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Abstract. One of the main statistics that is used to summarize the performance of a soccer team after a game is the number of
shots (on target) taken by the team. A team with many shots is being seen as having exhibited a particularly offensive game
plan and challenged the opponent. However, the number of shots is an aggregate metric that does not consider the quality of
the shots taken from a team. For example, a set piece that resulted in a shot from the box is certainly of higher quality than
a shot taken from the middle of the field. Hence, in this work we first introduce a model for calculating the probability of a
shot resulting into a goal. For training our model we use a manually annotated set of shots from a subset of the 2016 regular
season’s MLS games. Our evaluations show that the model is able to accurately estimate the probability of a shot resulting
to a goal. Using this model we then calculate the expected number of goals for a team and consequently its offensive and
defensive efficiency by comparing this expected number with the actual goals scored/allowed. Finally, borrowing ideas from
fractal theory, we analyze the dimensionality of MLS teams based on the locations they take their shots from and show that
teams that exhibit lower dimensionality on the field tend to have higher offensive efficiency.

1. Introduction

A crude retrospective view for the performance of
a soccer team is the number of shots taken. Neverthe-
less this can be misleading since a classic chance from
the box is considered equally with a poorly taken shot
from the middle of the field. To overcome the pitfalls
from simply using the number of shots (or even the
number of shots on target), soccer practitioners have
introduced the notion of expected goals, where the
main idea is to assign a quality metric on each shot
Bertin (2015). However, there is little academic work
on the results obtained from this statistic and with this
study our objective is twofold:

1. Build a model for expected goals and evalu-
ate how well it estimates the probability of a
shot leading to a goal - as compared to accuracy
figures that are traditionally used.

∗Corresponding author: Alexander Fairchild, Boston College.
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2. Delve into possible relationships between a
team’s efficiency derived by its expected and
scored goals and the spatial distribution of its
shot charts.

One of the problems associated with current mod-
els is that they are being evaluated with regards to
traditional metrics for predictive models such as their
accuracy. In this case, the accuracy of the model
would represent the fraction of correct predictions
of a shot ending up to a goal over all the shots in the
dataset. However, this does not reveal useful infor-
mation with regards to the accuracy of the expected
goals estimate as the following example reveals. Let
us assume a shot for which modelM1 provides an esti-
mate of 60% probability ending up to a goal, while
model M2 estimates this probability to be 85%. Both
of these models will exhibit the same accuracy with
respect to predicting the outcome of the shot at hand
(since the probabilities obtained from both models
are greater than 50%). However, this is not true with
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respect to the expected goals from that shot, which
will be 0.6 for M1 and 0.85 for M2. There are two
issues with this. First, the two models give different
expected goals estimates, while second, it is not clear
which probability figure is correct. In this work, we
focus on evaluating the probability estimates from
our expected goals model. Our results indicate that
our model is well-calibrated and provides accurate
estimates for the probability of a goal for a given
shot.

Using the output of our goal probability model we
further model the expected goals for a team (player)
as a Poisson binomial distribution. Consequently we
can use this expected goals model to estimate the
offensive and defensive efficiency of teams. Further-
more, we borrow ideas from fractal theory - and in
particular the notion of fractal dimension - to analyze
the offensive efficiency of a team in the context of
the spatial distribution of the team’s shot chart. To
our surprise the results indicate that a more uniform
spatial spread of the attack is associated with lower
efficiency. This finding can be attributed to the fact
that there are only a few locations on the field that are
associated with high-quality shots. Hence, teams that
spread their shots uniformly on the field will waste
many of their opportunities. This is just one example
of insights that can be gained through the notion of
fractal dimension. Most importantly, as we discuss,
the notion of fractal dimension can be used to analyze
spatial data from a variety of sports (not necessarily
only soccer) and form the basis of novel performance
evaluation metrics.

