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Sports prediction and betting models in the
machine learning age: The case of tennis

Sascha Wilkens∗
Independent Researcher, London, United Kingdom

Abstract. Machine learning and its numerous variants have meanwhile become established tools in many areas of society.
Several attempts have been made to apply machine learning to the prediction of the outcome of professional sports events and
to exploit “inefficiencies” in the corresponding betting markets. On the example of tennis, this paper extends previous research
by conducting one of the most extensive studies of its kind and applying a wide range of machine learning techniques to male
and female professional singles matches. The paper shows that the average prediction accuracy cannot be increased to more
than about 70%. Irrespective of the used model, most of the relevant information is embedded in the betting markets, and
adding other match- and player-specific data does not lead to any significant improvement. Returns from applying predictions
to the sports betting market are subject to high volatility and mainly negative over the longer term. This conclusion holds
across most tested models, various money management strategies, and for backing the match favorites or outsiders. The use
of model ensembles that combine the predictions from multiple approaches proves to be the most promising choice.
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1. Introduction

With the revival of long-known techniques in the
context of exponentially more extensive calculation
capabilities and data availability, “machine learning”
is meanwhile part of many areas of science and daily
life.1 Applications stretch from financial services to
medicine and autonomously driving vehicles. The use
in sports prediction and the associated betting markets
has not received the same amount of attention so far.
More traditional statistical approaches still dominate
this field. Furthermore, one of the main focus areas
has so far been the soccer market, with tennis – as one
of the other major sports and betting marketplaces –
receiving less attention.

Using a variety of models such as neural networks
and random forests in conjunction with one of the
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1For a comprehensive overview of the main machine learning
methods and its many variants see, for example, Bishop (2006)
and Murphy (2012).

most extensive datasets, this paper conducts a com-
prehensive study in the area of professional men’s
and women’s tennis and as such addresses a critical
research gap. It focuses on two fundamental ques-
tions. First, does machine learning outperform simple
model-free forecasts that purely rely on the players’
official rankings or information implied from betting
odds? In this context, also the informational content
of various data features used in the models are exam-
ined. Second, are any of the techniques able to provide
consistent positive returns for bettors?

All of the models are found to improve on the ten-
nis ranking of both players as a sole indicator for
the match prediction but are not able to outperform
simple betting odds-implied forecasts. Differences
in performance among the machine learning tech-
niques are small. Odds from bookmakers are the
most relevant data features for the models to predict
the outcome of matches. Historical match and player
data such as tournament series and round, age differ-
ence between opponents, or home advantage hardly
add any additional explanatory power. Returns from
model-based betting strategies are mainly negative
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over the long term and in nearly all cases exhibit high
volatility. Ensembles of models that combine the sig-
nals of individual approaches are the most promising
contenders for picking matches to bet on.

The paper is organized as follows. Section 2 offers
an overview of previous work in the area of match pre-
diction in professional tennis, with a particular focus
on machine learning approaches. Section 3 describes
the setup of the study and expands on the research
objectives, data, and model features as well as the
actual models and their calibration. Section 4 presents
the results of the model predictions and also sheds
light on the factors driving the performance. The
application to the betting market covers the descrip-
tion of the decision rules, the money management
strategies, and the resulting returns on investment.
Section 5 concludes and provides an outlook for fur-
ther research.

2. Previous work

Sports events and the prediction of results through
scientific analyses look back on a long history. The
primary attention has been on soccer, with tennis
being less in focus. As for tennis matches, Kovalchik
(2016) groups prediction models into three broad
categories: regression-based, point-based, and paired
comparison. In addition, as part of several studies,
predictions based on bookmaker odds are used for
comparison (see, for example, Leitner et al. (2009)).
Notably, the heterogeneous setup and data used in
the various papers – in some cases in conjunction
with only short forecasting horizons – demand cau-
tiousness when comparing or even generalizing their
findings.

Early examples of the first category of approaches,
in which the probabilities for the match outcome
are modeled directly, are the works by Clarke
and Dyte (2000) and Klaasen and Magnus (2003).
They calibrate logistic regression models to predict
match outcomes based on ranking information. In
Scheibehenne and Broeder (2007), the authors pro-
vide evidence that the mere recognition of players’
names by amateur players and laypeople outperforms
predictions based on rankings and the seedings of
experts. Online betting odds, however, perform even
better.

Among the more comprehensive studies, Del Cor-
ral and Prieto-Rodriguez (2010) apply probit models
calibrated using the players’ past performance, the
players’ physical features, and match characteristics.

Ranking information is found to be the most relevant
for prediction accuracy. Individual men’s tourna-
ments show significant differences, and being a
former top-ten player is found relevant for women.
Age differences have a significant effect for both men
and women, albeit with different patterns. Ma et al.
(2013) use logistic regression and calibrate it with
variables reflecting player and match characteristics.
They claim a pseudo-R2 of about 80% and correct
identification of the winner in over 90% of the cases.
In Lisi and Zanella (2017), the authors use a logistic
regression model with features such as rankings, the
players’ ages, the home advantage factor, and cer-
tain information derived from bookmaker odds. A
betting strategy is said to result in a return of about
16%. Gu and Saaty (2019) combine data and “expert
judgments” with the help of an analytical network
process model. They report a prediction accuracy of
about 85%, albeit for a very small sample of fewer
than 100 matches.

Point-based models aim at estimating the probabil-
ity of winning single points within a match and then
derive expressions for the prediction of the overall
match. For example, Barnett and Clarke (2005) use
historical match data to predict single points and cal-
culate the probability of the outcome of the entire
match based on a Markov chain. Similarly, Knotten-
belt et al. (2012) analyze a Markov model that yields
a betting return of about 4%. Ingram (2019) makes
a case for point-based models by using a Bayesian
hierarchical approach for match prediction. Taking
surface, tournament, and match date into account, he
reports results that are comparable to those of the
other model classes.

