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Abstract. In this work, we study the ranking algorithm used by Fédération Internationale de Football Association (FIFA);
we analyze the parameters that it currently uses, show the formal probabilistic model from which it can be derived, and
optimize the latter. In particular, analyzing games since the introduction of the algorithm in 2018, we conclude that game’s
“importance” (defined by FIFA and used by the algorithm) is counterproductive from the point of view of the predictive
capacity of the algorithm. We also postulate that the algorithm should be rooted in the formal modeling principle, where the
Davidson model proposed in 1970 seems to be an excellent candidate, preserving the form of the algorithm currently used.
The results indicate that the predictive capacity of the algorithm is considerably improved by using the home-field advantage
(HFA), as well as the explicit model for the draws in the game. Moderate but notable improvement may be achieved by
introducing the weighting of the results with the goal differential, which, although not rooted in a formal modeling principle,
is compatible with the current algorithm and can be tuned to the characteristics of the football competition.
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1. Introduction

In this work we evaluate the algorithm used by
Fédération Internationale de Football Association
(FIFA) to rank the international Men teams, as well
as we propose and study simple modifications to
improve the prediction capacity of the algorithm.

Rating and ranking are important elements of sport
competitions and the surrounding entertainment envi-
ronments. In general, the rating has an informative
function that provides fans and profane observers
with quick insight into the relative strength of the
teams. For example, the press is often interested in
the “best” teams or the national team reaching some
record position in the ranking.

More importantly, ranking leads to consequential
decisions such as (i) seeding, i.e., defining which
teams play against each other in competitions (e.g.,
used to establish the composition of the groups in
the qualification rounds of the FIFA World Cup),
(ii) promotion / relegation (e.g., determining which
teams move between the English Premier League
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(EPL) and the English Football League Champi-
onship, or teams that move between the groups in
Nations Leagues), or (iii) defining the participants
in prestigious (and lucrative) end-of-season com-
petitions (such as Champions League in European
football, Stanley Cup series in National Hockey
League (NHL)).

Most of the currently used ratings simply count
wins/losses (and draws, when applicable), but some
of the sport governing bodies have gone beyond these
simple methods and implemented more sophisticated
rating algorithms where the rating levels attributed
to the teams are meant to represent the “skills” or
“strengths”; the ranking is obtained by sorting these
numbers and is also known as a “power ranking".

In particular, FIFA started a new ranking/rating
algorithm in 2018, where the rating levels (skills)
assigned to the teams are calculated from the game
outcome, of course, but also from the skills of the
teams before the game. The resulting rating algo-
rithm has the virtue of being simple and defined in a
(mostly) transparent manner.

Considering that the football association is, by any
measure, the most popular sport in the world, and
given the importance of the rating/ranking, the main
objective of this work is to analyze the FIFA rank-
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ing using statistical methods. This evaluation has a
value of its own and follows the line of many works
that analyzed the past ranking strategies used by
FIFA, e.g., (Lasek, Szlávik, & Bhulai, 2013; Ley, Van
de Wiele, & Van Eetvelde, 2019). Furthermore, the
approach we propose can also be applied to evalu-
ate other rating algorithms, e.g., such as the one used
by Fédération Internationale de Volleyball (FIVB),
(FIVB, 2020).

In this work we will:

• Derive the FIFA algorithm from the first
principles. In particular, we will define the prob-
abilistic model underlying the algorithm and
identify the estimation method used to estimate
the skills.
• Assess the relevance of the parameters used in

the current algorithms. In particular, we will
evaluate the role played by the change of the
adaptation step according to game-importance
(as defined by FIFA).
• Optimize the parameters of the proposed model.

As a result, we derive an algorithm which is
equally as simple as FIFA’s one, but allows us to
improve the prediction of the game results.
• Propose modifications of the algorithm that take

into account the goal differential, also known as
margin of victory (MOV). We consider legacy-
compliant algorithms and a new version of the
rating.

Our work is organized as follows. In Section 2 we
describe the FIFA algorithm in the framework that
simplifies the manipulation of models and the eval-
uation of the results. This is also where we clarify
the origin of the data, make a preliminary evaluation
of the relevance of the game-importance parameters
currently used to control the size of the adaptation
step, and assess the impact of the shootout/knockout
rules present in the FIFA algorithm.

The algorithm is then formally derived in Section
3 where we also discuss the evaluation of the results
and the batch estimation approach we use. Incor-
poration of the MOV in the rating is evaluated in
Section 4 using two different strategies. In Section
5 we return to the on-line rating, evaluating and re-
optimizing the proposed algorithms, and discussing
the practical role played by the scale. We conclude the
work in Section 6 summarizing our findings and in
Section 6.1 we make an explicit list of recommenda-
tions which may be introduced to improve the current
version of the FIFA algorithm.

2. FIFA ranking algorithm

We consider the scenario in which there are a total
of M teams playing against each other in the games
indexed with t ∈ T = {1, . . . , T }, whereT is the num-
ber of games in the observed period. FIFA ranks 211
international teams and, between June 4, 2018 and
March 31, 2022, there were 3446 FIFA-recognized
games. However, for the purpose of this study, we
removed two games and one team;1 thus, we use
M = 210 and T = 3444.

Let θt,m denote the skill of the teams m ∈
{1, . . . , M} before the game t. The skills of all teams
are gathered in a vector θt = [θt,1, . . . , θt,M]�, where
(·)� denotes the transpose. The home and away teams
are denoted by it and jt , respectively.

Game results yt ∈ Y are ordinal variables, where
the elements of Y = {H, D, A} represent the win of
the home team (yt = H), the draw (yt = D), and the
win of the away team (yt = A). These ordinal vari-
ables are often transformed into numerical scores
y̌t = y̌(yt): y̌(A) = 0, y̌(D) = 0.5, and y̌(H) = 1.

The basic rules of the FIFA rating for a team m ∈
{it, jt} are defined as follows:

θt+1,m← θt,m + Ict δt,m (1)

δt,m = y̌t,m − F
( zt,m

s

)
(2)

F (z) = 1

1+ 10−z
(3)

zt,m = θt,m − θt,m′ , (4)

1We had to deal with minor exceptions:
• We recognized the victory of Guyana (GUY) over Barbados

(BRB) in the game played on Sept. 6, 2019 already on the date
of the game, while in the FIFA rating, the draw was originally
registered and GUY’s victory was recognized only later, when
BRB was disqualified for having fielded an ineligible player.

• We remove the Côte d’Ivoire (CIV) vs. Zambia (ZAM)
game, played on June 19, 2019, where CIV (the winner) and
ZAM exchanged 2.21 points. The removal of this game from
the FIFA-recognized list seems to be the reason why FIFA
changed the ratings of both teams between two official publi-
cations on Dec. 19, 2019 and on Feb. 20, 2020. Namely, CIV’s
rating was changed from 1380 to 1378 and ZAM’s from 1277
to 1279. This was done despite both teams not playing at all
in this period of time.

• The game of Cook Islands (COK) played against Solomon
Islands (SOL) on March 17, 2022 was removed because this
is the only COK’s game in the entire period and thus its rat-
ing, which was assumed by FIFA to be equal to 908 before
the game, is not based on any recent results. The disadvan-
tage of this removal is that we affect the rating of SOL which
played three more games before March 31, 2022. We recog-
nize that the introduction of a new team to the system is indeed
a challenging issue from a rating perspective.
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Table 1

Game-categories c and the corresponding update steps Ic = Kξc, (FIFA, 2018), where K = 5 and ξc = Ic/K. The number of games Tc and
their frequency, fc = Tc/T in the observed categories between June 4, 2018 and March 31, 2022 is also given (total number of games is

T = 3444)

c Ic ξc Description Tc fc[%]

0 5 1 Friendlies outside International Match Calendar windows 518 15
1 10 2 Friendlies during International Match Calendar windows 701 20
2 15 3 Group phase of Nations League competitions 351 10
3 25 5 Play-offs and finals of Nations League competitions 84 2.4
4 25 5 Qualifications for Confederations/World Cup finals 1413 41
5 35 7 Confederation finals up until the QF stage 253 7.3
6 40 8 Confederation finals from the QF stage onwards 60 1.7
7 50 10 World Cup finals up until QF stage 56 1.6
8 60 12 World Cup finals from QF stage onwards 8 0.2

where s = 600 is the scale,2 m′ is the index of the
team opposing the team m in the t-th game (i.e., if
m = it then m′ = jt and if m = jt then m′ = it), y̌t,m

is the “subjective” score of the team m (if m = it , then
y̌t,m = y̌t , and if m = jt , then y̌t,m = 1− y̌t). The
result produced by the logistic function, F (zt,m/s)
in (2) is referred to as expected score and Ict is the
update step defined by FIFA that depends on the game
category (or game “importance”), ct shown in Table 1.

When the team m does not play, its skills do not
change, i.e., θt+1,m← θt,m.

