that the outliers and less distinguished
groups are more sensitive to the parameter settings.

Finally, we note that the proposed methodol-
ogy, CD-kM, may also be applied to many other
areas beyond sports such as customer segmentation
in the retail industry. We consider cases in which
many different types of retail data sets exist. For
example, customer demographics, in-store purchase
information, e-mail interactions, and online purchase
activities, may be available to the analyst who aims
to develop groupings among their customers. In that
case, CD-kM can be used to cluster similar types of
customers that would inform the marketing strategy
of the retailers towards each customer segment. In
another setting, financial planners may aim to per-
form cluster analysis to understand different types of
investments, given different types of data regarding
the investments, some of which may even be in differ-
ing formats. In that case, CD-kM can also be used to
cluster similar types of investments to better inform
their decisions.
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Appendix A: Original Data Sets

Table 12 summarizes the raw data sets pulled from
NBA.com used to create the master data sets.

Table 12

Raw NBA.com data sets

Category Data set Examples/Description

Traditional PTS, AST, TOV, STL, REB
General Advanced AST:TOV, USG%, TS%

Hustle PTS off TOV, Fastbreak PTS, 2nd chance PTS
Traditional Same as general, where clutch is defined as:

Clutch Advanced Last 5 minutes of game, within 5 points
Hustle

Hustle Hustle Contested shots, Deflections, Charges Drawn
Speed Distance Distance traveled and average speed
Rebounding Off/Def REB information (frequency, distance, opportunity)
Possessions Time of possessions, type touches, PTS per type
Catch Shoot Catch & shoot FGM/FGA/2 & 3 PT%

Player Pull Up Shot Pull up FGM/FGA/2 & 3 PT%
Tracking Defense Defensive Rim FG%

Defensive Impact % difference (opponent FG%)
Drives Drive PTS, Pass, AST, TOV
Passing Passes, AST/FT AST/Secondary AST
Elbow Touch Elbow touch PTS, Pass, AST, TOV
Post Touch Post touch PTS, Pass, AST, TOV
Paint Touch Paint touch PTS, Pass, AST, TOV
Efficiency Player tracking shooting summary stats

Shooting Shooting 2 & 3 FGM/FGA and %
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Appendix B: 2019–2020 Group Networks

Figure 6 displays the network for each group identified by CD-kM for the 2019–2020 case study.
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Appendix C: 2019–2020 Group Similarity Distributions

Figure 7 shows the count of matches within each master data set for each group identified by CD-kM for the
2019-2020 case study.