In paired comparison approaches, historical mat-
ches between players are aggregated to infer their
respective strength ranking and predict future match
outcomes. McHale and Morton (2011) advocate a
probability model for paired comparisons, which
they calibrate using tennis players’ past performance
and the surface of the contest. When predicting
future match results, they report superiority to logistic
regression-based models, also in terms of achiev-
able betting returns. Lyocsa and Vyrost (2018) use
a paired-comparison model and investigate a range
of betting rules based on odds and rankings. They
cannot confirm achievable profitability as reported
in McHale and Morton (2011) and instead con-
clude that there is at best only weak evidence for
market inefficiency. Gorgi et al. (2019) propose a
dynamic statistical model that accounts for time-
varying player abilities across different court surface
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Table 1

Main studies using machine learning techniques for the prediction of professional tennis matches

Author(s) Modeling technique(s) and features Data Main finding(s)

Somboonphokkaphan
et al. (2009)

Neural network (with a single
hidden layer and up to 150 nodes)

Prediction for Grand Slam
tournaments between 2003 and
2008, with varying model
calibration windows between one
and 22 years

Prediction accuracy of between 67%
and 81%

Sipko (2015) Logistic regression and neural
network (with a single hidden layer
and 100 neurons)

Prediction for ATP matches in
2013/14, with a model training
period of about nine years

Neural network generating about
4% return on investment when
applied to the betting market

Cornman et al.
(2017)

Logistic regression, support vector
machine (with a linear kernel),
neural network (with a single hidden
layer and 300 neurons), random
forest

Prediction for matches of 2016/17
professional tennis season, with
approximately 15 years of model
training and validation data

• Prediction accuracy of
approximately 70%

• Betting strategy with an average
yield of about 3% per match

De Araujo Fernandes
(2017)

• Neural network (with a single
hidden layer and four neurons)

• Majority vote model, combining
the neural network with two other
approaches

Prediction for 2015 ATP and Grand
Slam matches, with 2014 data used
for model calibration

• Prediction accuracy of
approximately 70% (ATP) and
75–80% (Grand Slam)

• Model prediction comparable to
betting-implied forecasts and
superior to using ranking
information alone

Chavda et al. (2019) Linear regression, decision tree,
gradient boosting

Prediction for men’s US Open
matches in 2016, with data between
2000 and 2015 used for model
calibration

• Prediction accuracy of around
75% achieved with gradient
boosting

• Models ultimately not able to beat
the predictions implied from
bookmaker odds

Gao and Kowalczyk
(2019)

Logistic regression, support vector
machine (with a radial basis
function kernel), random forest

Prediction for ATP matches over the
period 2000 to 2016

• Prediction accuracy of about 83%
(random forest), compared to 69%
when using betting odds alone

• Ten-fold cross-validation only; no
explicit prediction

Ghosh et al. (2019) Decision tree, learning vector
quantization, support vector
machine (with a radial basis
function kernel)

Prediction for men’s and women’s
Grand Slam matches in 2013

• Prediction accuracy of 92% to
99%, with decision trees showing
the best performance

• Results holding for both explicit
prediction and ten-fold
cross-validation

Candila and Palazzo
(2020)

Neural network (with a single
hidden layer with up to 30 nodes)

Prediction for Grand Slam, Masters,
and ATP Finals matches between
2013 and 2018, with a minimum of
eight years of training period each

• Neural network outperforming
competing methods (e.g., logistic
regression)

• Betting strategies delivering
investment returns of up to 80%

types. The authors claim that the model significantly
outperforms those calibrated based on ranking infor-
mation alone.

Kovalchik (2016) compares the three main types
of models regarding their predictive performance for
men’s singles matches. She confirms ranking infor-
mation in regression models as best performing but
ultimately not being able to beat bookmaker-implied
forecasts.

The use of machine learning techniques is more
of a novel area in sports prediction. In the world of
tennis, only a few studies have been carried out so

far. Table 1 summarizes the main ones, the models
used, and their key findings. Despite a wide spec-
trum of approaches, data, calibrations, and evaluation
metrics, overall, a prediction accuracy around the
70–75% mark is reported (with figures up to 99%
being claimed). Most studies agree that models are
generally not able to beat the predictions implied
from bookmaker odds. Betting strategies with 3-4%
of return on investment are presented (with claims
reaching values of up to 80%). For some of the pre-
dictions but crucially the betting analyses, periods of
usually not more than one year are used.
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3. Study design

3.1. Research objectives

The aims of this study are twofold. First, it seeks
to establish models and explanatory variables that
determine the probability of the match favorite to
win. The likelihood of the outsider (“longshot”) to
win follows from that since the outcome in ten-
nis is binary in nature.2 Representative models from
various branches of the machine learning space are
calibrated using match, player, and betting market
data and put to the test. By using odds from the
betting market as explanatory variables, it is also ana-
lyzed whether these alone – given their point-in-time
character – encompass all relevant information. This
hypothesis can be motivated by the “wisdom of the
crowd” paradigm, i.e., the observation that the aggre-
gation of estimates from a group of people is often
more accurate than those of the individuals of that
group.3 There is also evidence from a multitude of
studies in this regard (see, for example, Kovalchik
(2016)).4 A simple baseline prediction and a match
forecast derived directly from bookmaker odds serve
as challenger models.

Second, based on the prediction models, the prof-
itability of strategies that place selected bets on fav-
orite or longshot are evaluated. Additionally, model
ensembles are used to test whether validating “sig-
nals” across multiple models bears value.

3.2. Data and model features

The primary data for the study are records of
the major men’s singles ATP (Association of Tennis
Professionals) and women’s singles WTA (Women’s
Tennis Association) matches,5 as well as those of the
four Grand Slam tournaments, organized by the ITF

2Note that, on occasion, one opponent cannot or does not want
to play or finish a match. In this case, the other player automatically
wins. Therefore there is always a binary outcome of a game, with
exactly one winner and one loser.

3See also, Hubacek et al. (2019), for a critical assessment of
using bookmaker odds directly in the model calibration.