The steps Ic are defined by FIFA, and we divide
them into two components:

Ic = Kξc, c = 0, . . . , 8, (5)

where ξc is a category-dependent adjustment shown
in Table 1. Since the split (5) is not unique, we remove
any ambiguity by setting ξ0 = 1, i.e., K = I0 = 5
(from Table 1).

The basic equation governing the change in skills
in (2) is next supplemented with the following rules:

• Knockout rule: in the knockout stage of any com-
petition (which follows the group stage), instead
of (2) we use

δt,m← max{0, δt,m} (6)

which guarantees that no points are lost by teams
moving out of the group stage.
• Shootout rule: If the team m wins the game in

the shootouts, we use

y̌t,m← 0.75, y̌t,m′ ← 0.5, (7)

where m′ is the index of the team that lost.

2The role of the scale is to ensure that the values of the skills θt,m

are situated in a visually comfortable range; the interplay between
the scale and the initialization θ0 is discussed in Section 5.1.

This rule, however, does not apply in two-
legged qualification games if the shootout is
required to break the tie.

The rating we describe has been published by
FIFA since August 2018, roughly once a month. The
algorithm was initialized on June 4, 2018, with the
initialization values θ0 based on the previous ranking
system.3

To run the algorithm, we need to know the initial-
ization θ0, the presence of conditions that trigger the
use of the knockout/shootout rules, and most impor-
tantly the category/importance of each game ct . These
elements are not officially published, so here we use
the unofficial data shown in Football Rankings (2021)
which keeps track of the FIFA rating since June 2018.
Using it, we were able to reproduce the ratings θt with
a precision of fractions of rating points, which gives
us confidence that the game-categories are assigned
according to the FIFA rules.4

In our discussion of models and algorithms, we
want (i) to understand the rationale behind the current
FIFA rating algorithm and (ii) to propose new and
simple rating algorithms.

We start by asking simple questions: Are the
parameters Ic defining the “importance" of the game

3The team ranked r was assigned the rating θm,0 = 1600−
4(r − 1), so Germany (ranked first, r = 1) was assigned θm,0 =
1600 and the rating of the other teams was then decreased by four
points with each position, so Brazil was assigned θm,0 = 1596, Bel-
gium θm,0 = 1592, etc. The tied positions in the previous ranking
were dealt with by removing the lowest of the ranking positions,
e.g., two teams ranked r = 10, meant that the next available ranking
position was r = 12.

4Information provided by Football Rankings (2021) is highly
valuable because it is far from straightforward to verify which
games are included in the rating and what their importance Ic is.
In particular, games in the same tournament can be included or
excluded from the rating, and in some cases the changes can be
made retroactively, further complicating the understanding of the
rating results.
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suitably set? If not, how should we define them to
improve the results?

These questions are interesting in their own right
because the concept of game-importance is not
unique to the FIFA rating: it also appears in the FIVB
rating, (FIVB, 2020) and in the statistical literature,
e.g., (Ley et al., 2019, Sec. 2.1.2).

2.1. Effect of weighting using game-importance:
preliminary evaluation

In statistics, a conventional approach to perfor-
mance evaluation is to rely on a metric, called a
scoring function, which relates the result yt to its pre-
diction obtained from the estimates at hand (here, θt),
(Gelman, Hwang, & Vehtari, 2014).

At this point we want to use only the elements
that are clearly defined in the FIFA ranking and since
the only explicit predictive element defined in the
FIFA algorithm is the expected score (3), F (zt/s) =
E[y̌t|zt], we will base the evaluation on the metric
affected by the mean. Later we will abandon this
simplistic approach.

Using the squared prediction error,

m(zt, yt) =
(
y̌t − F (zt/s)

)2
, (8)

averaged over the large number of games, we obtain
the Mean Squared Error (MSE) estimate

MSE = 1

T − T ′

T∑
t=T ′+1

m(zt, yt), (9)

where T ′ = �T/2� is the time-index separating the
observations into two approximately equal parts. So
the games in the first part are used to initialize the
algorithm and the second part is used to calculate the
metrics. This separation, which aims to attenuate the
initialization effects, is somewhat arbitrary, of course,
but should not significantly affect the results for large
T .

The MSE in (9) may be treated as an estimate of
the expectation,

MSE ≈ Ezt

[
Eyt |zt [

(
y̌t − F (zt/s)

)2]
]

= V[y̌t]+ Ezt

[(
B(zt, yt)

)2]
,

(10)

which highlights the bias-variance decomposition,
(Duda, Hart, & Stork, 2001, Ch. 9.3.2) and where
V[y̌t] = Ezt

[
V[y̌t|zt]

]
is the average conditional vari-

ance of y̌t , and B(zt, yt) = F (zt/s)− E[y̌t|zt] is the
bias in the estimation of the mean.5

Therefore, by reducing the (absolute value of the)
bias B(zt, yt), that is, by improving the calculation of
the expected score F (zt/s), should manifest itself in
a lower value of the MSE, which is calculated as in
(9).6

Using the MSE, we are now able to assess how
the values of the importance parameters Ic (or alter-
natively, K and ξc) affect the expected value of the
score (i.e., the estimate of the mean).

We find the coefficients K and/or ξc by minimizing
the MSE (9) using the following alternate optimiza-
tion which turned out to converge quickly (and be
independent of the initialization)

ξc ← arg min
ξc

MSE, c = 1, . . . , 8 (11)

K← arg min
K

MSE; (12)

MSE was thus optimized with respect to only one
variable at a time, while all the others were kept
fixed. We perform optimization (11) on eight weights
ξ1, . . . , ξ8 (recall that we set ξ0 = 1), one opti-
mization (12) on K, and repeat these steps until
convergence, defined as an insignificant change in
MSE (less than 0.01%). The arrow ← means that,
once optimization over a variable ξc is finished, the
optimal result is used in the following optimizations;
the same applies to K, of course.7

The one-dimensional optimizations (11) and (12)
only require one-dimensional line search (e.g., over
a grid) and we preferred to avoid derivative-based
methods which are not well suited to deal with the
complicated functional relationship resulting from
the recursive rating algorithm.

The results are shown in Table 2 and we observe
the following:

5We emphasize that E[y̌t |zt] is the true but unknown mean of
the score, while F (zt/s) is the estimate of the mean.

6We note that, in (9) we assume that all scoring functions
m(zt, yt) are equally important, which seems to be in contradiction
with the idea of using variable weights ξct attributed to different
games. But, while trying to weight the scoring functions is a the-
oretically interesting issue, not only would it add another layer of
complexity to the problem but, in hindsight (i.e., after obtaining
the optimization results where the optimized weights ξc are very
similar) it seems to be not very useful.

7Alternatively, we may remove (12), e.g., set K = 5, and carry
out only the optimization (11) for c = 0, 1, . . . , 8. The optimal
solution will then be obtained by exploiting (5) as K← Kξ0 and
ξc ← ξc/ξ0, c = 1, . . . , 8.
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Table 2

Parameters K and ξc, in (5), are either fixed (shadowed cells), or obtained by minimizing the MSE (9). The last three column show the
value of the MSE obtained after the FIFA algorithm is modified by removing the shootout rule (MSE\so), by removing the knockout rule
(MSE\ko), and by removing both the shootout and the knockout rules (MSE\so&ko). The first row corresponds to the values obtained with

the parameters fixed in the FIFA algorithm, i.e., K and ξc are taken from Table 1.

MSEopt K ξ0 ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 MSE\so MSE\ko MSE\so&ko

0.1340 5 1 2 3 5 5 7 8 10 12 0.1340 0.1348 0.1349

0.1299 15 1 2 3 5 5 7 8 10 12 0.1299 0.1308 0.1308

0.1295 55 1 1 1 1 1 1 1 1 1 0.1295 0.1299 0.1299

0.1287 55 1 0.8 1.5 0.5 1.2 0.8 2.4 0.06 7.8 0.1287 0.1298 0.1299

• The common update step K increases ten-fold in
the optimized solution and it seems that it is the
most important contributor to the improvement
of the MSE (which changes from MSEopt =
0.1340 in the original algorithm to MSEopt =
0.1295 in the algorithm with fixed weights ξc

but larger common adaptation step).
• For the games in the categories well represented

in the data, i.e., c ∈ {0, 1, 2, 4, 5}, the relative
importance of the games ξc does not seem to be
critically different and, for sure, does not match
the values used in the FIFA algorithm. Over-
all, the optimized weights ξc yield a very small
improvement in MSE, when compared to the use
of constant weights, ξc ≡ 1.

In fact, the Friendlies played in the Inter-
national Match Calendar window are weighted
down (ξ1 = 0.8) compared to the Friendlies
played outside the window, and this is contrary
to what the FIFA algorithm does.
• Estimates of ξc for categories c ∈ {3, 6, 7, 8}

should not be considered very reliable because
the number of games in each of these categories
is rather small (less than 6% of the total). Further-
more, games in the categories c = 7 and c = 8
were observed only in June 2018, during the
2018 World Cup; therefore, their effect is most
likely very weak in the games from the second
half of the observed batch, see (9), which starts
in Sept. 2020.

