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Abstract. This work describes a collaboration with a single collegiate volleyball team to leverage existing data to examine the
potential of the plus/minus metric for player evaluation. Historically, volleyball players have been evaluated through a series
of single skill metrics (e.g., number of aces per set and hitting percentage). The advantages of the plus/minus lie in the limited
amount of information needed for its calculation (e.g., court presence and scoring) combined with its ability to fuse together
both measured and unmeasured contributions. Unfortunately, the primary collection tool (Statcrew) for National Collegiate
Athletic Association (NCAA) Women’s Volleyball, does not record the movement of the Libero, resulting in incomplete
court presence information for a large percentage of plays. This paper introduces methodology to recover court presence
information from standard play-by-play data. The recovery is in the form of a posterior distribution of player presence,
which can then be used to not only calculate the plus/minus metric but also quantify the uncertainty of the metric due to the
incomplete information. Although the presented methods and results were derived from a collaboration with a single team,
the data source and methodology can be extended to multiple teams.
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1. Context and problem

The role of the keyer on the game day stat crew for
a college volleyball team is to enter the live call of
the statistician into the computer software program
Statcrew. These data are compiled into summary
statistics for the coaches, media, and record keeping.
One author, who served as a keyer, noticed that not
every action taken by players is recorded (e.g., block
retained by blocker’s team) and not every recorded
action translated into a traditional statistic (e.g., failed
dig). Because of this, the author approached team
staff to see about using these data to construct the
plus/minus metric in the hopes of gaining useful
player insights.
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The plus/minus has persisted as a tool for player
evaluation since the late 1960’s in ice hockey and
has more recently become popular in basketball. In
its basic form, plus/minus is the points scored by a
player’s team minus the points scored by the oppos-
ing team when that player is in the game. Kubatko
et al. (2007) briefly describes its history in pro-
fessional basketball and how it entered the official
record for the National Hockey League as early as
the 1967–68 season (2016a). More recent advances
in this methodology describe the use of penal-
ized regression models to construct an adjusted
plus/minus that controls for the other players on the
court and other contextual factors (Gramacy et al.,
2013, Macdonald, 2012).

Focusing on net points accumulated during a
player’s time in the game gives this metric the
potential to combine various measured skills as well
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as capture certain intangible qualities that a player
provides such as defensive ability. Defensive con-
tributions are under-represented in many sports by
traditionally available data. Schatz (2005) points out
this deficiency in football statistics and Franks et al.
(2015) discuss this issue in basketball.

The focus on net points scored also places play-
ers on a common basis of comparison, regardless of
role on the team. This contrasts with current metrics
in volleyball which focus on the performance of or
relative value of single measurable skills. Metrics are
not comparable across positions simply due to each
player’s assigned responsibilities. Individual perfor-
mance of actions is interwoven with and dependent
upon the actions of teammates, which traditional met-
rics do not capture. For example, a team that passes
well will put the setter in a much better position than
one that does not, but they may both record an equal
number of digs. Examples of work focusing on single
skills include how setters respond to blocking for-
mations (Araújo et al., 2010), the importance of the
speed of sets (Fellingham et al., 2013), what affects
the type and quality of serves (Quiroga et al., 2012),
and how to optimize service error rates (Burton &
Powers, 2015). Other work has taken a more gen-
eral approach examining the relative importance of
in-game actions by linking skills to the probability of
scoring (Florence et al., 2008, Miskin et al., 2010) or
to winning (Claver Rabaz et al., 2013, Eom & Schutz,
1992). The literature is devoid, however, of attempts
to quantify player contribution in terms that are com-
parable across position or in ways that account for
actions that do not involve touching the ball like the
plus/minus.

Although the plus/minus and its derivatives have
generally been applied to sports with a continuous
nature of play, such as basketball, hockey, and soccer
(Hamilton, 2014, Vilain & Kolkovsky, 2016), there
is nothing in the methodology that precludes its use
from sports such as volleyball. In fact, the discrete
structure of volleyball makes data processing more
straightforward than that described by Macdonald
(2011). In volleyball, each play contains a point won
or lost and the players in the game remain fixed for
that play. The average squad carries 15–16 players
(Irick, 2015) and up to 15 substitutions per set is
allowed (Pufahl, 2016). This often results in a vari-
ety of on-court rosters making player performance
differentiation possible.