4In Lisi and Zanella (2017), it is proposed to use the bookmaker
odds above a certain threshold as explanatory variables. This might
reflect very current information (e.g., a shoulder injury of a player)
otherwise not available from the historically obtained match and
player features.

5The ATP tournaments comprise the ATP Tour Masters 1000,
the ATP World Tour 500 series, and the ATP World Tour 250 series.
Among the WTA matches, the ones from the usually 20 Premier
tournaments are chosen.

(International Tennis Federation).6 Typical attributes
found in the data are tournament series, location,
court surface, match date and round, and the winner’s
and loser’s ranking at the time of the match. In addi-
tion to the match data, player-specific information
such as preferred hand, date of birth, and home coun-
try are obtained from the ATP and WTA websites,
respectively. Besides the directly obtainable match
and player attributes, certain additional features such
as home and surface advantage and player “momen-
tum” are derived as potentially useful explanatory
variables.

In order to identify the players in a match unam-
biguously, their ATP or WTA rankings at the time
of the tournament are used. This allows the deter-
mination of the favorite and the longshot.7 This
distinction is not strictly necessary for the analysis
since one could randomly assign the labels “Player
A” and “Player B” and accordingly define the binary
events of one of them winning.8 The pre-ordering
of players by ranking, however, bears the advantage
that a critical variable determining the probability
of winning is already part of the setup and allows
a straightforward definition of a meaningful base-
line model – the favorite always wins. Subsequently,
following this convention, any model provides
the probability of the match favorite to win as
output.9

The data is complemented by betting odds for
both opponents of a particular match, as offered by
the leading (UK) bookmakers. These quotes gener-
ally represent the most recent ones before the match.
The study makes use of the average odds,10 typically
derived from more than 20 bookmakers, as well as
the maximum odds (i.e., the most favorable for a
bettor).11 The odds are quoted as multiples of the
betting amount, for example, 1.25. This means that
for any 100 units bet, the bettor receives 125 back in

6Source: http://www.tennis-data.co.uk.
7There is a considerable body of research on suitable ranking

systems in professional sports. The one for tennis has come under
scrutiny, and improvements in terms of fairness, transparency, and
biases have been proposed (see, for example, Irons et al. (2014) and
Gorgi et al. (2019)). For the study at hand, the “official” rankings
are the easiest means of determining favorite and longshot without
introducing further model-dependent criteria.

8See, for example, the setup in Cornman et al. (2017).
9For implementation purposes, one would hence reflect the

match favorite winning as “1” or “positive” and “0” or “negative”
otherwise.

10Leitner et al. (2009) propose a slightly modified aggregation
formula by means of log-odds.

11Source: http://www.tennis-data.co.uk.

http://www.tennis-data.co.uk
http://www.tennis-data.co.uk
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case of a correct prediction. The study also makes use
of the spread between the average and the best quotes
in the market for both favorite and longshot. One can
assume that the width of this spread holds additional
information: for instance, the wider the spread, the
less precise the market consensus.

Notably, bookmakers will not offer “fair” quotes
that can be translated one-to-one into probabilities of
events. First, there is a built-in margin – the overround
– that constitutes the margin for the service. For exam-
ple, with odds of 1.25 for the favorite and 3.30 for
the longshot, in conjunction with a balanced demand
for both events, the bookmaker is expected to make
a profit of about 10% since 1/1.25 + 1/3.30≈1.10.
Second, the bookmaker may deviate from the “true”
probabilities when quoting odds in order to balance
the demand, maximize betting volumes (profits), and
exploit bettors’ biases.12

Therefore, betting odds are used directly as mo-
del inputs, without postulating explicitly any adjust-
ments.13 Sufficiently flexible models should be able
to address, for example, any potential non-linear rela-
tionship between odds and probabilities for the match
outcome. The only exception where an explicit trans-
formation is required is creating a basic challenger
model from betting odds. For that purpose, propor-
tional normalization is applied, which translates the
example odds above into implied probabilities of
72.5% and 27.5%, respectively.

While most of the data is available across all
matches in the dataset, the need arises to handle miss-
ing information for certain features. For numerical
variables (e.g., age of a player), the average across all
available data is used; for categorical features (e.g.,
preferred hand), the most frequent value is taken. A
summary of all model features and their definitions
are provided in Table 2.

With the aggregated betting odds history only
available from 2010 onward, the matched dataset –
after some elementary corrections such as removing
obvious erroneous entries – comprises approximately
39,000 match records, spanning 2010 through 2019.
About 9,900 of those records stem from the Grand
Slam series, and roughly 2/3 of the matches belong
to the male tournament circuit.

12See, for instance, Cortis (2015) for basic methods and prop-
erties of odds setting.

13Cf. Strumbelj (2014) and Candila and Scognamillo (2017)
on the standardization and, more generally, on the extraction of
probabilities from betting odds.

3.3. Models and their calibration

The following set of models is used:

1. Logistic Regression (LR).14 Stricto sensu,
(binomial) LR is usually not considered part of
the machine learning arsenal but an established
standard when it comes to classification prob-
lems. With x as the vector of model features
(e.g., the average betting odds for the favorite
and the longshot) one seeks to predict y, repre-
senting whether the event in question (e.g., the
favorite winning) occurs (y = 1) or not (y = 0),
conditional on the model features:

hθ (x) = eθT x+θ0

1 + eθT x+θ0
with (1)

P (y = 1|x; θ) = hθ (x) and

P (y = 0|x; θ) = 1 − hθ (x)

The model fitting consists in determining the
optimal vector θ including the constant θ0 and
is accomplished by maximum likelihood. The
model output are probabilities for the binary
outcomes. In order to tune the model, a weighted
L1 (Lasso) and L2 (Ridge) regularization is
applied.15

2. Neural Network (NN).16 The input and output
data are connected through a series of “layers.”
In each layer, a linear transformation is applied
to the data, followed by the application of a
(non-linear) activation function. With a[0] as the
input data, a[i] as the output of layer i and g as
the activation function:

z[i] = W [i]a[i−1] + b[i] with

a[i] = g
(
z[i]), i = 1, 2, ... (2)

Layers other than the first and last are called
“hidden” and can each consist of an arbitrary
number of neurons. The calibration of the net-
work consists in finding optimal weights W [i]

and b[i] such that the output of the last layer fits

14See, for example, Hastie et al. (2009), pp 119ff.
15See, for example, Hastie et al. (2009), pp. 61ff. For all mod-

els, a class rebalancing is considered during the fitting since the
favorite wins consistently more often than he or she loses. Given
that this imbalance is not too extreme (about 2/3 vs. 1/3), the rebal-
ancing does not materially influence the results and is ultimately
disregarded.