Using a very simple MSE criterion derived from
the definitions used by the FIFA algorithm, we obtain
results that cast doubt on the optimality/utility of the
game-importance parameters, Ic proposed by FIFA.

However, drawing conclusions at this point may
be premature. For example, regarding K (which, after
optimization should be much larger than 5), it is possi-
ble that the relatively short period of observation time
(34 months) is not sufficient for small K to guarantee
the sufficient convergence but may pay off in a long

run, when smaller values of K will improve the per-
formance after the convergence is reached. We will
return to this issue in Section 5.1 when analyzing the
interaction between the initialization of the algorithm
and the scale s.

On the other hand, to address concerns about the
weights ξc, the situation is quite different. Even after
the convergence, the weights associated with differ-
ent categories should affect the results in a meaningful
way. To elucidate this point, we will take a more
formal approach and, in Section 3, go back to the
“drawing board” to derive the rating algorithm from
the first principles.

Before that, however, we will evaluate the impact
of the knockout/shootout rules.

2.2. Effect of knockout/shootout rules

The basic algorithmic Equations (1)–(2) guaran-
tee that the teams “exchange” the rating points so
that their total stays constant, i.e.,

∑M
m=1 θt,m =∑M

m=1 θt+1,m: this is a well-known property of the
Elo rating algorithm, (Langville & Meyer, 2012,
Ch. 5). On the other hand, by applying the knock-
out/shootout rules, we always obtain a new δt,m that
is equal to or greater than the original one in (2). Thus,
the shootout/knockout rules are a source of “inflation”
in the rating. In fact, in the analyzed period, the total
number of points increased by 2099 (with the initial
total being 254680) and this was due to 24 games with
the shootout rule (but not the knockout), 90 games
with the knockout rule (but not the shootout), and 30
games where both rules were applied.

In the absence of known mathematical principles
from which the knockout/shootout rules are derived,
our initial hypothesis is that the knockout rule is a
heuristics introduced to compensate for the increased
value of Ic in the advanced stages of competitions. To
test this hypothesis, we will proceed by removing the
shootout or/and knockout rules from the algorithm
and observe the impact of such removals on the MSE.
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Table 3

Ranking of the top teams: Brazil (BRA), Belgium (BEL), France (FRA), Argentine (ARG), and England (ENG). The first row shows the
Spearman correlation coefficient, ρ, calculated between the modified rankings and the ranking obtained by the original FIFA algorithm,
shown in the first columns (as of March 31, 2022); the three next columns display the results when the shootout or/and knockout rules are

removed

Original No shootouts No knockouts No shootouts
algorithm rules rules /knockouts rules

ρ 1.0 0.80 0.66 0.58

BRA (1832.7) BRA (1829.6) BRA (1790.5) BRA (1782.5)
BEL (1827.0) BEL (1825.7) FRA (1780.9) FRA (1779.3)
FRA (1789.9) FRA (1788.8) BEL (1756.3) BEL (1754.4)
ARG (1765.1) ARG (1758.3) ARG (1737.1) ARG (1726.8)
ENG (1761.7) ENG (1752.0) ENG (1724.5) ENG (1714.1)

The results are shown in the last three columns of
Table 2 and we conclude that the prediction capacity
of the algorithm is negligibly affected by the shootout
rule and it slightly but still notably deteriorates if the
knockout rule is removed.8 Thus, our hypothesis is
not supported by the results, even if the argument in
favor of using the knockout rule is very weak, as we
will also see later in Section 5.2.

To obtain an intuitive understanding of how
the removal of shootout/knockout rules affects the
results, Table 3 compares the ranking obtained using
the FIFA algorithm (first column) with the rating
resulting from the modified algorithm in which we
(i) eliminate the shootout rule (second column), (ii)
eliminate the knockout rule (third column), as well
as (iii) eliminate both rules (fourth column).

The Spearman correlation coefficient, ρ (Myers &
Well, 2003, Ch. 18.5.3), which quantifies the differ-
ence in the rankings of all teams (perfect agreement
yields ρ = 1.0) indicates that the changes in the rank-
ing are similar to what was obtained by observing the
MSE: comparing the shootout and the knockout rules,
the latter affect the results more significantly.

We also show the rankings of the top teams where
the changes are not major and the most notable is the
switch of ranks between Belgium (BEL) and France
(FRA), which can be attributed to a different number
of times the teams benefitted from the knockout rules.
Indeed, by analyzing the results of the games, we
observed that in the original ranking, BEL benefited
four times from the knockout rule for a total of 85
points (which would be lost without the rule (6)),

8The immediate question is whether the optimization of the
MSE\so or MSE\ko would change the conclusion? The answer is
negative, as we also verified: for example, by minimizing MSE\ko
with respect to K, and then adding the knockout rule, the results are
improved. This is not particularly interesting or surprising, which
is why we do not show these results.

while FRA benefited only once, gaining 14 points.9

Although the knockout rule provides a slight but
notable improvement from the prediction point of
view, we may still debate whether this heuristics is
fair and desirable.

In particular, we note that the points-preserving
knockout rule partially ignores the direct compari-
son between the teams. For example, games in which
BEL was not penalized (for losing in the knock-
out stages) were played against FRA (twice). Thus,
despite direct evidence indicating that FRA was able
to beat BEL, the knockout rule preserved the points
earned by BEL in other games.

In fact, such situations are not surprising and,
indeed, the top teams are likely to make it to the final
stages of the important competitions and then play
against each other in the games where knockout rules
are applicable (in case of BEL’s games: World Cup
2018, Euro 2020, and UEFA Nations League 2021).
Although these games will provide direct compari-
son results, the current knockout rule will preserve
the points of the losing team.

3. Derivation of the algorithm and
batch-rating

To understand and eventually modify the rating
algorithm used by FIFA we propose to cast it in
the well-defined probabilistic framework. To this end
we define explicitly a model relating the game out-
come yt to the skills of the home-team (θit ) and the
away-team (θjt ), where the most common assump-
tion is that the probability that a random variable Yt

takes the value yt , depends on the skill difference

9Of course, due to recursive calculations in the FIFA algorithm,
eliminating the knockout/shootout rules is not the same as evalu-
ating the points (not lost in the original algorithm) and discarding
them from the final results.
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zt = θt,it − θt,jt , i.e.,

Pr{Yt = yt|θt} = L(zt/s; yt) (13)

zt = x�t θt , (14)

where L(zt/s; yt) is the likelihood of θt (for a given
outcome yt) and we define a scheduling vector xt =
[xt,0, . . . , xt,N−1]� for the game t, as

xt,m = I[it = m]− I[jt = m], (15)

with I[a] = 1 when a is true and I[a] = 0, otherwise.
Thus, xt,m = 1 if the team m is playing at home,
xt,m = −1 if the team m is visiting, and xt,m = 0 for
all teams m which do not play. This compact notation
deals with all the skills θt for each t. As before, s is
the scale.

We are interested in the on-line rating algorithms,
in which the skills of the participating teams are
changed immediately after the results of the game are
known. Nevertheless, we will start the analysis with
batch processing i.e., assuming that the skills θt do not
vary in time, θt = θ. This is a reasonable approach if
the time window defined by T is not too large, so that
the skills of the teams may, indeed, be considered
approximately constant. On-line rating algorithms
will then be derived as approximate solutions to the
batch optimization problem. The purpose of such an
approach is to (i) connect the algorithm used by FIFA
to the theoretical assumptions, which are not spelled
out when the algorithm is presented, (ii) remove the
dependence on the initialization and/or on the scale,
and (iii) treat the past and present data in the same
manner, e.g., avoiding the partial elimination in the
performance metrics, see (9).

Assuming that the observations are independent
when conditioned on skills, the rating may be based
on the weighted maximum likelihood (ML) estima-
tion principle

θ̂ = arg min
θ

∑
t∈T

ξct �(zt/s; yt), (16)

where

�(zt/s; yt) = − log L(zt/s; yt) (17)

is a (negated)10 log-likelihood.
The weighting of the log-likelihoods (by ξct in (16)

is used in the estimation literature to take care of
the model mismatch, (Hu & Zidek, 2001; Amiguet,

10The negation in (17) allows us to use a minimization in (16)
which is a very common formulation.

2010): less confidence we have that the observa-
tions are generated according to the assumed model,
smaller weights should be applied.

In our problem, the confidence is associated with
the game category c, so smaller ξc means that we
have less confidence that the games outcomes in the
category c are well described by the model (13).

Since multiplication of all ξc by a common factor is
irrelevant in minimization, we remove any ambiguity
by setting again ξ0 = 1.

We may solve (16) using the steepest descent

θ̂← θ̂ − μ/s
∑

t

xtξct g(zt/s; yt), (18)

where μ is the adaptation step and

g(z; y) = d

dz
�(z; y). (19)

The on-line version of (18) is obtained replacing
batch-optimization with the stochastic gradient (SG)
which updates the solution each time a new observa-
tion becomes available, i.e.,

θt+1 ← θt −Kξctxtg(zt/s; yt), (20)

where the update amplitude is controlled by the
weight ξct and the step K which absorbs the scale s.