The difficulty in implementing a plus/minus for
volleyball lies in the Libero position. The Libero is
a designated player restricted to the back row and

whose substitutions do not count against the cap. For
this reason the movement of the Libero on and off the
court is not recorded in Statcrew. This means that for
a majority of plays there is incomplete court presence
information.

This paper describes the collaboration with a colle-
giate volleyball team to assess the utility of adjusted
plus/minus metrics for player evaluation using these
incomplete data. The remainder of the paper is orga-
nized as follows. In Section 2, the available data are
detailed in terms of format and processing. Section
3 details the method proposed to impute the missing
information. Section 4 examines the accuracy of this
approach. Section 5 gives various plus/minus results
followed by a discussion of the findings and potential
future directions.

2. Estimation of incomplete data

The primary data collection instrument for college
volleyball is a program called Statcrew (2016b). Each
home team provides the output of the program to the
NCAA for official record keeping. A by-product of
the program is a text file that contains play-by-play
codes for each game. For example, each play begins
with a serve and ends with either a block (point won
while on defense), kill (point won while on offense),
or error (point lost). This makes it possible to track
which team scored on each play. In addition, the file
consists of a majority of actions of each play. This
includes the type of contact and who performed it.
For example, the play output D:1 S:20 K:13 indi-
cates that Player #1 dug the ball (first offensive touch),
Player #20 set it (second offensive touch), and Player
#13 attacked receiving a kill (hit the ball over the net
and scored a point). Other information in the output
allows one to track substitutions.

What is not recorded, however, is the movement
of the Libero. The Libero is a special position, typ-
ically a defensive specialist, who is free to replace
players in the back row without counting against the
substitution cap. When the opposing team is serving
(service out), the Libero can replace any player in
the back row. When the team is serving (service in),
the Libero is permitted to serve in place of one of
the players in the serving rotation and can replace the
other two back row players in the other five rotations.
Due to the unrecorded movements of the Libero,
it is often not possible to know the complete court
presence information required for a plus/minus cal-
culation. Inferring whether the Libero is on the court
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Fig. 1. Player Rotation in Volleyball. Each box represents half the
court with the bottom of the box being the net. The figure demon-
strates the designation of players to the front and back row over
the series of serve rotations. Positions on the court are described
from the perspective of standing with one’s back to the net. P1-P5
stand generically for Players 1, 2, 3, 4, and 5, while the setter is
the player whose role is to pass the ball to attacking players.

and if so, which player is replaced, is necessary to
calculate an accurate plus/minus.

This inference can be done by first using the rules
of the game and the data from Statcrew to determine
which players are, or might be, on the court. In volley-
ball, six players per team occupy six predefined spots
on the court. The rules require three players to occupy
the front row and three to occupy the back row. The
player in the back left (as viewed with one’s back
to the net) is the server and continues to serve until
the other team scores a point. When the team regains
the serve, each player rotates one spot clockwise as
pictured in Fig. 1.

In Statcrew, the six starters and the Libero for each
game of a match are listed, as well as each substi-
tution. This allows us to know which seven players
might be on the court, but not the positions they
occupy. The positions can be determined through the
service order. For example, if Player #1 serves first
for their team, Player #2 serves second, and Player
#3 serves third it is known that Player #1 began in
the back row left spot, Player #2 began in the front
left, and Player #3 in the front middle. Sometimes a
player who starts does not serve. In that case the sub-
stitution information must be used. For example, if
Player #8 were to sub into the game for Player #4 and
then serves 4th, it is known that Player #4 began the
game in the front right spot. An R script (available
upon request) was written to handle most of this data
processing automatically.

To illustrate how court presence information is
derived from the raw data consider the unprocessed
sample output in Table 1 from the Statcrew program
(line numbers have been added for clarity and player
numbers have been altered). The starters for the vis-
iting and home teams are given on Lines 2 and 3,
respectively. The last player in each row is always
the Libero.