Roadmap: The rest of the paper is organized as
follows. Section 2 discusses relevant approaches and
describes our dataset. Section 3 starts by describ-
ing our logistic regression model for the probability
of a shot leading to a goal. We then introduce in
the same section the Poisson binomial model for
the expected goals that we later use for defining
the offensive/defensive efficiency of a team. Further-
more, we introduce the notion of fractal dimension
and explore its connection with the offensive effi-
ciency of a team. Finally, Section 4 discusses the
future potentials opened by our study and concludes
our work.

2. Background and Related Studies

In this section we will discuss relevant to our study
literature, while we will also describe the dataset we
compiled and used in our study.

2.1. Existing Literature

As aforementioned the notion of expected goals is
not new. Soccer practitioners have developed their
own models to estimate the expected goals from
the shots taken from a team. The vast majority of
these models utilizes features related to the distance
from the goal line Bertin (2015), Chappas (2013),
11tegen11 (2014) in order to calculate the probabil-
ity of a shot leading to a goal. Lucey et al. (2015)
were the first to use player tracking data in order
to include game context related features in their
expected goals model. One of the gaps in the existing
literature is that the goal probabilities obtained from
the developed models are not (properly) evaluated.
Typically the model evaluation includes accuracy fig-
ures and/or the average prediction error between the
actual goals scored and the expected goals based
on the shot model. Our current work fills this gap
by highlighting an appropriate way to evaluate the
probability output from a shot model. While we
develop our model and evaluations using only fea-
tures from shot charts - we do not have access to
detailed tracking data - the probability evaluation
approach we describe can be used for more elab-
orate models such as the one presented by Lucey
et al. (2015).

In another direction, Vilar et al. (2013) focus on
the analysis of local dynamics and show that local
player numerical dominance is key to defensive sta-
bility and offensive opportunity, while Bar-Eli et al.
(2007), Bar-Eli and Azar (2009) further collected
information from 286 penalty kicks from professional
leagues in Europe and South America and analyzed
the decisions made by the penalty kickers and the
goal keepers. Their main conclusion is that from a
statistical standpoint, it seems to be more advanta-
geous for a goal keeper to defend the penalty kick
by remaining in the goal’s center. Furthermore, Di
Salvo et al. (2007) analyzed the motion of 200 soc-
cer players from 20 games of the Spanish Premier
League and 10 games of the Champions League and
found that the different positional roles demand for
different work intensities.

Finally, similar line of research exists in hockey
analytics where models for expected goals are devel-
oped in a similar manner Eric (2012), Johnson (2016),
Perry (2016). In these models again the main fea-
tures that determine the shot quality include the
location of the player taking the shot as well as
the type of the shot (e.g., wrist shot, slap shot,
deflection, etc.).
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Fig. 1. A shotchart of the shots used in our analysis.

2.2. Dataset

For our study we compiled a set of 1,115 (non-
penalty) shots from 99 MLS games during the 2016
regular season. The data were collected by watching
and manually tagging the (x,y) coordinates of shots
on target in each Major League Soccer game between
March 6 - May 18, 2016. John Burn-Murdoch’s soc-
cer pitch tracker was used to tag each shot’s location,
outcome, game state, assist type, and to define the
phase of play from which the shot came (i.e. set
piece, open play, etc.) Burn-Murdoch (2015). The
final annotated dataset includes the following tuple
for each shot:
<ID, Player, Team,Opponent, Loc.X,

Loc.Y, Outcome, Assist Type, Shot
Type, Play Type, Angle, Distance>

Figure 1 graphically depicts the shot chart for the
whole dataset, while Fig. 2 visualizes separately the
goals and missed shots as well as their spatial density.
Before describing our model for the goal probability
for each shot, we perform some basic analysis of the
shots with respect to the features included in the shot
tuple described above. Table 1 presents our results. As
we can see there are not any statistically significant
differences in the baseline goal probabilities when
focusing on the different values for a given feature.
For example, an open play and a set-piece play both

have the same baseline probability of a goal. The
same is true for a left, right or header shot. The only
slightly statistically significant difference is observed
when a player creates the shot on his own (i.e., self
assist), in which case there is a lower baseline prob-
ability of scoring a goal. However, as we will see
in the following section, these features do not bear
any significant modeling power for the probability of
success for a shot. Figure 3 further depicts the prob-
ability of a shot ending up to a goal as a function of
the distance from the goal line. As one might have
expected the further away the shot is taken from the
goal line the less probable is to result into a goal.