3.1. Davidson model

The rating now depends on the choice of the
likelihood function L(z; y) and here we opt for the
Davidson model, (Davidson, 1970), being a particu-
lar case of the multinomial model used also in Egidi
and Torelli (2021).

L(zt ; H) = 100.5(zt+ηbt )

100.5(zt+ηbt ) + κ + 10−0.5(zt+ηbt )
, (21)

L(zt ; A) = 10−0.5(zt+ηbt )

100.5(zt+ηbt ) + κ + 10−0.5(zt+ηbt )
, (22)

L(zt ; D) = κ
√

L(zt ; H)L(zt ; A), (23)

where the home-field advantage (HFA) is modeled
as an apparent increase of the skills of the local team
by the value η, the indicator bt = I[ game t is played
in the home-team country] allows us to distinguish
between the games played on the home or the neutral
venues,11 and κ is used to adjust to the presence of
the draws.

11Out of T = 3444 games we considered, 948 were played on
neutral venues. To automatically verify the venues, we used (The
Roon Ba, 2022; SoccerWay, 2022); only for the game Djibuti vs.
Mauritius played on Nov. 23, 2019, the venue (home) was not
registered in the data bases and we found it manually.
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Using (21)–(23) in (19), with straightforward alge-
bra we obtain (see Appendix A and (Szczecinski &
Djebbi, 2020, Sec. 3.1))

g(z; yt) = d

dz
�(z; yt) (24)

= − ln 10(y̌t − Fκ(z)), (25)

where y̌t is the “score” of the game which we already
defined, and

Fκ(zt) =
1
2κ + 100.5(zt+ηbt )

100.5(zt+ηbt ) + κ + 10−0.5(zt+ηbt )
; (26)

by using (21)–(23) we immediately see that Fκ(zt)
has the meaning of the conditional expected score,
Fκ(zt) = E[y̌t|zt] =

∑
y∈Y y̌L(zt ; y).

Therefore, the SG algorithm (20) becomes

θt+1 ← θt +Kξctxt

(
y̌t − Fκ(zt/s)

)
. (27)

This Davidson algorithm obviously has the form sim-
ilar to the Elo/FIFA rating algorithm, see (1)–(3),
except that we use Fκ(z) while the former use F (z).
Note that the step K in (27) absorbs the term ln 10
from (25).

It is easy to see that for η = 0 and κ = 0 (i.e.,
when L(z; D) = 0 and the draws are ignored) we
have F0(z) = F (z) which is simply a logistic func-
tion as in the Elo algorithm. Furthermore, for η = 0
and κ = 2 we obtain F2(z) = F (z/2) and thus (27)
is again equivalent to the Elo rating algorithm, but
with the doubled scale value. These observations
explain our preference for the model: it leads to a sim-
ple algorithm which generalizes the Elo/FIFA rating
algorithm, (Szczecinski & Djebbi, 2020).

Although we conclude that the FIFA rating algo-
rithm may be seen as the instance of the maximum
weighted likelihood estimation, this is, of course, a
“reverse-engineered” hypothesis because the FIFA
document, (FIFA, 2018), does not mention any
remotely similar concept.

3.2. Regularized batch rating

While our goal is to obtain the on-line rating algo-
rithms where the skills at time t + 1 are calculated
from the observations up to time t, we will, for a
moment, ignore this on-line rating aspect and rather
focus on the evaluation of the model and the opti-
mization criterion that underlie the algorithms.

We thus concentrate on the original problem
defined in (16) for the entire set of data, and, in this

way, we (i) will not need to remove a significant por-
tion of the data (meant to eliminate the initialization
effects during evaluation, see (9)) and (ii) eliminate
the limitation of the SG optimization where, by fine-
tuning the adaptation step K, the estimation error is
traded off against the convergence speed.

We start by noting that the problem (16) is, in gen-
eral, ill-posed: since the solution depends only on the
differences between the skills, zt , all solutions θ̂ and
θ̂ + θo1 are equivalent because the differences zt are
independent from “origin” value θo. To remove this
ambiguity, we may regularize the problem as

θ̂ = arg min
θ

J(θ) (28)

J(θ) =
∑
t∈T

ξct �(zt/s; yt)+ α

2s2 ‖θ‖2, (29)

where α is the regularization parameter and we have
opted for a so-called ridge regularization (Hastie, Tib-
shirani, & Friedman, 2009, [Ch. 3.4.1]).

Under the model (21)–(23), the regularized batch-
optimization problem (28) is useful to resolve another
difficulty. Namely, if there is a team m having reg-
istered only wins, i.e., when ∀it = m, yt = H and
∀jt = m, yt = A, then (16) cannot be solved (or
rather, θ̂m→∞) because J(θ) does not limit the
value of θm. Such a solution not only is unattain-
able numerically but is, in fact, meaningless, and the
regularization (28) settles this issue.12

The estimated skills θ̂ now depend on the weights
ξc, on the regularization parameter α, and on the
model parameters η and κ. If not known, all of these
parameters must be optimized.

Regarding the optimization criterion, we recall that
the FIFA algorithm only specified the expected score,
so the quadratic error (8) allowed us to evaluate the
algorithm and stay within the boundaries of its defini-
tions. Now, however, with the explicit skills-outcome
model, we may go beyond this limitation and will
use the prediction metrics known in machine learn-
ing such as the (negated) log-score, (Gelman et al.,
2014)

mls(zt ; yt) = �(zt/s; yt), (30)

12The same problem arises, of course, when a team registers
a sequence of pure losses. This is not a hypothetical issue, and in
the official FIFA games, three teams registered streaks of unique
losses: Tonga (three), Eritrea (two), and American Samoa (four).
Thus, the attempt to solve the batch-optimization problem without
regularization (i.e., with α = 0) would yield θ̂m = −∞, with m

being the index of any of these teams. Cook Islands played only one
game, which we removed from the considerations; see footnote 1.



L. Szczecinski and I.-I. Roatis / FIFA ranking: Evaluation and path forward 239

often preferred due to its compatibility with the log-
likelihood used as the optimization criterion, or the
accuracy score, (Lasek & Gagolewski, 2020)

macc(zt ; yt) = I[yt = arg max
y

L(zt/s; y)], (31)

which equals one if the event with the largest pre-
dicted probability was actually observed; otherwise
it is zero.

Furthermore, thanks to the batch-rating, we are
able to consider the entire data set in the performance
evaluation by averaging the scoring functions (30) or
(31) over all games

LS = 1

T

∑
t∈T

mls(x�t θ̂\t , yt

)
, (32)

ACC = 1

T

∑
t∈T

macc(x�t θ̂\t , yt

)
, (33)

where

θ̂\t = arg min
θ

J\t(θ), (34)

J\t(θ) =
∑
l∈T
l /= t

ξcl
�(x�l θ/s; yl)+ α

2s2 ‖θ‖2. (35)

In simple words, for given parameters (α, κ, η,
ξc), we find the skills θ̂\t from all, but the t-th game
[this is (34)–(35)], and then use them to predict the
results yt ; we repeat it for all t ∈ T, summing the
scores obtained. This is the well-known leave-one-
out (LOO) cross-validation strategy (Hastie et al.,
2009, Sec. 2.9), (Duda et al., 2001, Ch. 9.6.2): no
data is discarded when calculating metrics (32)–(33)
and this comes with the price of having to find θ̂\t for
all t ∈ T. To reduce the computational load, we opt
here for the approximate leave-one-out (ALO) cross-
validation (Rad & Maleki, 2020) based on the local
quadratic approximation of the optimization function
defined for all data. Details are given in Appendix B.

Although both the average log-score (32) and the
accuracy (33) can now be optimized with respect to
α, κ, η, and/or ξc, we only optimize the log-score
whose optimal value is denoted as LSopt; the resulting
accuracy, ACC will also be shown.13 It is, of course,

13A quick comment may be useful regarding the interpre-
tation of the performance metrics. The accuracy (33) is easily
understandable: it is an average number of events that were pre-
dicted correctly (as those y which yield the largest likelihood
L(zt/s; y)). On the other hand, the metric (32) may be repre-

sented as exp(−LS) = [
∏T

t=1 L(zt/s; yt)]1/T which is a geometric
mean of the predicted probabilities assigned to the events that were
actually observed. While the accuracy metric penalizes the wrong

possible to optimize the log-score with respect to any
subset of parameters while keeping the rest constant;
we will do to this to determine how useful it is to
optimize only some parameters.

Again, we use alternate minimization similar to
the one shown in (11)–(12): LS was minimized with
respect to one parameter at a time: α, κ, η, or ξc, until
no improvement was observed. This simple strategy
led to the minimum LSopt which turned out to be
independent of various starting points we used and,
although we cannot prove the solution to be global, in
all our observations the log-score functions seemed
to be unimodal.