The first goal is to put the starting players into their
spots in the rotation for the first play. For this illus-
tration the visiting team will be used. The first step is
to find the serve order by locating the first 6 lines that
begin with TEAM:V SERVE: followed immediately
by a unique number. Lines 7, 12, 18, 24, 34, and 38

Table 1

Sample Output from Statcrew

Line Statcrew Text Line Statcrew Text

1 RALLY:Y 21 TEAM:H SERVE:8
2 STARTERS:V,9,17,8,20,15,1,10 22 D:20 S:4 K:17
3 STARTERS:H,18,11,16,10,9,8,7 23 SUB:V,13,1„„
4 TEAM:H SERVE:18 24 TEAM:V SERVE:13
5 D:10 S:9 A:8 25 D:11 S:11 K:18
6 D:16 S:18 A:11,E 26 SUB:V,3,13„„
7 TEAM:V SERVE:20 27 SUB:H,16,15„„
8 D:11 S:18 K:10 28 TEAM:H SERVE:16
9 TEAM:H SERVE:11 29 D:3 S:4 A:17
10 D:9 S:10 K:1 30 S:18 A:11
11 SUB:H,15,16„„ 31 S:4 A:20
12 TEAM:V SERVE:15 32 D:8 OVER:
13 D:7 S:18 A:8 B:17,8 33 S:4 K:14
14 TEAM:V SERVE:15,E 34 TEAM:V SERVE:10,E
15 TEAM:H SERVE:10 35 TEAM:H SERVE:7
16 D:20 S:9 K:8 36 D:3 S:4 K:14
17 SUB:V,4,8,14,9„ 37 SUB:V,8,4,9,14„
18 TEAM:V SERVE:4 38 TEAM:V SERVE:9
19 D:11 S:18 K:9 39 D:11 S:18 A:11
20 TEAM:H SERVE:8,A RE:10 40 D:9 S:20 A:8,E
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Fig. 2. A: Rotation Spots on the Floor. B: Players Placed by Serve
Order. C: Player Position Adjusted by Subs. D: Player Position
Adjusted by Libero.

reveal the visitor service order to be Players #20, #15,
#4, #13, #10, and #9. Note that line 14 is skipped, as it
is redundant information. Figure 2B shows these six
players in positions according to the order in which
they served. Players #17, #8, and #1 started the game
but are not in this service order. We must use the sub
information (Lines 17, 23, 26, and 37) and the fact
that the Libero, Player #10, serves to get back to the
original players on the floor at the start of the game.

The software allows for a maximum of three sub-
stitutions per line, each entered as a player pair. The
first number in the pair indicates which player came
in, and the second number indicates which player was
replaced. Line 17, for example, indicates that Player
#4 entered the game and replaced #8, and Player #14
entered the game replacing #9. In order to use the sub
information to go from serving rotation to starters,
work through the substitution lines in reverse order,
placing the second player in a sub pair into the rota-
tion in place of the first. Line 37 indicates that Player
#4 replaces #8 (ignored because 4 is already in the
serve order) and Player #14 replaces #9 in Spot 6.
Line 26 specifies that Player #13 should replace #3,
this is ignored since Player #3 is not in the serve order.
For Line 23, Player #1 replaces #13 in Spot 4. Lastly,
in Line 17, Player #8 replaces #4 in Spot 3 and Player
#9 replaces #14 in Spot 6. The players on the floor
now resemble Fig. 2C. Since Player #10 is the Libero
and in the service order, and Player #17 started the
game, was not subbed for, and did not serve, replace
#10 with #17 in Spot 3. The correct starting rotation
is shown in Fig. 2D. The method is repeated for the
home team, but now using lines with H instead of V.

Given the starting rotation for both teams, court
presence for each play can be filled in by working
through the play by play. For the remainder of the
set, every time service is gained by the visiting team,

visiting players are rotated one spot closer to 1 with 1
moving to Spot 6. Similarly for the home team when
they gain the serve. Players are swapped in whenever
their team makes a substitution. Proceeding in this
fashion identifies which seven players might be
in for each play. The players occupying the front
row (Spots 2, 3, and 4) are known to be in by
rule. Only three players out of the Libero and the
players in the back row (Spots 1, 6, and 5) are in.
The play-by-play data contain some indication of
which of these players are in the game through
their recorded actions, but the remaining plays are
missing complete court presence information.