3. Models and Analysis

In this section we begin by presenting our goal
probability model. Then we describe our expected
goals model, while we finally explore the connection
between offensive efficiency and the spatial distri-
bution of a team’s shots through the lens of fractal
dimension.

3.1. Goal Probability Regression Model

In this section we will present our model for the
probability of a shot leading to a goal, which will
form the basis of our expected goals calculations. In
particular, let us denote with Gs a binary random vari-
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Goal Miss

Fig. 2. A location density for the shots that resulted in a goal (left figure) and the ones that were misses (right figure).

Table 1

Goal probability for different types of plays, assists and shots

Type Goal Probability (%) 95% CI (%)

Play Open 25.3 2.8
Set-Piece 24.1 6.5

Assist Cross 32.4 5.9
Pass 22.3 4.2
Self 18.0 4.7
Other 32.4 7.5

Shot Header 24.0 6.2
Left 24.4 4.7
Right 25.8 3.5

able that represents whether shot s resulted in a goal
(Gs = 1) or not (Gs = 0). Every shot s is associated
with a feature vector zs that captures various attributes
of the shot that we will describe shortly. We will use
logistic regression to model the random variable Gs.
The output of the model y provides us with the prob-
ability y = Pr[Gs = 1]. Hence, simply put, y is the
probability of scoring a goal with shot s. The logistic
regression model for G is given by:

Pr(G = 1|z) = exp(aT · z)

1 + exp(aT · z)
(1)

The coefficient vector a includes the weights for
each individual element of the input vector z, and is
estimated using the shot data. The value of coefficient
ai quantifies the relation of feature zi with the prob-
ability of scoring a goal (when keeping the rest of
the factors included in the model constant), while the
corresponding p-value quantifies its statistical signif-
icance. The features we use as the input for our model
include:

� Location information: This includes the coor-
dinates - (x,y) - of the location that the shot took
place.

� Distance: This is the distance of the shot loca-
tion from the goal line.

� Shot angle: This is the angle created by the
two straight lines connecting the shot location
with each of the vertical goal posts.

� Shot type: This is a categorical variable that
captures whether the shot was a header, a right
or left leg shot.

� Assist type: This is a categorical variable that
captures the type of assist that resulted to the
shot.

� Play type: This is a categorical variable that
describes whether the play was a set piece or an
open play.

We trained the model with the shot data described
in Section 2 and Table 2 presents our model. As we
can see the distance from the goal and the angle of
the shot are the only statistically significant features
that impact the probability of a shot leading to a goal,
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Fig. 3. The goal percentage of shots as a function of distance from
the goal line.

while the type of shot, assist and play are not signifi-
cant independent variables. A typical way to evaluate
a logistic regression model is through its accuracy in
predicting the output variable. In our case the predic-
tion accuracy of the model is 77.2%. However, the
purpose of using the above model is to calculate the
expected goals based on the shots taken by a team
or a player and not to predict whether a shot will
result in a goal or not. In fact, the accuracy metric
is rather misleading in this setting since given that
only 25% of the shots end up to a goal the dataset1

is unbalanced Chawla et al. (2004); a deterministic
model that predicts every shot to not be a goal will
have a good performance with regards to accuracy
- 75% in our dataset. On the contrary, the model’s
accuracy of the predicted probability is our main
evaluation criterion and not the model’s accuracy at
predicting a goal. In order to evaluate the predicted

1Our model includes only shots on target and this is why this
percentage might appear even higher than what one might have
expected.

Table 2

Goal Probability Regression Model
(Significance levels :† : 10% ∗ : 5% ∗∗ : 1%)

Variable Coefficient
(Std. Err.)