16See among many others, Hastie et al. (2009), pp. 389ff. and
the deep learning overview in Schmidhuber (2015).
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Table 2

Model features as explanatory variables for tennis match prediction

ODDS.Avg.Favorite Average bookmaker odds for the favorite
ODDS.Avg.Longshot Average bookmaker odds for the longshot (outsider)
ODDS.SpreadMaxToAvg.Favorite Spread between best and average odds for the favorite (positive by design)
ODDS.SpreadMaxToAvg.Longshot Spread between best and average odds for the longshot (positive by design)
EXPL.Gender Male or female tournament: with a joint dataset but evidence that the drivers for match outcomes

are not the same for men and women (see, for example, Del Corral and Prieto-Rodriguez
(2010)), any systematic differences can be captured with this indicator variable.

EXPL.Series Tournament series (e.g., Grand Slam): more prestigious tournaments, also with higher prize
money, tend to have a different composition of players in terms of strength and competitiveness.
Furthermore, the liquidity and types of bettors in the market might be different between
tournaments with and without a lot of media attention, which in turn can influence the
odds-setting behavior of bookmakers (see, for example, Forrest and McHale (2007)).

EXPL.Round Tournament round (e.g., semi-final): it is reasonable to assume that the incentives from
substantially higher prize money in the later rounds – also consisting of the stronger players –
have an influence (see, for instance, Gilsdorf and Sukhatme (2008)).

EXPL.RankDiffLog Difference in ranking between longshot and favorite (positive by design): the rankings are
expressed on a log-scale, as proposed, for example, in Klaassen and Magnus (2003) and Del
Corral and Prieto-Rodriguez (2010) since the differences in the “quality” of the players are not
linear. The ranking difference is more critical for the top-ranked field, and the
log-transformation expresses this. The expected “loading” of the variable is positive: the higher
the difference in ranking between two players, the higher the probability of the favorite to win.

EXPL.RankPointsDiffLog Difference in ranking points between favorite and longshot (positive by design): expressed on a
log-scale. Since it provides a more fine-grained view of the strength difference between the
players than the rankings alone, it could contain additional information (see, for example, the
discussion in Lisi and Zanella (2017)).

EXPL.DiffAge Difference in age between favorite and longshot: the pattern is not so clear (see, for example, the
discussion in Del Corral and Prieto-Rodriguez (2010)), but, as a tendency, one can expect the
“loading” of this factor to be negative. If the favorite is (much) older than the longshot, his or
her winning probability will – all else equal – be smaller.

EXPL.PreferredHand Players’ preferred hand: there are four possible combinations (both right, both left, favorite
right/longshot left, favorite left/longshot right).

EXPL.HomeAdvantage Home advantage: if a tournament is held in a player’s home country, his or her home advantage is
recognized. Among others, Koning (2011) reports a significant home advantage for men’s
matches. In case only the favorite has home advantage, the variable is set to one. If only the
longshot has home advantage, the indicator is set to minus one. In case both or neither of the
two players have home advantage, the indicator equals zero. In this way, a single explanatory
factor is obtained whose “loading” is assumed to be positive with regard to its contribution
toward the favorite’s probability of winning the game.

EXPL.SurfaceAdvantage Surface advantage: recognizing the influence of the match surface on players’ performance (see,
for example, Martin and Prioux (2015)), their past games are analyzed, and the surface that they
have been the most successful on (in relative terms) is declared as their preferred one (hard,
clay, or grass). Then an equivalent indicator to the home advantage is formed, with values of
plus one, zero, or minus one, depending on whether the match surface suits or does not suit the
favorite and the longshot. Data availability permitting the “lookback period” is chosen as three
years, as a compromise between a too short period (during which a significant preference is
hard to establish) and an excessively long period (during which a player’s gameplay could have
evolved).

EXPL.PlayerDuelsInThePast Track record of the two opponents playing against each other: if the two have never played against
each other in the past, the indicator is equal to zero. Otherwise, with NFav

win and NFav
loss denoting

the number of matches won and lost by the current favorite in previous duels, the indicator is set
to 2
(
NFav

Win/
(
NFav

Win + NFav
Loss

)
− 0.5

)
. In the case of a clean slate for the current favorite in

previous matches against the same opponent, the variable is equal to plus one. For the opposite
extreme case of only losses, it is equal to minus one. The continuum between plus and minus
one reflects other track records. The expected “loading” of this factor is positive: if the current
favorite has beaten his or her opponent often in the past, he or she might achieve this – ceteris
paribus – again. Similar to the surface advantage, the historical period is chosen as three years.

EXPL.PlayerMomentum Current form of a player: the player’s average ranking (on a log-scale) over the previous six
months minus his or her current ranking. A positive (negative) value hence indicates that the
player has been on a winning (losing) streak, and one can postulate that this “momentum” has
an influence on the match at hand. Correspondingly, the expected “loading” of this factor is
positive.

The table provides an overview of the variables chosen to explain the probability of the favorite of a professional tennis match (according
to ATP/WTA points) to win.
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the observations associated with the input data
best.