To develop and test methodology to recover this
court presence information, the Statcrew output for a
recent season of a Division I volleyball team is used.
After processing this output as described, the data
set is constructed as a 4988 × 16 matrix. Each row
stands for a play that occurred during the season. The
columns of the matrix contain indicators of which
team scored as well as characteristics of the play (i.e.,
whether the service was in or out, which spot on the
court the setter occupied, and the court presence infor-
mation for each of 13 players who participated in at
least one play over the course of the season). Uncer-
tain court presence is designated as a missing value.

3. Modeling court presence

Given the starting rotation, it is known which seven
players may be on the court for any play. To com-
pute the plus/minus, it is necessary to determine
which three players out of four occupy the back row.
This information is either known, partially known,
or entirely unknown. Rather than choose the three
players who are in, a model was developed to choose
which of the four possible players is out. For this
purpose, a Bayesian multinomial model is adopted
using rotation and serve information to predict the
omitted player. The resulting posterior distribution
of court presence allows the computation of play-
ers’ plus/minus across the possible court presence
matrices, thereby incorporating uncertainty of court
presence into the plus/minus metrics.

Rather than focus on the absence of specific play-
ers, the model predicts the absence of specific spots
in the rotation. Since the three front row spots are
always in, only four spots need to be considered, the
three back row spots and the Libero position. The
absence matrix Z is defined as an N × 4 matrix with
elements as defined in Equation 1.
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zij =
0 if the player in spot j is known to be on the court for play i

1 if the player in spot j is known to be off the court for play i (1)

· if the status of the player in spot j is unknown for play i

The missing elements of matrix Z need to be esti-
mated using two sources of information.

3.1. Rotation information

This source relies on the assumption that coaching
substitution strategy is based on a player’s role. For
example, if a player is a strong front row player, but a
weak back row player, a coach will choose one of two
options to keep her from being a back row liability:
The coach may 1) sub her out anytime she rotates to
the back row or 2) use the Libero for the same pur-
pose. If two such players are in play simultaneously,
it is possible to space them in the rotation such that
only one ever appears in the back row at a time, and
use the Libero for both.

A team will rotate six times before the original
server returns to the service position as displayed in
Fig. 1. The original position of the players on the
court is called Rotation 1. When the 2nd player takes
the service position, this is called Rotation 2. This
proceeds up to Rotation 6 after which the players
will be in their original places, or back to Rotation
1. Each rotation represents a unique decision for the
coach to place the Libero in one of the back row spots
or on the bench.

3.2. Serve information

By NCAA rule, the Libero is permitted to occupy
one spot in the service order (Pufahl, 2016). This
affects the predictions for a team that has two players
in their rotation who are replaced by the Libero as at
least one of them will have to serve. While service
is in, that player will be in the back row. Once the
other team gains the serve, however, that player may
be replaced by the Libero. This highlights the need to
use service information to predict Libero presence.

Using the six rotations and service in or out gives
12 possible combinations to consider as predictor
variables. An indicator matrix R is used to opera-
tionalize this, where each play is a row and each
column indicates a rotation and service in/out com-
bination. For example, Ri1 is Rotation 1 service in,
Ri2 is Rotation 1 service out, and Ri3 is Rotation
2 service in for play i. Across games, rotations are
matched based on the starting position of the setter.

For example, if the setter is in the service position,
it is called Rotation 1, regardless if the other play-
ers match across games. In the example data set, the
setter started every game and was therefore a reli-
able link across games for matching rotations. If two
different setters are employed over the course of a
season, simply using the one that is in provides the
link. If two setters are used simultaneously, one of
them should be chosen and used consistently to des-
ignate rotation. Failure to properly match rotations
will lead to additional uncertainty in the estimate of
court presence.

3.3. Multinomial model and notation

Each row of matrix Z is assumed multinomial
with four categories. The probabilities are modeled

as θij = e
RT

i
βj

1+
∑

j
e
RT

i
βj

where R is the service/rotation

matrix. A N (0, 1) prior is placed on each multino-
mial regression coefficients β. This prior is weakly
informative and is analogous to the frequentist ridge
regression with negligible shrinkage.