Location x 0.11
(0.053)

Location y 0.017
(0.013)

Shot distance -0.19∗
(0.061)

Shot angle 0.023∗∗
(0.006)

Shot type (Header) -0.15
(0.407)

Shot type (Left) 0.36
(0.408)

Shot type (Right) 0.36
(0.407)

Play (Set-Piece) 0.0015
(0.039)

Assist (Pass) -0.057
(0.045)

Assist (Self) -0.042
(0.051)

Assist (Other) -0.051
(0.049)

Intercept -0.011
(0.41)

N 1115
AIC 1165.2

probability, ideally we would like to have the same
shot repeated several times. For example, consider
a shot with a 30% probability of score. Then if the
shot was taken 100 times - under the same condi-
tions - one should expect approximately 30 of them
to end up to a goal. However, this is obviously not
possible to perform and hence, we rely in the fol-
lowing approach. In particular we will use all the
shots in our dataset. If the predicted probabilities
were accurate, when considering all the shots given
a probability of x% being a goal, then x% of these
shots should end up to a goal. Given the continu-
ous nature of the probabilities we quantize them into
groups that cover a 5% probability range. For higher
predicted probabilities (> 0.7) we quantize the data
to a 10% probability range given the small sample
size within this range. Figure 4 presents on the y-axis
the fraction of shots that ended up to a goal, while
the x-axis corresponds to the predicted probability of
goal. In order to avoid any biases in the estimation
of the goal probability of a shot we used the leave-
one-out approach, that is, for every shot s we used
the rest of the data to train a model and then predict
the goal probability for s. The blue line corresponds
to the linear fit, while the shaded area is the 95%
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confidence interval of the fit. The red line is the y = x

line (ideal case, i.e., perfect probability estimation).
As we can see this line falls within the confidence
interval, which translates to an accurate probability
inference. The corresponding linear regression pro-
vides a slope with a 95% confidence interval of [0.77,
1.1] (R2 = 0.93) and a non-significant intercept (0.03,
p-value = 0.39), which to reiterate means that we
cannot reject the hypothesis that our data fall on the
line y = x where the slope is equal to 1 and the
intercept is 0.

Another metric that has been traditionally used in
the literature to evaluate the performance of a proba-
bilistic prediction is the Brier score β Brier (1950). In
the case of a binary probabilistic prediction the Brier
score is calculated as:

β = 1

N

N∑

i=1

(πi − yi)
2 (2)

where N is the number of observations, πi is the prob-
ability assigned to instance i being equal to 1 and yi

is the actual (binary) value of instance i. The Brier
score takes values between 0 and 1 and evaluates the
calibration of these probabilities, that is, the level of
confidence they provide (e.g., a 0.9 probability is bet-
ter calibrated compared to a 0.55 probability when the
ground truth is label 1). The lower the value of β the
better the model performs in terms of calibrated pre-
dictions. Our model exhibits a Brier score β of 0.15.
Typically the Brier score of a model is compared to
a baseline value βbase obtained from a climatology
model Mason (2004). A climatology model assigns
the same probability to every observation (that is, shot
in our case), which is equal to the fraction of posi-
tive labels in the whole dataset. Hence, in our case
the climatology model assigns a probability of 0.25
to each observation, since 25% of the shots in the
dataset resulted in a goal. The Brier score for this
reference model is βbase = 0.19, which is of lower
quality as compared to our model.

In conclusion, the model for the goal probabil-
ity is accurate and well-calibrated (compared to the
baseline climatology model).

3.2. Expected Goals Model

Using the above model we can now estimate the
number of expected goals of a team/player within
a game or a span of games. Let us consider the
set of shots ST that team T has taken during the
time span of interest. The shots that the team has

taken are independent but not identically distributed
since each shot i has a specific probability of suc-
cess given the attributes of the shot, πi, which is
given by the above model. Therefore, we can model
a sequence of shots taken by team T through a
Poisson binomial distribution. A Poisson binomial
distribution is the sum of independent (but not neces-
sarily identically distributed) Bernoulli trials. Hence,
the mean μ and variance σ2 of the distribution are
given by:

μ =
N∑

i=1

πi (3)

σ2 =
N∑

i=1

πi · (1 − πi) (4)

where N is the number of trials and πi is the proba-
bility of success of the ith trial. Hence, the expected
goals E[GT ] for T is given simply by the sum of the
goal probabilities for each shot in ST , i.e., E[GT ] =∑

i∈ST
Pr[Gi = 1|zi].