As hyperparameters, the network structure –
from a single hidden node to three fully con-
nected hidden layers with fifty nodes each –, the
penalties for L1 and L2 regularization, and
the learning rate (that determines to what extent
the weights are updated during the fitting pro-
cess) are tuned.17

3. Random Forest (RF).18 It is a non-parametric
model that generalizes a random tree model.
The growing of each tree is achieved by repeat-
edly splitting the data, at each tree node, based
on a randomly selected subset of features. The
variable that maximizes information gain is
chosen to be split on further. The ultimate model
is built from averaging many trees trained like
this. While the individual trees exhibit a low
bias and high variance, the fact that they are
mostly uncorrelated ensures that the final model
averaging leads to a low variance.

For the purposes of tuning the RF model,
its maximum tree depth and the number of
randomly chosen features at each node are
optimized.19

4. Gradient Boosting Machine (GBM).20 While
a random forest relies on the idea of build-
ing an ensemble of models and uses averages
of their predicted values, boosting methods are
built on adding new models to the ensemble in a
sequential way. In each iteration, a new “weak”
learner model (with high bias and low variance)
is trained with respect to the error of the ensem-
ble so far. These new models are usually shallow
trees or even just decision stumps (i.e., trees
with only two leaves). Gradient boosting refers
to a specific way of identifying the shortcom-
ings of weak learners, by using gradients of the
loss function.

17The influence of other parameters such as a dropout ratio
other than zero (which randomly removes nodes from the network)
and the number of epochs (i.e., the number of times that the learning
algorithm works through the entire dataset) have been investigated
as well. Setting those to standard fixed values has been found to
work best.

18See Breiman (2001) and among many others, Hastie et al.
(2009), pp. 587ff.

19Other parameters have been found to have less of an influence
on the fitting quality and are set to standard values. The number of
trees that are grown should be chosen large enough (≥500).

20See Friedman (2001) and among many others, Hastie et al.
(2009), pp. 353ff.

Among the possible hyperparameters, the
tree depth is found to be the one most useful
to optimize.

5. Support Vector Machine (SVM).21 This method
aims at separating the events into two categories
(favorite winning or losing). With events rep-
resented as points in space, the SVM model
uses hyperplanes that divide the categories in
such a way that the largest distance to any
point is achieved (“functional margin”). More
formally, let x(i), i = 1, 2, ... , N again be the
vector of model features and y(i) be the binary
outcome, coded as y(i) ∈ {−1; 1} to follow stan-
dard notation. With parameter vectors ω and b,
the geometric margin for each observation is
defined as

γ (i) = y(i)

((
ω

‖ ω ‖
)T

x(i) + b

‖ ω ‖

)
. (3)

The model calibration entails solving the
optimization problem

min
ω,b

‖ ω‖2

2
+ C

∑N

i=1
ξi s.t.

γ (i) ≥ 1 − ξi, ξi ≥ 0 ∀i = 1, 2, ... , N. (4)

Regularization can be achieved by tuning the
cost parameter C. With a problem not always
lending itself to linear separability, a mapping
of the data to a different space with the help
of a kernel function K

(
xi,xi

)
is helpful. Here,

linear, radial, and polynomial kernels are tested;
their respective parameters serve as additional
tuning parameters. Ultimately a linear one is
chosen as the best performing.22

All data is standardized before entering the cali-
brations. These are carried out with five-fold cross-
validation to tune the hyperparameters.23

21See Cortes and Vapnik (1995), and among many others,
Hastie et al. (2009), pp. 417ff. Note that an SVM is a non-
probabilistic classifier. In order to obtain probabilities sought for
the application at hand, the approach in Platt (2000) is used.

22Cornman et al. (2017) also report that an SVM with a linear
kernel – ceteris paribus – performs better than non-linear ones.
Given the limited flexibility of the linear kernel, using 1/odds as
model features for the calibration process is found to be advanta-
geous.

23With the exception of the SVM, all models are fitted and
tuned with the help of the H2O.ai framework from within R. For
the SVM, the caret package in R is used. Note that the calibration
is carried out seven times independently for each model, to cover
all calibration periods.
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For comparison, two basic approaches are applied
as challenger models:

• Baseline. The favorite (or longshot) always wins
(i.e., with a probability of 100%).

• Bookmaker-implied. Using only the betting odds
for both favorite and longshot without any
model, probabilities for the match outcome are
derived (see Section 3.2).

For the calibration and prediction process, it is
essential to distinguish between a statistical model
such as logistic regression and a decision rule that
transforms the output of a model into an actual class
prediction (e.g., win or loss). The latter requires a
decision threshold (e.g., 50%) that assigns a given
case to one of the groups. The aim of this study
is to work with class probabilities wherever possi-
ble since these lend themselves well to applications
in the betting market with its market-implied odds
and associated probabilities. As far as required for
the calibration and hyperparameter tuning, a model’s
accuracy – the number of correct predictions (favorite
wins or loses) as a proportion of all predictions – is
used as the target for the optimization. This can imply
decision thresholds different from 0.5 when assigning
a match to one of the two classes. Other evaluation
metrics whose values are threshold-dependent are
calculated and reported as well (see Section 4.1.1).

As for the actual calibration and prediction, slid-
ing windows are used. Starting with the period 2010
through 2012, three-year calibration windows are
employed and then used to forecast the probabili-
ties for the subsequent year – beginning with 2013.
This choice represents a compromise between a too-
long window (that ignores potential changes in player
composition, gameplay, and betting markets over
time) and a too-short one (that does not allow for
statistically robust calibrations). The setup results in
seven calibration (2010–2012 through 2016–2018)
and prediction periods (2013 through 2019) in total.

4. Results

4.1. Model predictions

4.1.1. Model fitting and prediction performance
The results of the model fitting (calibration) and

prediction are summarized in Table 3. A variety
of measures for binary classification problems is
reported.24 With seven sets of calibrations and fore-

24See also Kovalchik (2016) who advocates several model per-
formance measures in the context of tennis prediction models.

casts, the table provides the average figures in Panel A
and B, respectively. About 12,000 matches are used
for each calibration and 4,000 for each prediction.
The best score for each performance measure across
the models is highlighted.