Optimized α, κ, η, ξc are shown in Table 4 and
indicate that

• The data does not provide evidence for using
category-dependent weights ξc. In fact, the
results obtained using the FIFA weights ξc

are worse than those obtained using constant
weights ξc = 1 (i.e., essentially ignoring the pos-
sibility of weighting). Although it may be argued
that the results are affected by a small number of
games in some categories (such as a World Cup),
it is very unlikely that observing more games will
speak in favor of variable weights and almost
surely not in favor of the highly disproportionate
weights used in the FIFA algorithm.

Note that the optimal weights ξ1 (Friendlies
within the IMC) and the weights ξ2 (Group
phase of Nations Leagues) are smaller than those
of the regular Friendlies. This result stands in
contrast with the FIFA algorithm which dou-
bles the weight ξ1 of the Friendlies played in
the IMC and triples the weight of ξ2. But, of
course, we should note a shallow minimum of
the objective function which attains the same
values LSopt = 0.942 (for η = 0 and κ = 2) and
LSopt = 0.856 (η = 0.3 and κ = 0.9) whether

guesses with zero (so ACC ∈ [0, 1]), the log-score penalizes them
via the logarithmic function, which may be arbitrarily large (so
LS ∈ (0,∞)).
However, the fundamental difference between the two metrics is
that we can use the accuracy without specifying the distribution
for all possible outcomes, but we cannot calculate the log-score in
such a case.
We also note that the common confusion is to interpret the function
F (zt/s) in the Elo/FIFA algorithm as the probability of the home
win, and the value 1− F (zt/s), as the probability of an away win.
This, of course, implies that the draw probability is equal to zero.
With this interpretation, we can still calculate the accuracy metric
even if we never predict the draw. On the other hand, we cannot
calculate the log score because, when the draw occurs, we have an
undefined metric mls(zt/s; D)→∞.
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Table 4

Batch-rating parameters obtained via minimization of the log-score (32). The parameters (α, κ, η, ξc) are either fixed (shadowed cells), or
obtained via optimization. The upper-part results correspond to the conventional FIFA algorithm: using κ = 2 and η = 0, the expected score

is calculated using a logistic function. The last line corresponds to the parameters η and κ obtained via (36)–(37).

LSopt α η κ ξ0 ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ACC[%]

0.954 0.9 0 2.0 1 2.0 3.0 5.0 5.0 7.0 8.0 10.0 12.0 56

0.942 0.2 0 2.0 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 55

0.942 0.2 0 2.0 1 0.9 0.7 0.8 0.9 1.1 0.8 0.8 1.1 55

0.912 0.2 0.4 2.0 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 57

0.856 0.3 0.3 0.9 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 61

0.856 0.4 0.3 0.9 1 0.9 0.7 0.8 1.1 1.1 0.9 1.0 1.1 61

0.864 0.3 0.3 0.6 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 61

we use the equal ξc = 1 or the optimized ξc.
• A notable improvement in the prediction capac-

ity measured by the log-score is obtained by
considering the HFA. The value η ∈ {0.3, 0.4}
emerges from the optimization fit and we
note that η = 0.25 was used in eloratings.net
(2020).14

• A more important improvement is obtained by
optimizing the parameter κ which takes into
account the draws and their frequency as dis-
cussed in Szczecinski and Djebbi (2020).

Here, it is interesting to compare the parameters
we found by optimization with the simplified for-
mulas proposed in Szczecinski and Djebbi (2020,
[Sec. 3.2])

η = log10
fH

fA
(36)

κ = fD√
fHfA

≈ 2fD

1− fD
. (37)

where fy, y ∈ Y are empirical frequencies of out-
comes. We can consider separately the games played
on the neutral venues; the frequencies are obtained
from the data, f neut.

D = 0.24, and those played on
home venues as f hfa

A = 0.26, f hfa
D = 0.23, f hfa

H =
0.51, which yields

κhfa = 0.61 ηhfa = 0.29 (38)

κneut. = 0.63 (39)

The parameter ηhfa predicted by (36) is practically
equal to the one obtained by optimization. And while
the parameters κhfa and κneut. are slightly different
from the one predicted by (37), using them in the

14Therein, the unnormalized value ηs = 100 is reported and
since s = 400, we obtain η = 0.25.

rating, we obtained LSopt = 0.864 (see last line in
Table 4), which is still notably better than using the
conventional FIFA rating. This is interesting because
finding the parameters η and κ from the frequencies
of the games not only avoids optimization, but also
provides a simple-to-verify origin of the values used
in the algorithm.

4. Margin of victory

In the search for a possible improvement of the
rating, we now want to consider the use of the MOV
variable, defined by the difference of the goals scored
by each team, denoted by dt . In this regard, the
most recent works adopt two conceptually different
approaches.

The first keeps the structure of the known rating
algorithm (such as the FIFA algorithm) and modifies
it by changing the adaptation step size as a func-
tion of dt . This was already done in eloratings.net
(2020), Hvattum and Arntzen (2010), Silver (2014),
Ley et al. (2019), and Kovalchik (2020), and is con-
ceptually similar to the weighting according to the
game-category we consider in the previous section.

The second approach, studied before in Maher
(1982), Ley et al. (2019), Lasek and Gagolewski
(2020), and Szczecinski (2022), changes the model
between the skills and the MOV variable dt . We
will focus on the simple proposition from Lasek and
Gagolewski (2020) based on the formulation of of
Karlis and Ntzoufras (2008).

4.1. MOV via weighting

For context, in Table 5 we show the number of
games depending on the value of the MOV variable
d. While, in principle, it is possible to use directly d,
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it is customary to consider their absolute value, |d|.
The Elo/FIFA algorithms (27) can be easily modi-

fied as follows, to take into account the MOV variable:

Kc,d = Kξcζd, (40)

where, as before, K is the common step, ξc is the
weight associated with the game-category c, and ζd

is the function of the MOV-variable d.
Integrating the MOV-weight into the online rat-

ing defined in (27) (by replacing, therein Kξct with
Kξct ζvt ) yields the Davidson-MOV algorithm.

For example, (eloratings.net, 2020) uses

ζd =

⎧⎪⎪⎨
⎪⎪⎩

1 |d| ≤ 1

1.5 |d| = 2

1.75+ 0.125(|d| − 3) |d| ≥ 3

. (41)

Similar propositions can be found in Hvattum and
Arntzen (2010) (in the context of association foot-
ball), in Kovalchik (2020) (to rate tennis players), or
in Silver (2014) (for the rating of teams in American
football).

To elucidate how useful such heuristics are, we
note that the problem is very similar to the impor-
tance weighting we analyzed before; the difference
lies in the fact that the weighting now depends on the
product ξcζd . Therefore, we may reuse our optimiza-
tion strategy to find the optimal weights for games
with different values of |d|.

To this end, we discretize |d| into V + 1 MOV-
categories, v = 0, . . . , V and we use a very simple
mapping v = |d| for v < V and v = V ⇐⇒ |d| ≥
V . For example, with V = 2, ζ0 weights the draws
(|d| = 0), ζ1 weights the games with one goal differ-
ence (|d| = 1) and ζ2 weights the games with more
than one goal difference (|d| ≥ 2).

Breaking with the predefined functional relation-
ship as shown in (41) we are more general than the
latter, e.g., treating the cases |d| = 0 and |d| = 1 sep-
arately. This makes sense since these events are not
only the most frequent ones (covering, respectively,
23% and 36% of the total; see Table 5), but also cor-
respond to the events of draw and win/loss treated
differently by the algorithm.

On the other hand, we are also less general due to
the merging of events |d| ≥ V , although this effect
will decrease with V , simply because there will be
very few observations, as may be understood from
Table 5. For example, with V = 4, the weighting ζ4
will be the same for the events with |d| = 4 and |d| >
4 but the latter make only about 5% of the total.

We again consider the game categories defined in
Table 1 and thus we now solve the following problem:

θ̂ = arg min
θ

∑
t∈T

ξct ζvt �(zt/s; yt)+ α

2s2 ‖θ‖2, (42)

where vt is the index of the MOV variable dt . Again,
to remove ambiguity of the solution, we set ξ0 = 1
and ζ0 = 1.

Parameters ξc, ζv, η, κ, and α will be optimized
again using the ALO approach we described in Sec-
tion 3.2, that is, by minimizing the log-score criterion
(32) using an alternate optimization similar to that
defined in (11)–(12). The results shown in Table 6
allow us to conclude that:

• The weighting of the MOV-categories is more
beneficial than the weighting of the game-
categories: by optimizing the MOV-weights
ζv (and keeping ξc = 1) yields LSopt = 0.937
while the optimization of ξc (keeping ζv = 1)
yields LSopt = 0.948 (see Table 4).
• Optimization indicates that ζv defined by (41)

are suboptimal. In particular, the optimal MOV
weights, ζv are monotonically growing (as fore-
seen by the heuristic (41)) only for |d| ≥ 1 while
the draws (i.e., |dt| = 0) have a weight that is
more important than the weights of the events
|dt| = 1; thus, these two events (dt = 0 and
|dt| = 1) should not be combined, nor should
we impose a particular functional form on the
weights ζv.
• The best prediction improvement is obtained

again by optimizing the parameters η and κ of the
Davidson model together with the MOV weights
ζv.