3.4. Model estimation

Of primary interest is the posterior distribution of
Z, which is a function of the posterior distribution
of β. For estimation, the approach of Polson et al.
(2013) is adopted. They built upon the use of aux-
iliary variables in Bayesian multinomial regression
(Holmes & Held, 2006). Their approach introduces
the Polya-Gamma (PG) random variate distribution
to sample auxiliary variables (ωj), which allow for a
Gibbs sampler.

To sample new β, the package BayesLogit (Win-
dle et al., 2014) is used. Given θ, it is possible to
directly sample Z (the missing court presence infor-
mation), which is the primary interest. The following
algorithm is adopted to sample Z.

Algorithm

0) Define:Z =
Zobs

Zmiss , Zobs are complete rows,

Zmiss are incomplete rows
1) Initialize ZMiss = #RowMissing−1

#RowMissing
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For iterations t:
2) Draw β|R, Zt−1 using BayesLogit

2a) ωt|βt−1 ∼ PG (·)
2b) βt|R, Z

,
t−1ωt ∼ Normal (·)

3) Draw Zmiss
t from Multinomial (θ) , θij =

e
RT

i
βjt

1+
∑

j
e
RT

i
βjt

4) Iterate through Steps 2 and 3 saving each draw
of Zt .

The initialization in Step 1 allows all rows to
contribute to the initial estimates ω1, β1, and θ1.
Fractional values do not cause an issue as all three
estimates rely on a collapsed Z matrix for unique
rows of the R matrix. Including the partial rows allows
spots in particular rotation serve combinations with
more missing information across plays to begin as
a more likely candidate to be out. Greater detail for
the distribution parameters of Step 2 are given in the
Appendix. This process is run for 1000 iterations tak-
ing the first 20 draws as a burn-in as convergence
occurred quickly. The remaining 980 draws can be
used in two ways. First, each draw on court presence
can be used to calculate plus/minus resulting in a pos-
terior distribution of plus/minus. Second, the draws
can be used to calculate the most likely court pres-
ence configuration by designating the player drawn
to be out the most number of times as actually out.
This is the maximum a posteriori (MAP) estimate of
court presence.

4. Testing the reliability of estimated court
presence

In order to verify the model’s ability to recover
court presence, results were compared against true
court presence information. Game film was obtained
for two matches and the movement of the Libero
was tracked and input by hand. One game was home
and one was away, against unique conference oppo-
nents. The standard plus/minus were calculated for
the 12 players appearing in the two matches using
the model-based approach and three naı̈ve estimates
for court presence.

If the complete court presence information is
known, it is straightforward to calculate the standard
plus/minus metric. Let Y be the vector of N play out-
comes, 1 if a point was won and –1 if a point was lost.
Let P be the N × m player presence matrix, where the
ijth element is 1 if the jth player is on the court for
play i and 0 otherwise. The plus/minus calculation is
simply YT P .

In this context, however, P is not completely known
and must be estimated. For purposes of compar-
ison with the model approach and for motivation
to recover court presence, three naı̈ve estimates are
introduced. With complete information,

∑
Pij = 6

for each play i, so all three estimates maintain this
property. They are ordered by the amount of infor-
mation used / data processing required.

The first estimate splits the six spots on the court
evenly amongst the seven players who might be on
the court (Equation 2). This only requires tracking
starters and subs. On any play, however, the players
occupying the front row are known to be in, since,
by rule the Libero cannot replace them. This leads to
the second estimate (Equation 3), which additionally
requires tracking player rotation. Finally, tracking the
play data often reveals some of the back row players.
This leads to the third estimate (Equation 4).