The log-loss is defined as the negative average of
the log-probabilities of the actual match outcomes.
The closer to zero, the better the fit.25 All mod-
els show similar average performance figures for
both calibration and prediction. This includes the
bookmaker-implied metrics, indicating that there is
hardly any advantage of the five models relative to
this basic challenger approach. The same holds for
the Brier (1950) score, which equates, broadly speak-
ing, to the mean squared error of the prediction. If all
actual wins were to be assigned a winning probabil-
ity of 100% by the model, the Brier score would be
zero, its best value. The calibration measure takes
into account that a good forecast should show events
– here, the favorite winning or losing – with the right
frequency that matches the predicted probability.26

The aim is a ratio close to one. If it is smaller, the
model tends to underestimate the wins of the favorite;
if it is higher, it tends to overestimate them. For the
baseline model, the calibration score is far larger than
one since the model has a bias toward the favorite.
All other models, including the bookmaker-implied
one, show near-perfect calibration figures, which are
also close to one at the prediction stage. The discrim-
ination metric reflects a model’s ability to provide
win forecasts for actual wins and loss forecasts for
actual losses.27 The greater the discriminatory power
of a model, the higher the value; zero indicates that
the model lacks all discriminatory ability. This is, by
construction, the case for the baseline.

The Area-Under-the-ROC-Curve (AUC), with val-
ues between 0.5 and 1.0, summarizes the performance
of a classification model across different classifica-

Recall that the event in question (“1”) is the favorite winning a
match.

25Kovalchik (2016) points out that the log-loss “penalizes”
incorrect predictions made with high confidence (i.e., with a high
probability attached to them) and thus has a connection to betting
merits (see Section 4.2) where one wants to avoid such overconfi-
dence that ultimately leads to losses.

26To operationalize this and condense it into a single figure,
one uses the sum of all win probabilities of the favorite relative to
the number of matches he or she has actually won.

27See also Pencina et al. (2008) and their integrated discrim-
ination improvement (IDI) measure. Algebraically, one can refer
to the average predicted win probabilities for matches the favorite
has won minus the average predicted win probabilities for matches
the favorite has lost.
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Table 3

Performance metrics of selected tennis match prediction models

Baseline Bookmaker- 1. Logistic 2. Neural 3. Random 4. Gradient 5. Support
implied Regression Network Forest Boosting Vector

Machine Machine

A. Calibration

Number of matches 11,792

Log-loss N/A 0.568 0.567 0.568 0.558 0.565 0.572
Brier 0.336 0.194 0.193 0.193 0.189 0.192 0.195
Calibration 1.507 0.990 1.000 1.014 1.000 1.000 1.001
Discrimination 0.000 0.123 0.133 0.134 0.135 0.130 0.127

AUC N/A 0.721 0.721 0.722 0.735 0.723 0.718

Accuracy 0.664 0.702 0.703 0.704 0.709 0.705 0.699
Precision 0.664 0.722 0.727 0.728 0.728 0.722 0.712
Recall 1.000 0.896 0.885 0.885 0.896 0.901 0.919
Specificity 0.000 0.318 0.344 0.348 0.339 0.316 0.266
F1 0.798 0.800 0.798 0.799 0.803 0.802 0.802

B. Prediction

Number of matches 3,996

Log-loss N/A 0.579 0.580 0.582 0.580 0.581 0.584
Brier 0.347 0.198 0.198 0.199 0.199 0.199 0.200
Calibration 1.532 0.993 1.005 1.017 1.003 1.004 0.993
Discrimination 0.000 0.116 0.124 0.121 0.116 0.117 0.121

AUC N/A 0.712 0.710 0.709 0.710 0.708 0.707

Accuracy 0.653 0.690 0.690 0.689 0.690 0.691 0.689

Precision 0.653 0.710 0.715 0.714 0.712 0.708 0.703
Recall 1.000 0.888 0.875 0.875 0.883 0.895 0.908
Specificity 0.000 0.317 0.341 0.339 0.325 0.305 0.278
F1 0.790 0.789 0.786 0.786 0.788 0.790 0.792

The table shows a selection of performance measures for both the model calibration and prediction of the outcome of professional tennis
matches over the period 2010 through 2019. In total, 25,204 singles matches from the ATP schedule (men) and 13,755 matches from the
WTA circuit (women) are used. The event in question is whether the favorite according to ATP/WTA points wins (“1”) or not (“0”). All
models are calibrated over three-year windows and used for the subsequent year’s prediction. Hence, seven sets of calibrations (spanning
2010–2012 through 2016–2018) and predictions (2013 through 2019) are created; the table reports a range of performance metrics, averaged
over all periods, in Panel A and B, respectively. The baseline model always predicts the favorite to win. The bookmaker-implied model
combines the quoted odds for both the match favorite and longshot to infer the outcome probabilities directly, without an explicit model.
The best score for each metric across the models is highlighted. AUC: Area Under the Receiver-Operating-Characteristic Curve.

tion thresholds, which determine the assignment to
one of the two possible groups (see the discussion
in Section 3.3).28 All models lead to moderate AUC
figures of around 0.7.

28The receiver operating characteristic (ROC) is a two-
dimensional curve in which the false positive rate of a model is
plotted against its true positive rate across the spectrum of pos-
sible thresholds. When lowering the classification threshold, for
example, more events (here: matches) are assigned to the positive
category (here: wins of the favorite), thus increasing both false
positives and true positives. The AUC measures the entire two-
dimensional area underneath the ROC curve and as such provides
an aggregate performance measure. A value of 0.5 (45-degree line)
means the model allocates classes randomly and is hence of no
practical use.