Using the expected goals as calculated above one
can classify teams based on how much better/worse
they actually perform over the expectation. This eval-
uation can be made for both the offense and the
defense of a team. Formally, we have the following
definitions:

offensive efficiency = GT,+ − E[GT,+]

GT,+
(5)

defensive efficiency = GT,− − E[GT,−]

GT,−
(6)

where GT,+ (GT,−) > 0 captures the number of goals
scored (allowed) by team T , while E[GT,+] (E[GT,])
is the expected number of goals scored (allowed) by
T . Figure 5 presents on the same plot the offensive
and defensive efficiency in our dataset of the MLS
teams based on the above definitions. Depending on
which quadrant the teams fall in they can be classified
as over or under performing in the different aspects
of the game (offense vs defense). For example, teams
that fall at the top right quadrant can be classified as
complete teams since they exhibit positive efficiency
both in offense as well as in defense. Based on our
dataset, Orlando City Soccer Club, FC Dallas, Hous-
ton Dynamo and Real Salt Lake are complete teams.
Similar analysis can be performed for the individual
players. For example, in Fig. 6 we present the number
of expected goals of each player and the actual goals
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Fig. 4. Our logistic regression model is providing accurate goal probabilities. For a given set of shots with predicted goal probability π the
fraction of shots that resulted in a goal is also (approximately) equal to π.

Fig. 5. Offensive and defensive efficiency of MLS teams as captured by the expected goals model.

he made. Players that fall under the y = x line are
under-perfroming, while players over the line per-
form better than expected. There are some players
that fall almost on the y = x line, in which case these
players can be though of as being consistent with the
expected goals model.

3.3. Fractal Dimension and Offensive Efficiency

In what follows we want to examine whether there
is any relationship between the spatial distribution

of the shots taken and the offensive efficiency of
the teams. In order to achieve this we need a met-
ric that concretely describes the spatial distribution
of a team’s shot in a condensed manner (e.g., through
a single number). For that matter we will borrow the
notion of fractal dimension from fractal theory. In
particular, let us consider a set of points S. With C(r)
being the fraction of pairs of points from S that have
distance smaller or equal to r, S behaves like a frac-
tal with intrinsic fractal dimension D2 in the range of
scales r1 to r2 iff:
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Fig. 6. Our expected goals model can help us classify players to “underperformers” and “overperformers”.

Fig. 7. The empirical cumulative distribution of the MLS teams’
shot chart fractal dimension.

C(r) ∝ rD2 r1 ≤ r ≤ r2 (7)

An infinitely complicated set S would exhibit the
above scaling over all the possible ranges of r. How-
ever, real objects are finite and hence, Equation (7)
holds only over a specific range of scales. For exam-
ple, a cloud of points uniformly distributed in the unit
square, has intrinsic dimension D2 = 2, for the range
of scales [rmin, 1], where rmin is the smallest distance
among the pairs of S.

In our case, the set S is the shot chart of the team T

under examination. One of the things that the fractal
dimension of T , D2(T ), reveals is how uniformly its
shots are distributed. A small value for D2(T ) essen-
tially translates to a team that exploits a small area
in the field for its attack (more accurately its shots),
while a high value for D2(T ) describes a team whose
attack is more uniformly distributed over the field.
Figure 7 depicts the distribution of the fractal dimen-
sion for all the teams based on our dataset. As we
can see there are teams that exhibit very small frac-
tal dimensionality (as small as 0.2), while there are
teams with dimensionality as high as 1.6. In fact, there
seems to be a rapid increase in the cumulative distri-
bution right around the median of the values of fractal
dimensions, that is, 1.35. We thus split the teams into
two groups, that is, teams with fractal dimension at
the top 50-th percentile (i.e., greater than 1.35) and
those at the bottom 50-th percentile. We then com-
pare the offensive efficiency of the two groups and
we find that the offensive efficiency of the teams in
the bottom 50-th percentile of D2 is approximately
6.7%, while that of the teams in the top 50-th per-
centile is approximately -9.3%. This translates to
an average of 16% difference (p-value < 0.05) in
the offensive efficiency of the two groups of teams.
Furthermore, overall there is a moderate correlation
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Fig. 8. A location density for the shots that resulted in a goal (left figure) and the ones that were misses (right figure).