Table 5

Number of games T|d| which finished with the goal difference |d| and their relative frequency f|d| = T|d|/T

|d| = 0 |d| = 1 |d| = 2 |d| = 3 |d| = 4 |d| = 5 |d| > 6

T|d| 791 1248 640 379 190 87 109
f|d| 23% 36% 19% 11% 5.5% 2.5% 3%
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Table 6

Batch-rating parameters obtained via minimization of the log-score (32) with weighting of the MOV-variables. The parameters (α, κ, η, ξ,
ζv) are either fixed (shadowed cells), or obtained through optimization; for d > V , the parameters ζd are not defined and the corresponding
cells are indicated with “×”. To save space, in the sole case when the parameters ξc are optimized, their optimal values are gathered in the
vector ξ̂ = [1.0, 1.2, 1.0, 1.2, 1.2, 1.7, 2.4, 1.5, 5.2]. The first line corresponds to the weights defined in (41) except for ζ6 which cannot be

fixed as it corresponds not only to the event |dt | = 6 but also weights all the events |dt | > 6

LSopt V α η κ ξ ζ0 ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ACC[%]

0.944 6 0.7 0 2.0 1 1 1 1.5 1.75 1.875 2.0 4.2 56

0.933 6 0.2 0 2.0 1 1 0.3 0.5 0.7 1.1 1.5 2.6 55

0.931 6 0.2 0 2.0 ξ̂ 1 0.3 0.5 0.7 1.0 1.5 2.4 55

0.903 6 0.2 0.4 2.0 1 1 0.4 0.6 0.8 1.1 1.7 3.2 57

0.849 6 0.3 0.3 0.9 1 1 0.4 0.6 0.8 1.1 1.7 3.0 62

0.850 4 0.3 0.3 0.9 1 1 0.4 0.6 0.8 1.5 × × 61

0.852 2 0.3 0.3 0.9 1 1 0.4 0.8 × × × × 61

0.854 1 0.2 0.3 0.9 1 1 0.7 × × × × × 61

4.2. MOV via modeling

The MOV modelling consists in defining a formal
relationship between the skills θt and the observed
MOV variable dt , where a simple approach proposed
in Karlis and Ntzoufras (2008) relies on a modeling
of the goal difference using the Skellam distribution

Pr{dt = d|θt} = L(zt ; d) (43)

= e−(μh,t+μa,t )
(

μh,t

μa,t

)d/2

I|d|(2
√

μh,tμa,t), (44)

where Iv(·) is the modified Bessel function of order
v and μh,t and μa,t are means of the Poisson vari-
ables modeling the home- and away- goals. The latter
are functions of the skills difference zt , (Karlis &
Ntzoufras, 2008, [Sec. 2.2])

μh,t = ec+zt+btη, μa,t = ec−zt−btη, (45)

where c is a constant and, as before, η is the HFA
coefficient.15

The model (43) is a particular case of a more
general form shown in Karlis and Ntzoufras (2008),
which models the offensive and the defensive skills.
Here, however, we are interested in rating and thus
one skill per team should be used. As noted in Ley et
al. (2019) and in Lasek and Gagolewski (2020) this

15We can rewrite (45) as μh,t = ec′t+zt+btη
′
, μa,t = ec′t+zt with

c′t = c − btη and η′ = 2η. Furthermore, if we have bt ≡ 1 (as
in league games that are not played on neutral venues) then
c′t ≡ c′ = c − η is independent of the game index t and our nota-
tion is identical with the one proposed in (Karlis & Ntzoufras,
2008, [Eq. (2.2)-(2.3)] and used also in (Lasek & Gagolewski,
2020). However, international FIFA games can be played on neu-
tral venues and we need c′t to depend on the game index. Since this
is not possible with the notation of Karlis and Ntzoufras (2008),
our model is preferred.

offers a sufficient prediction capacity avoiding the
problem of overparameterization due to the doubled
number of skills.

Using (45) in (43), the following log-likelihood is
obtained:

�(zt ; dt) = − log L(zt ; dt) (46)

= (μh,t + μa,t)− dt(zt + btη)− 2ec − log Ĩ|dt |(2ec)
(47)

where, for numerical stability, it is convenient to
use an exponentially modified form of the Bessel
function, Ĩv(u) = Iv(u)e−u, available in many com-
putation packages.

The derivative of (46) is given by

g(z; d) = d

dz
�(z; d) = −(d − F (z)), (48)

F (z) = μh − μa = ec(ez+bη − e−z−bη). (49)

The batch rating then consists in solving the fol-
lowing problem:

θ̂ = arg min
θ

∑
t∈T

�(zt/s; dt)+ α

2s2 ‖θ‖2 (50)

and the SG implementation of the ML principle will
produce the Skellam algorithm

θt+1 ← θt +Kxt

(
dt − F (zt/s)

)
, (51)

which is again written in a form similar to the FIFA
rating algorithm, where the goal difference dt plays
the role of the “score”, and F (zt/s) = E[dt|zt] is
the expected score. The Skellam algorithm (51) can
also be obtained by applying the Poisson model to
the goals scored by each of the teams (Lasek &
Gagolewski, 2020).
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Table 7

Batch-rating parameters obtained via minimization of the log-
score (32) using the Skellam model (46).

LSopt α η c ACC[%]

0.843 0.05 0.2 −0.02 62

To calculate the log-score, we have to calculate the
probabilities mls(zt ; A) = − log Pr{dt < 0} (away-
win) and mls(zt ; H) = Pr{dt > 0} (home-win). Since
the closed-form formulas do not exist, we use trun-
cated sums

mls(z; A) = − log
−1∑

d=−D

L(z; d), (52)

mls(z; D) = − log L(z; 0), (53)

mls(z; H) = − log
D∑

d=1

L(z; d), (54)

where we applied D = 50 which we empirically ver-
ified to satisfy 1−∑D

d=−D L(z; d) < 10−4.
The results shown in Table 7 indicate that, with

this very simple approach (only two parameters of
the model which must be optimized), we are able to
improve over the MOV-weighting strategy and this
should be attributed to the use of a formal skills-
outcome model. The price to pay for the improvement
lies in abandoning the legacy of the Elo algorithm.

Moreover, possible implementation issues may
arise since the expected score (49) is theoretically
unbounded. Thus, whether the improvement of the
log-score from LS = 0.849 (in the MOV-weighting,
see Table 6) to LS = 0.843 in the Skellam MOV
model is worth the change and the implementation
risks is at least debatable.

5. On-line rating

Before starting a metrics-based comparison of the
on-line algorithms, in Section 5.1 we will address the
practical issue of setting the scale.

5.1. Scale adjustment

The scale is obviously irrelevant in batch optimiza-
tion, and the on-line update can also be written in a
scale-invariant manner by dividing (20) by s:

θ′t+1 ← θ′t −K′ξctxtg(z′t ; yt) (55)

z′t = zt/s (56)

θ′t = θt/s (57)

K′ = K/s; (58)

in other words, we will obtain the same results θ′t as
long as we use the same initial θ′0 and the same step
K′. In particular, with an all-zero initialization of the
skills, i.e., θt = 0 and using K = sK′ we will obtain
the same scaled results θt = sθ′t .

However, in the FIFA ranking, a non-zero initial-
ization θ0 was determined in advance (see footnote 3)
so θ′0 is not scale-invariant. Thus, given the initial-
ization at hand, the question is how to determine
the scale. We do not know any clear answer, but an
insight into finding the useful scale value may be
gained assuming that the initialization corresponds
to the “optimal” solution, e.g., θ̂ obtained in batch
optimization with a given scale s0.

It is easy to see that using s > s0 will force the
algorithm to change significantly θt (attainable with
large values of the adaptation step, K); the same will
happen for s < s0 because the optimal estimates θt

will have to be scaled down.
Since scaling the skills up/down changes their

empirical moments, we suggest choosing the scale
s in a moment-preserving manner. To this end, we
define the empirical standard deviation of the skills

σt =
√
‖θ̂t − θ̂t‖2/M (59)

where θ̂t = (
∑M

m=1 θ̂t,m)/M is the empirical mean
and postulate that, at the initialization and at the final
step, we have σ0 ≈ σT .

In fact, the initialization used by FIFA yields σ0 =
220 and, after running the original FIFA algorithm,
we obtain σT = 252.

Changing the scale s, we will obtain different σT

so the idea is to run the algorithms for different values
of the scale s (e.g., for multiples of 50) and to choose
the one that produces a standard deviation σT ≈ σ0.
In practice we might do it using historical data before
the new rating is deployed.

In this manner we found s = 150 to be suitable for
the Davidson algorithm: we obtained σT ≈ 220 when
κ = 2 and σT ≈ 210 for κ = 1.