The accuracy of the models amounts to about 70%
during the calibration and 69% during the predic-
tion. The baseline model has an accuracy of about
66%, equal to the proportion of wins by the favorite
across matches. The bookmaker-implied benchmark
yet again shows a performance that is no different
from that of the models. The precision (also: positive
predictive value) is the proportion of “true positives”
over all those classified by a model as positive. The
closer the value to one, the higher the proportion of
correctly predicted match wins by the favorite among
all predicted wins. All models perform similarly in
this regard with values of around 71-72%; for the
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Fig. 1. Model performance across calibration and prediction datasets. This figure shows how well various models “fit” and predict the
outcome of professional tennis matches. Each model – during calibration and prediction – determines the probability of the favorite to win
a match. These probabilities are bucketed and compared to the actual match outcomes aggregated in the same way. Deviations from the
45-degree line indicate that a model over- or underestimates the probabilities for the favorite to win. Buckets with fewer than 25 observations
are omitted. Given seven model calibrations (2010–2012 through 2016–2018) and predictions (2013 through 2019), the figures provide the
averages over the datasets. The bookmaker-implied calibration and prediction serve as a benchmark: by combining the quoted odds for both
the match favorite and longshot, one can infer the probabilities for the outcome.

baseline model, the precision is by design equal to the
accuracy. The recall (also: sensitivity or true positive
rate) is defined as the “true positives” in relation to
the “true positives” plus “false negatives.” The closer
the value to one, the lower the proportion of predicted
losses by the favorite that were actually wins. A trivial
way to achieve a perfect recall of 1.0 is to predict that
the favorite wins all matches – as the baseline model
does. Recall in isolation is therefore not a sufficient
criterion. The other models show comparable figures
across the peers. The specificity (also: true negative
rate) provides the ratio between the “true negatives”
and the “true negatives” plus “false positives.” The
closer the value to one, the lower the proportion of
predicted wins by the favorite that were in fact losses.
All models exhibit rather low performance figures,
which is a sign of predicting too many wins of the
favorite. Finally, the F1 (also: traditional F-measure
or balanced F-score) is the harmonic mean of pre-
cision and recall. The values across all models are

very close to one another, indicating that the ability
to balance the two performance measures is not very
different across the model spectrum.29 Overall, all
models perform very similarly, and none of them is
able to beat bookmaker-implied predictions.

A convenient way of visualizing the models’ per-
formance for both calibration and prediction sets is
the use of bucketed frequencies of model predictions
and actual outcomes. Figure 1 provides the results
across the models, averaged over all periods. Devi-

29By selecting different decision thresholds in the classification
process (see the discussion in Section 3.3), one can alter those
metrics that favor or penalize certain outcomes. When placing bets
as explored in Section 4.2, for example, one might prefer a high
precision over a high recall: one would rather not bet and miss out
on opportunities if, in exchange, one could be sure that when a
betting “signal” is received it can be trusted. Here, where required,
the threshold of maximum accuracy is used since for the tennis
predictions, the downside of predicting a win when it was a loss
and of forecasting a loss when it was a win are equal. Note that
thresholds need to be determined during the calibration stage and
then applied as such for the predictions.
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ations from the 45-degree line indicate that a model
over- or underestimates the probability of the favorite
to win. Most of the models show a good average per-
formance, be it during calibration or during predic-
tion. Slightly more pronounced differences appear in
less populated buckets corresponding to small prob-
abilities of the favorite to win (less than about 30%).

4.1.2. Feature importance
Table 4 provides an overview of the features

(variables) and their significance across the mod-
els. Variable importance is expressed in percentage
and sums to 100 for each case.30 The top-three vari-
ables for each of the datasets are highlighted. Not
surprisingly, most models attribute a high relative
importance to the bookmaker odds. This includes the
spreads between average and maximum odds for both
the favorite and the bookmaker.31 However, both the
LR and NN model find attributes such as the players’
preferred hand and the series and round of the tourna-
ment as important for their respective calibrations.32

Given the easier interpretation, additionally, the
change in accuracy and AUC (see Table 3) when
removing certain features are shown,33 with the top-
three each marked in bold. The dominant role of the
bookmaker odds is confirmed, notably also for the
LR and NN models since both show a high sensitivity
here. Most of the other features play only a negligible
role.

30For the LR model, the variable importance is defined as the
absolute values of the standardized coefficients over their sum. In
the case of the SVM, the mean of each input variable across the
dataset is used as a basis. Then the model responses when iterat-
ing over the value range for one variable at a time are measured
and used to define sensitivity and relative importance (Cortez and
Embrechts (2013), method “1D-SA”). In the NN model, the (abso-
lute) network weights are used to define the contributions between
the input neurons and the output neuron (Gedeon (1997)). For the
tree-based RF and GBM models, the importance of a variable is
determined by whether it is selected to split on during the tree-
building process and by how much the squared error across trees
changes as a result (Rifkin and Klautau (2004)).

31For purposes of crosschecking, standard measures of the LR
such as coefficients’ p-values and the pseudo-R2[McFadden] have
been analyzed as well (not shown here). The results for the coef-
ficients are largely in line with the feature importance, as reported
in Table 4.

32As a general note for the interpretation of the results: the
explanatory variables are not all independent from one another.
The odds for the favorite and the longshot, for instance, need to
prevent risk-free arbitrage and are hence functionally “linked.”
While the non-linear nature of the models should be able to handle
this aspect, the LR model, for example, demands in theory no
multicollinearity among the independent variables.

33This is achieved by repeatedly randomizing the values of a
certain feature across the data set, recalculating the performance
metrics in question, and finally averaging the resulting figures.
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Fig. 2. Partial dependence plots on the example of the Neural Network model. This figure illustrates the marginal effects of the vari-
ables reflecting the betting odds on the example of the Neural Network model. The mean response reflects the probability of the match
favorite to win. The results are shown for the seven calibration periods (2010–2012 through 2016–2018), together with their respective
averages.