Define Participation: Pij

=
{

6
7 if player j might be the on court for play i

0 if player j is not on the court for play i

}

(2)

Define Position: Pij

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if player j is in the front row for play i

3

4
if player j might be out for play i

0 if player j is out for play i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3)

Define Share: Pij

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if player j is on court for play i

1

2
if player j is 1 of 2 possibly not on the court for play i

2

3
if player j is 1 of 3 possibly not on the court for play i

3

4
if player j is 1 of 4 possibly not on the court for play i

0 if player j is not on the court for play i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4)

The third approach represents the most com-
plete estimate without modeling court presence and
includes two ways to arrive at complete or par-
tially complete information for a play. First, when
the Libero is serving, it is known whose spot the
Libero is occupying. This provides complete pres-
ence information. Second, it is assumed the personnel
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Table 2

Court Presence Estimation Methods Impact on Plus/Minus

Court Presence Participation Position Share Bayes Bayes
Estimation Method Model MAP∑12

j=1
|Truthj−Estimatej |

12 4.47 4.29 3.20 0.16 0.00

Table 3

Adjusted Plus/Minus Estimates

PLYR Plus/minus Plus/minus APM per APPM per APM per APM per APM per Plays
per 50 50 Plays 50 Plays 50 Plays 50 Plays 50 Plays
Plays BayesLogit GLMNET GLMNET GLMNET Reglogit

Ridge Elastic Lasso
Net

α = 0.5

G 300 3.01 3.63 3.42 6.33 7.46 5.62 4976
A 363 3.94 1.73 1.82 1.03 0.69 1.29 4609
K 126 2.86 0.78 0.78 0.12 0.03 0.00 2204
I 160 3.07 0.72 0.70 0.08 0.00 0.00 2608
M 0 0.00 0.66 0.72 0.13 0.04 0.00 18
C 64 2.26 0.57 0.51 0.00 –0.11 0.00 1418
J 240 3.22 0.36 0.35 –0.21 –0.32 0.00 3730
F 206 2.85 0.14 0.19 0.00 –0.32 0.00 3608
B 87 3.24 0.00 0.05 –0.16 –0.49 0.00 1343
L 8 6.06 –0.70 –0.64 –1.29 –1.75 0.00 66
D 74 1.52 –1.01 –0.92 –1.59 –1.94 0.00 2430
E 82 3.06 –1.11 –1.01 –1.73 –2.09 0.00 1342
H 54 1.71 –1.30 –1.21 –1.90 –2.25 0.00 1576

Each row represents a player from the team studied for a single season. Each column is a measurement from the
season. APM stands for adjusted plus/minus. Plays include MAP estimate for missing data.

on the court remains unchanged as long as the server
remains unchanged and is uninterrupted by a timeout
or a recorded substitution. This allows touch infor-
mation across a set of plays to provide complete or
partially complete information for that set of plays.
For the example data set, approximately 25% of the
rows are complete, and 75% have between 2–4 play-
ers that might be on the court.

The average absolute deviation errors in calculat-
ing plus/minus from the different methods across all
12 players are shown in Table 2. There is improve-
ment in the estimates as additional information is
incorporated with the Bayesian model outperform-
ing all of them by a dramatic amount. The Maximum
A Posterior (MAP) estimate in this case recovers the
true plus/minus.

5. Application of plus/minus metric using the
court presence data

In this section, some potential player evaluation
metrics using court presence are examined. The data
consist of a single season’s matches (32) contain-
ing 114 sets with a total of 4,988 plays. All plays

had one team in common with 25 unique opponents
and 7 home and away series. This team played 13
different players with a consistent Libero and setter
across all matches. In order to protect the privacy of
the athletes, each player is labeled using a randomly
assigned letter.

The plus/minus results from the entire season are
given in Table 3 in the second column. Five ver-
sions of the adjusted plus/minus (APM), used in other
sports, are shown in Columns 4 through 8. These met-
rics utilize regression models to adjust a player’s court
presence impact for the other players on the court and
various play context such as home court. The use of
penalized regression (or the Bayesian equivalents) is
due to multicollinearity in the player court presence
data commonly found in APM models. These regres-
sion coefficients were derived from three different R
packages.