This indicates that the scale s = 600 was too large
for the FIFA rating. This can be seen by comparing
the result of the FIFA rating with ξc = 1 (in Table 8a)
to the results of the Davidson algorithm (with η = 0
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Table 8

Parameters and performance of the on-line rating algorithms
obtained by minimizing the log-score (60) for a) FIFA algorithm, b)
Davidson algorithms, c) Davidson-MOV algorithm from Section

4.1, and d) Skellam algorithm from Section 4.2

weights LSopt K η κ ACC [%] LS\so&ko

ξc from Table 1 0.975 5 0 2 48 0.980

ξc ≡ 1 0.952 55 0 2 50 0.955

a) FIFA algorithm, s = 600. The log-score obtained by removing
the knockout/shootout rules is indicated by LS\so&ko.

LSopt K η κ ACC[%]

0.939 35 0 2 54

0.915 35 0.4 2 57
0.875 35 0.3 1.0 60

b) Davidson algorithm, s = 150.

LSopt V K η κ ζ0 ζ1 ζ2 ζ3 ACC[%]

0.864 1 40 0.3 0.9 1.0 0.9 × × 60

0.863 2 45 0.3 0.9 1.0 0.6 1.1 × 60

0.862 3 40 0.3 0.9 1.0 0.7 0.9 1.5 60

c) Davidson-MOV algorithm, s = 200.

LSopt K η c ACC[%]

0.851 7.5 0.2 −0.07 60

d) Skellam algorithm, s = 300.

and κ = 2). Both algorithms are essentially the same
(although FIFA uses the shootout/knockout rules,
which have rather small impact on performance) and
the main difference resides in the scale. Since the
Davidson algorithm (η = 0, κ = 2) with the scale
s = 150 is equivalent to the FIFA algorithm with the
scale s = 300, this latter scale value would ensure
a better performance of the FIFA rating. However,
this effect appears only due to the limited observation
time we have at our disposal and will vanish after a
sufficiently large number of games.

Similarly, for the Davidson-MOV algorithm, using
s = 200, and for different values of V we obtained
σT ≈ 220, while using the scale s = 300 in the Skel-
lam algorithms yields σT = 225.

5.2. Evaluation of the algorithms

To evaluate the SG algorithms, we used the same
methodology we applied to make a preliminary eval-
uation of the FIFA rating in Section 2.1. That is, we
used the first (approximate) half of the observation
period for initialization and the second half is used

to calculate the performance metrics. The difference
from Section 2.1 is that now we use the log-score and
the accuracy metrics

LS′ = 1

T − T ′

T∑
t=T ′+1

mls(zt, yt) (60)

ACC′ = 1

T − T ′

T∑
t=T ′+1

macc(zt, yt), (61)

where T ′ is defined after (9).
We consider the original and modified FIFA algo-

rithm (Table 8a), the Davidson algorithm (Table 8b),
the Davidson-MOV algorithm (Table 8c), and the
Skellam algorithm (Table 8d).

In all cases, but in the original FIFA algorithm,
we ignore the game-category weighting (i.e., we use
ξc ≡ 1) because, as we have already shown, its effect
is negligible. This is clearly shown in the first row of
Table 8a where we see that, using the FIFA weight-
ing, we obtain worse results than when the weighting
is ignored. This is essentially the same result as the
one we have shown in Table 2 but we repeat it here
to show the log-score metric which we could not cal-
culate without first introducing the Davidson model
underlying the FIFA algorithm.

In Table 8a we also show the log-score LS\so&ko
obtained applying the FIFA algorithm but removing
the shootout and knockout rules. We observe that the
knockout rule improves the prediction in terms of the
log-score which confirms our preliminary evaluation
in Section 2.2 based on the MSE. Nevertheless, the
improvement is minor, and a much more important
decrease of the log-score may be obtained by chang-
ing the model as indicated by the remaining results.
In particular

• The most notable improvements are due to, in
similar measures, two elements: the introduction
of the HFA coefficient η and the explicit use of
the Davidson model (and thus the optimization
of the coefficient κ).
• Additional small but still perceivable gains are

obtained by introducing the MOV-weighting,
where from the lesson learned in Section 4.1
we independently weight the draws and the
home/away wins. It is sufficient to use only
two weights (V = 1), i.e., the very concept of
the MOV is, de facto reduced to a distinction
between the draws and the howe/away wins.
• The MOV-modeling using the Skellam distribu-

tion again brings a small benefit.
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Table 9

Ranking of the top teams using the algorithms compared in Table 8:
FIFA with ξc ≡ 1, K = 55, Davidson with K = 35, η = 0.3, κ =
1.0, Davidson-MOV with V = 1, K = 40, η = 0.3, κ = 0.9, and

Skellam with K = 7.5, η = 0.2, c = −0.07

FIFA Davidson Davidson-MOV Skellam

BRA (1922.5) FRA (1658.0) FRA (1702.4) BRA (1722.8)
BEL (1919.0) ARG (1650.2) BRA (1693.8) ARG (1660.1)
ENG (1904.2) BRA (1649.5) ARG (1693.5) ENG (1653.8)
FRA (1903.9) ENG (1628.8) ENG (1667.9) FRA (1638.7)
ARG (1879.8) BEL (1609.9) BEL (1650.9) ESP (1622.6)
ITA (1837.8) ESP (1608.0) ESP (1643.6) BEL (1615.7)

We present in Table 9 the rating obtained for the
top teams through new rating algorithms. Of course,
due to the different scales that we used, the skills
obtained with different algorithms cannot be com-
pared directly.

We emphasize that the quality of these rankings
(i.e., ordered skills) cannot be assessed because there
is no reference order of the teams to which the shown
rankings can be compared. The only tool we have to
assess their validity is to calculate the performance
criteria as we did in Table 8 using the log-score.

Noting that even rather mild differences between
the Davidson and the Davidson-MOV algorithms
alter the final order/ranking, Table 9 should be treated
as a cautionary illustration that the ranking/order of
the team can be very easily changed by relatively
benign modifications of the rating algorithm. With
that caveat, the different algorithms based on differ-
ent models consistently put the same group at the top
of the list. In fact, the algorithms are rather consensual
regarding the current (as of March 31, 2002) official
top team, BRA which, or remains on the top of the
list, or has skills within fraction of percentage of top
team’s rating. On the other hand, BEL’s second posi-
tion in the official ranking (see Table 3) is much more
questionable. While the second spot is preserved with
the optimized FIFA-like algorithm (the first column
of Table 9 where we use K = 55 and ξc ≡ 1, but the
knockout and shootout rules are kept), the new algo-
rithms consistently demote BEL to the fifth and lower
position.

6. Conclusions

In this work, we analyze the FIFA ranking using
the methodology conventionally used in probabilistic
modeling and statistical inference. In the first step,
we made a preliminary evaluation of the algorithm
using the probabilistic concepts explicitly used in the

FIFA description. In this way, we were already able to
question the need for the weighting of the outcomes
which depends on the FIFA-defined game category.

We also evaluate the heuristic shootout/knockout
rules that are used in the FIFA rating. We concluded
that since their impact on overall performance is small
and they may distort the relationship between the rat-
ings of the strong teams, which often face each other
in the final stages of the competitions, their usefulness
is questionable.

To go beyond the limitation of the rudimentary
probabilistic concepts of the FIFA algorithm, we
identified the model that relates the game results to the
parameters that must be optimized (skills). More pre-
cisely, we have shown that the FIFA algorithm can be
formally derived as the stochastic gradient (SG) opti-
mization of the weighted maximum likelihood (ML)
criterion in the Davidson model (Davidson, 1970).

This step allows us to define the performance
metrics related to the predictive performance of the
algorithms we study. This is particularly important
in the case of the FIFA ranking algorithm, which
does not model the outcomes of the game but only
explicitly specifies the expected score; and this is not
sufficient to accurately assess the rating results. It also
allows us to apply the batch approach to rating and
skills estimation. This conventional machine learning
strategy frees us from considerations related to scale,
initialization, or modeling of skills dynamics.

Using the batch rating, we have shown that the
weighting dependent on the game-category is negli-
gible at best, and counterproductive at worst, which
is the case of the weighting used by the FIFA rat-
ing. This observation is interesting in its own right
because, while on the one hand the concept of weight-
ing is used in the rating literature, e.g., (Ley et al.,
2019), on the other hand, the literature does not show
any evidence that it is in any way beneficial and our
findings consistently indicate the contrary.

Next, we consider extensions of the algorithm
by including the home-field advantage (HFA) and
optimizing the parameter responsible for the draws.
These two elements seem to be particularly important
from the point of view of the performance of the rat-
ing algorithm. While the HFA is well-known and is
part of FIFA Womens’ rating (FIFA, 2007), the pos-
sibility of generalizing the Elo algorithm by using the
Davidson model has only recently been shown in in
Szczecinski and Djebbi (2020).

We also evaluated the possibility of using the
margin of victory (MOV) given by the goal dif-
ferential: we analyzed the inclusion of the MOV
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through weighting, as well as the explicit modeling
of the MOV variables using the Skellam distribu-
tion. These two methods further improve the results
at the cost of greater complexity. Here, optimization
of the weights also yields interesting and somewhat
counterintuitive results. That is, we have shown that
games won with a small margin should have smaller
weights than the draws. This stands in stark con-
trast with the weighting strategies proposed before,
e.g., by Hvattum and Arntzen (2010), Silver (2014),
or by Kovalchik (2020) which, using monotonically
increasing functions of the MOV variable, do not
allow for a separate treatment of the draws.