(ρ = −0.36) between the offensive efficiency
and D2.

What these results seem to imply is that teams with
higher offensive efficiency tend to utilize a smaller
area on the field with regards to their shots. This
might seem counter intuitive, since one might expect
that taking shots from a variety of locations would
stretch the defense more, create more open spaces and
hence, create better situations for scoring. However,
the opposite is true and one of the reasons might be
the fact that a team by having its shots uniformly dis-
tributed over the space, will end up taking many low
quality shots. Furthermore, the defenses are aware of
the low chance of making a shot from a long distance
and hence, the stretching of the defense is less than
expected. Of course, the tactical strategy followed by
a team’s offensive or defensive unit - and of course the
spatial distribution of the team on the field - depends
a lot on the talent on the team. For example, a defense
that has to face a team with talented offensive players
might want to give them space in the backfield in order
to avoid one-to-one situations near the penalty area
that can be a miss-match for the defense. This will end
up in a situation similar to the one observed, i.e., non-
stretched defenses that allow distant, low-probability,
shots but try to close the spaces closer to the goal line
by creating a denser defense in the high-percentage
shot areas. Figure 8 depicts two representative cases
of teams with small and high fractal dimensionality.
As we can see while both teams take approximately
the same number of shots, the Orlando City Soccer
Club is much more efficient, since it distributes its
shots over a smaller area, which is also the area of
high quality shots (i.e., close distance to the goal).

4. Discussion and Conclusions

In this study we have developed a model for
quantifying the probability of scoring a goal based
on features of the shot taken. We have particu-
larly focused on ways for evaluating this model
that go beyond the classification accuracy, which is
secondary (if not irrelevant) from a player/team eval-
uation perspective. More specifically, we focus on
the calibration of the predicted probabilities. We first
group together shots with similar goal probability p

as obtained from our model and we compare the frac-
tion of shots from this group that ended up being
scores with p (ideally the these two should be equal),
while we also use the Brier score. We then utilize the
model for the probability of a goal in order to calculate
the expected number of goals for a team or a player.
This allows us to develop efficiency metrics for the
offense and the defense of MLS teams. Finally, we
showcase how we can use ideas borrowed from com-
plex systems theory to analyze spatial soccer data. In
particular, we use the notion of fractal dimension that
describes the distribution of a spatial set of points over
the space and we see that teams whose shot charts
exhibit smaller fractal dimensionality are in general
associated with higher offensive efficiency. We fur-
ther hypothesize that this is due to a careful selection
of their shots from spots with high goal probability.
On the other hand, teams with high fractal dimen-
sionality, spread their shots more uniformly across the
field and this will inevitably lead to many shots of low
quality that are essentially “wasted” opportunities.

Shot charts is one only aspect of spatial soccer data.
We believe that the notion of fractal dimension can
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also be useful in evaluating individual players with
regards to their movement on the field. Tracking tech-
nologies allows us today to have a full spatiotemporal
trajectory of players during the course of a game.
When applied on trajectory data - both spatial and
temporal information is present - fractal dimension
can provide more insights, such as, whether the trajec-
tory includes frequent short, “wandering”-like parts
creating a bursty pattern Matsubara et al. (2013). This
information can be useful for the analysis of many
sports for which the spatio-temporal movements of
players are important. For example, the fractal dimen-
sion of the ball trajectory has been used to quantify
ball movement in basketball and has been shown to
correlate with the outcome of a possession Pelechri-
nis (2017). We envision our study to trigger more
research in the connection between complex systems
theory and sports.
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