The five penalized regression models can be
broken down by the choice between the lasso and
ridge penalties and the choice between Bayesian and
frequentist estimation methods. The lasso penalty
adds the sum of the absolute value of the regression
coefficients to the optimization function. This has the
impact of shrinking coefficients to zero making the
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model more sparse, thereby highlighting particular
players (Tibshirani, 1996). The ridge penalty adds the
sum of the squared coefficients to the optimization
function. It adds bias to the regression coefficients
while reducing the variability in the estimates
making them more likely to be near the true value
(Hoerl & Kennard, 1970) To illustrate the difference
between the two penalties, consider two players who
are perfectly collinear (i.e., either both on or off the
court together). The lasso penalty chooses one to be
an average player (coefficient of 0) and essentially
gives the credit of their combined effort to the other
player. The ridge penalty splits the credit evenly
between the two players. A compromise between the
two is called the elastic net. The Bayesian approaches
utilize a Laplace prior (lasso) or a Normal prior
(ridge) on the regression coefficients to accomplish
the same result. The primary advantage of the
Bayesian approach is that it produces a posterior
distribution for the regression estimates which
allows for probability statements and measures of
uncertainty. The primary advantage of the frequentist
approach is that its estimation is faster and tends to
be easier to implement. Examples of implementation
of these models in sports are given in Sill (2010),
Macdonald (2012), and Gramacy et al. (2013).

The calculation of the APM using the regression
coefficients (λ) is as follows. The APM assumes an
even odds context (plus/minus of 0) as the baseline.
Player j is then substituted for a player with no impact
such that the adjusted plus/minus per 50 plays is given
by Equation 5.

APMj =
(

eλj

1 + eλj

)
∗ 50–25 (5)

The choice of 50 plays as the rate denominator is
tied to the average game (or set) length in the data.
The BayesLogit package fits a logistic regression
with a Normal prior on the regression coefficients.
GLMNET (Friedman et al., 2010) was used to fit the
frequentist Ridge, Elastic Net, and LASSO penalized
regression methods. Reglogit is described by Gra-
macy et al. (2013) and can be thought of in simplified
terms as a Bayesian LASSO model, although in prac-
tice it is more complex. The two-step process they
recommend was utilized for estimating a prior, which
also requires the Textir package of Taddy (2013).
The final column includes the number of plays in
which, according to the MAP estimate, each player
participated.

Given the data are from a single team, general-
izability of the results are limited, however insights

as to their usefulness are still possible. For exam-
ple the two Lasso methods (GLMNET Lasso and
Reglogit) are designed to introduce sparsity. They
both agree on Player’s G and A as being the strongest,
but the Lasso model had many more non-zero esti-
mates making Reglogit preferred in that respect. The
choice of G and A as the strongest passes the eye test
as these are also the two players the coaching staff
played the most often (almost 900 plays more than
the third place player). The two ridge methods pro-
duce similar orderings. If the coefficients are the only
interest, the authors prefer GLMNET for its ease of
implementation. If, however, the use of the regression
coefficient posterior distribution is needed for estima-
tion of uncertainty and interesting player and roster
comparisons as illustrated by Deshpande and Jensen
(2016) than the authors prefer BayesLogit. In general
the results from the adjusted plus/minus were found
to be believable by staff with a few exceptions. Player
F was seen as being rated too low given that she was
considered the best at her position. Players L and M
were rated by coaches to be the lowest contributors
and typically only played towards the end of matches
that were well in hand.

Figure 3 displays the 95% equal tailed credible
intervals for player’s plus/minus, standardized to be
per 50 plays, if they appeared in at least 5% of the
season (249 plays). The circle gives the estimated
median and the line gives the credible interval across
the draws on court presence. The variability across
player estimates dominates the variability within a
player across draws of court presence suggesting that
it may not add much to include the full posterior of
court presence in future analysis with these data. This
represents a meaningful reduction in estimation time.
Note that all estimates are positive because the team
outscored its opponents in the aggregate.

Fig. 3. Variability in the Plus/Minus due to Court Presence Uncer-
tainty Over a Single Season (4988 Plays).
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6. Conclusions

This paper describes the results of a collaboration
with a single NCAA Women’s volleyball team on the
usefulness of the plus/minus and adjusted plus/minus
metrics in player evaluation. To get the plus/minus
information, one first recovers complete court infor-
mation. This is necessary because Statcrew does not
track the court presence of the Libero. Court presence
is estimated using a Bayesian multinomial model that
assumes that the coaches are consistent in their use
of roles over the course of the season. This model
did well when compared to video evidence from a
few games but could suffer if substitution patterns
involving the Libero were to change course drasti-
cally during the year. An example of a detrimental
change would be if a team went from having two
middle blockers who are replaced by the Libero when
rotated to the back row, to allowing one of the middle
blockers to remain in the game for all six rotations.
Court presence information could be estimated sep-
arately for each section of the season in this case
but one would need to classify the sections manually.
Failure to account for such a change would increase
the uncertainty in the estimate for court presence and
bias the plus/minus results calculated from it.