6.1. Recommendations

Given the analysis and the observations we made,
if the FIFA rating is to be changed, the following steps
are recommended:

(1) Add the home-field advantage (HFA) param-
eter to the model because playing at the
home venue is a strong predictor of victory.
This well-known fact is already exploited in
Women’s FIFA ranking, and such a modifica-
tion is most likely the simplest and the least
debatable element. In our opinion, it is surpris-
ing that the current rating adopted in 2018 does
not include the HFA. The HFA can be obtained
through optimization, or it can be calculated
using the simple formula (36).

(2) Use an explicit model to relate skills to
outcomes. Not only is the expressiveness
increased by providing the explicit probability
for the draws, but also the prediction results are
improved. Note that the rating algorithm intro-
duced recently by FIVB adopts this approach
and specifies the probability for each of the
game outcomes. In the context of the FIFA
ranking, the Davidson model we used in this
work is an excellent candidate for that purpose:
it relies on a natural generalization of the Elo
algorithm, preserving the legacy of the current
algorithm. Again, to find the parameter of the
model, we may use optimization or the simple
formula (37).

(3) Remove the weighting of the games accord-
ing to their assumed importance because the
data does not provide any evidence for their
utility, or rather provides the indication that
the weighting in its current form is counterpro-
ductive. If the concept of the game-importance

is of extra-statistical nature (such as entertain-
ment), it is preferable to diminish its role, e.g.,
by shrinking the gap between the largest and
the smaller values of ξc used.

(4) Remove the shootout and knockout rules that
are not rooted in any solid statistical principle.

As far as the knockout rule is concerned,
its beneficial effect on the prediction quality
is negligible comparing to the advantages of
using the HFA and the draw model. Regarding
the shootout rule, from a rating perspective, we
recommend that shootouts be treated as draws.

Overall, a small frequency of events when
the shootout/knockout rules can be applied,
and a marginal change in the obtained score,
make their impact negligible and their fair-
ness is very debatable although the heuristics
behind the knockout deserves more study.

(5) If the rating was to consider the MOV, the sim-
plest solution would be to weight the update
step using the goal differential. On the other
hand, modification of the model to the Skellam
distribution may cause numerical problems,
and relatively small performance gains hardly
justify the added complexity.

6.2. Further work

The analysis we carried out in this work should
not be considered exhaustive by any means and was
meant (i) to provide an understanding of the current
FIFA rating and (ii) to propose the simplest and yet
meaningful modifications of the current algorithm.

Our recommendations regarding further work on
the improvement of the rating are the following:

(1) Beside the simple weighting strategies we ana-
lyzed here, to deal with the MOV we should
consider alternative solutions similar to those
already considered in Women’s teams FIFA
ranking. Again, the latter should be studied,
e.g., using the methodology we used in this
work and basing the results on a formal prob-
abilistic model.

(2) To improve the tracking capabilities of the
algorithm and to reduce its sensitivity to
the randomness of the game outcomes, we
should consider the Bayesian estimation meth-
ods proposed previously in Glickman (1999)
(Glicko algorithm) and in Herbrich and Grae-
pel (2006) (True Skill algorithm). These
algorithms explicitly estimate the reliability
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of skills estimates, which improves the pre-
dictive capacity and provides a more nuanced
interpretation of the rating.

However, it should be noted that the
Glicko and True Skill algorithms are not
model-agnostic, and using them with the
Davidson model, as we postulated here, is not
straightforward.16 In this regard, the recent
formulation in Szczecinski and Tihon (2021)
which is applicable in any model, may stream-
line the development.

(3) We should design a uniform treatment to deal
with teams that play very infrequently, which
may happen naturally (e.g., due to geographic
isolation) or be done intentionally (to preserve
the ranking position). Among the possible
venues to deal with this issue is (i) an auto-
matic rating-point penalty similar to what is
done in the FIVB ranking and/or (ii) a decrease
of estimation reliability similar to what is done
in Glicko and True Skill algorithms.

(4) Adding new teams to the rating should be
handled with more care. This issue was
highlighted by the recent (March 2022) rein-
troduction of the Cook Islands to the rating
after many years without playing any FIFA-
recognized game. In fact, many national teams,
e.g., among those already recognized by CON-
CACAF may, at some point, be also recognized
by FIFA which will have to decide on their
initial rating. In this case, taking into account
games that are not recognized by FIFA is likely
the most efficient approach.
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Appendix A. Derivation of Davidson algorithm

To calculate g(z; yt) = d
dz

�(z; yt), assume that η = 0 and then (21)–(23) imply �(zt ; A) = �(−zt ; H) and
�(zt ; D) = − log κ + 0.5�(zt ; H)+ 0.5�(zt ; A) so that

�(zt ; yt) = �(zt ; H)I[yt = H]+ �(zt ; A)I[yt = A]+ �(zt ; D)I[yt = D] (A.1)

= �(zt ; H)y̌t + �(−zt ; H)(1− y̌t)− I[yt = D] log κ, (A.2)

where we use y̌t = I[yt = H]+ 0.5I[yt = D] and 1− y̌t = I[yt = A]+ 0.5I[yt = D].
It is just enough to find the derivative of �(z; H)

g(z; H) = − d

dz
log

100.5z

100.5z + κ + 10−0.5z
= − ln 10

0.5κ + 10−0.5z

100.5z + κ + 10−0.5z
(A.3)

and plug it in (A.2) to obtain

g(zt ; yt) = g(zt ; H)y̌t − g(−zt ; H)(1− y̌t) = − ln 10(y̌t − Fκ(zt)), (A.4)

where Fκ(zt) is the same as (26) (if η = 0).
Now, we can go back to an arbitrary η which requires replacing zt with zt + btη and then (A.4) is the same as

(25).

Appendix B. Approximate leave-one-out cross-validation

Our goal is to calculate in a simple manner the terms x�t θ̂\t that appear in the scoring functions in (32) and in
(33).

We start by approximating the objective function (35) using the Taylor series

J\t(θ) = J(θ)+ ξct log L(x�t θ/s; yt) (B.1)

≈ J(θ̂)+ ξct log L(x�t θ̂/s; yt)

− ξct

s
gtx
�
t (θ − θ̂)+ 1

2
(θ − θ̂)�

[
Ĥ− ξct

s2 htxtx
�
t

]
(θ − θ̂), (B.2)

where gt ≡ g(x�t θ̂/s; yt) is defined in (25),

θ̂ = arg min
θ

J(θ) (B.3)

is the optimal solution for all data, the Hessian at the optimum is given by

Ĥ = ∇2
θ J(θ)|θ=θ̂ =

∑
t∈T

ξct

s2 htxtx
�
t +

α

s2 I, (B.4)

and we use the second derivative ht ≡ h(x�t θ̂/s) where (Szczecinski & Tihon, 2021, [Sec. IV])

h(z) = d

dz
g(z; y) = (ln 10)2

4

κ100.5(z+ηb) + 4+ κ10−0.5(z+ηb)

(100.5(z+ηb) + κ + 10−0.5(z+ηb))2 . (B.5)

By equating the gradient of (B.2) to zero, we find the approximate solution to the optimization problem

θ̂\t ≈ arg min
θ

J\t(θ)

= θ̂ + ξct gt

s

[
Ĥ− ξct

s2 htxtx
�
t

]−1
xt (B.6)
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and the terms x�t θ̂\t , t ∈ T which appear as arguments of the metrics (32) and (33) can now be efficiently
calculated for all t ∈ T once θ̂ is known (Rad & Maleki, 2020; Burn, 2020)

x�t θ̂\t ≈ x�t θ̂ + ξct gt

s
x�t

[
Ĥ− ξct

s2 htxtx
�
t

]−1
xt (B.7)

= x�t θ̂ + ξct gt

s
x�t

[
Ĥ−1 + ξct ht

s2 − ξct htx
�
t Ĥ−1xt

Ĥ−1xtx
�
t Ĥ−1

]
xt (B.8)

= x�t θ̂ + ξct gtats

s2 − ξct htat

, (B.9)

where at = x�t Ĥ−1xt and to pass from (B.7) to (B.8) we used the matrix inversion lemma (Barber, 2012,
[Ch. A.1.8]).

The advantage of this formulation is clear: instead of solving T times the optimization problem (34), we only
need to solve once the optimization defined in (B.3). Compared to the latter, the remaining operations of the
inversion of the matrix Ĥ and the multiplication required to calculate at, t ∈ T, have a very small complexity.

The identical approach may be used to apply the ALO to the problem (42) but, we have to replace ξct in (B.9)
with ξct ζvt .

In order to apply the ALO to the problem (50), we need a second derivative of (48) which is given by

h(z) = d

dz
g(z; d) = ec(ez+bη + e−z−bη). (B.10)