In the dataset used to illustrate the methodology,
the variability due to court presence was dominated
by the variability in the scaled plus/minus metric.
This indicated that it was not necessary to use the full
set of draws from the posterior distribution of court
presence in subsequent analysis. This may not be the
case for all such data and the analyst would be wise
to check the level of uncertainty due to court pres-
ence. If it is relatively large, presenting the plus/minus
metric as in Fig. 3 or sampling across the draws on
court presence if estimating a Bayesian APM model
is recommended.

The primary road block to creating metrics based
on the Statcrew data is the inherent messiness that
the program allows. For example, data inputters will
sometimes fail to input a substitution as it occurs
while they are still sorting out the previous play’s
actions. Such errors are easy to catch automatically,
but less easy to correct automatically. Access to the
raw data files may also be limited. Play-by-play data
are generally available through the NCAA, but these
data are a derivative of the Statcrew raw files and omit
much of the in-play touch information as well as some
of the substitution information. This makes data pro-
cessing more difficult and decreases the number of
plays with complete data. Alternative data sources,

such as DataVolley, that collect substitution patterns
and scoring outcomes, but omit the movement of the
Libero, can also utilize the presented model to recover
court presence data.

This work is limited in a few ways. Primarily by the
fact that all results are drawn from a single team. This
limits generalizability. The use of data from multiple
teams may present as yet undiscovered difficulties.
The team studied was also fairly consistent in strat-
egy and injury free which allowed for combination
of data across matches with relative ease. Given the
large amount of collinearity in player use in volley-
ball, separation in player estimates requires multiple
games making this metric less useful for in-season
roster adjustments.

In this particular instance, the results based on the
plus/minus model were not surprising to collabora-
tors. This was a positive in that the model was able
to order players in a reasonable fashion. It was also
a negative as the plus/minus results did not provide
new information from their perspective. This work,
however, has led to projects on other data sources
which appear more fruitful. These methods require
the court presence estimation model outlined in this
paper, and their description is left for future work.

What makes this framework potentially useful is
that the data source is already being generated for use
by the NCAA. This means that the metrics illustrated
are potentially scalable to the entire association. If
data were to be obtained and processed for an entire
conference, the use of team effects in an APM model
could produce results similar to that of work done
for closed leagues as in professional basketball and
hockey. The plus/minus metrics provide a way to
incorporate otherwise difficult to measure contribu-
tions and place all players on the same scale for
comparison. Such results may be interesting from an
entertainment perspective or useful for consideration
of post season awards, picking national teams, or as
a tool for professional teams looking to acquire new
talent.
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Appendix

Detailed Notation from Polson et al. Model

ωj|R, Z, βj ∼ PG
(
ni, ηij

)
(A1)

βj|R, Z, ωj ∼ Normal
(
mj, Vj)

)
(A2)

The Polya-Gamma distribution shown in Equation
A3, is an infinite sum of Gamma random variables.
The value ni is the number of total plays the ith combi-
nation of rotation and serve occurred. The parameter
ηij is equal to RT

i βj − cij , where cij is given by

log

( ∑
k /= j

eRT
i
βk

)
.

PG = 1

2π2

∞∑
k=1

Gamma (ni, 1)(
k − 1

2

)2 + η2
ij

4π2

(A3)

The Normal mean mj , of Equation A2, is equal to

Vj

(
RT
(
kij − 	jCj

)+ V−1
0j m0j

)
, where the value

kij is equal to Oij − ni

2 , where Oij is the collapsed
count of occurrences that the player in the jth spot
(j ∈ 1, . . . , 4) was not on the court (multinomial cat-
egory) for the ith rotation and serve combination
(i ∈ 1, . . . , 12). The PG random variates generate 	j ,

which is equal to diag
({

ωij

}12
i=1

)
. The inverse of the

Normal variance V−1
j is given by RT	jR + V−1

0j .