Partial dependence analysis is an intuitive tool to
zoom deeper into the models’ driving factors.34 On
the example of the NN model, Fig. 2 shows the
marginal effects of the four variables reflecting the
betting odds on the (mean) response, i.e., the prob-
ability of the match favorite to win. Besides the
individual curves for each calibration period, their
averages are shown as well. The graphs for ODDS.
Avg.Favorite are downward-sloping with the value
increasing, in line with the intuition that higher odds
for the favorite go hand-in-hand with a lower prob-
ability of him or her winning a match. The spread
between average and maximum odds for the favorite
(ODDS.SpreadMaxToAvg.Favorite) exhibits a slig-
htly less clear pattern but still confirms that the
higher the spread, the lower the winning probability
of the favorite, in line with expectation. For both the
odds attached to the longshot (ODDS.Avg.Longshot)
and the corresponding spread between average
and maximum odds (ODDS.SpreadMaxToAvg.Long
shot), the patterns are again as expected. The higher
either of them, the higher the mean probability of the
favorite to win – all else equal.

34Another approach to better understand the workings of the
models and the interactions of the various model features consists
in using LIME (Local Interpretable Model-agnostic Explanations).
See the background reference in Ribeiro et al. (2016).

4.2. Betting strategies

4.2.1. Decision rules
In order to apply the calibrated models to actual

betting strategies, the model-implied odds for the
favorite to win (lose) are used to decide whether to
place a bet or not. The market consensus in the form
of the (a) average odds or (b) maximum odds thereby
serves as a reference.35 For example, if the model
implies a probability of the favorite to win of 80%,
bookmaker odds of more than 1/0.8 = 1.25 would be
considered worth betting on.

As a key additional feature, model ensembles are
created. These combine the “signal” from the five
models and only recommend a bet if at least N of them
agree (N = 2,3,...,5) The technique is well-established
and especially useful if the individual models pro-

35Another route of investigation would be the use of betting
exchanges, where individuals can back and lay bids without the
need for bookmakers (see, for example, Abinzano et al. (2019) in
the context of tennis). Franck et al. (2010) conduct a comparison
of bookmakers and a major betting exchange in terms of prediction
accuracy on the example of soccer. They conclude that the betting
exchange provides more accurate predictions than bookmakers,
which can be exploited to generate positive returns. Strumbelj
(2014) warns, however, that betting exchange odds are not nec-
essarily good sources, especially in less broad markets. Using
betting exchange data bears also the challenge of participants being
exposed to framing effects (Brown and Yang (2018)).
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cess the input data in different ways; the agreement
of several of them is a strong sign that the inher-
ent indication is valid. In case a model ensemble
produces a betting proposition, the averages of the
model-implied probabilities and betting odds of the
individual approaches are used.

Working with ensembles also renders the deriva-
tion of additional “rules” such as a minimum margin
(model-implied odd vs. betting odd) less relevant.
The combination of predictions reduces the risk of
being too sensitive and thereby placing bets too eas-
ily with only very small margins or poor risk-reward
ratios. In the following, purely as a “numerical”
safety margin, the minimum advantage of the odds
is required to be 0.01 in absolute terms and 1% in
relative terms.

The actual strategies are each carried for all combi-
nations of model, odds type (average or maximum),
betting side (favorite or longshot), and betting size
(see Section 4.2.2).

4.2.2. Betting sizes
In case a bet is placed on a particular match out-

come, five different strategies for the betting sizes are
evaluated:36

I. A fixed amount per bet
II. A fixed proportion of the current bankroll

III. Fixed expected return: an amount proportional
to the inverse of the betting odd (example:
for an odd of 1.6, one would place a bet of
1/1.6 = 0.625); this leads to lower (higher) bets
if the risk is higher (lower) and ensures that the
potential winnings, in absolute terms, are the
same across bets

IV. A fraction of the current bankroll according to
the Kelly (1956) criterion; it is based on the
principle of maximizing the expected value of
the (logarithm) of the bettor’s wealth and sup-
posed to almost surely lead to higher wealth
than any other strategy in the long run37

V. Variance optimization: as suggested in Rue
and Salvesen (2000), the betting amount is
chosen so that the difference between the
expected gain and the variance of that gain
is minimized; the optimal amount is thereby

36See also, for example, Langseth (2013) on money manage-
ment strategies applied to soccer betting.

37The criterion has been discussed controversially among the-
orists and practitioners. One practical rule consists in using only a
fraction of what the Kelly criterion recommends in order to reduce
volatility.

proportional to the odds and the probability of
losing the bet

An implicit condition for Strategies I, III, and V
with absolute betting amounts is that the bankroll is
sufficient to sustain all potential losses. The fixed
amount per bet, required for Strategy I, is set to
one. The starting bankroll, explicitly needed for
Strategies II and IV, is assumed as 1,000 and replen-
ished every year. The proportion of the bankroll to
bet as per Strategy II is set to 1% (i.e., starting with
10). In order to avoid an early quasi-bankruptcy, the
Kelly proportion according to Strategy IV is capped
at 1% of the prevailing bankroll. Note that for the
trivial baseline model, this proportion would always
be 100% (since the assumed outcome of the bet is
certain), and the cap of 1% of the bankroll is hence
always active. The outcome is thus the same for
Strategies II and IV. The variance-optimized Strat-
egy V demands model probabilities of less than one
and is therefore ill-defined for the baseline model.

4.2.3. Return on investment
The seven sets of predictions spanning 2013

through 2019 are aggregated and reported in Tables 5a
and 5b when using average and most favorable book-
maker quotes, respectively. Results are shown for bets
on the matches’ favorites as well as on the longshots.
The summary comprises the number of matches,
the proportion of matches that bets are placed on,
which percentage of these are won as well as result-
ing returns. These are defined as profits and losses
(P&L) divided by the wagered amounts over a given
period. The criteria for comparing the strategies are
both the “raw” and “risk-adjusted” returns, with the
latter as the raw figure divided by the corresponding
volatility.38

When zooming into the results using average book-
maker quotes, the first observation is that only a few
bets are flagged for backing the favorite, between
7% and 22%.39 Of those, between 42% and 65%
are won. The baseline always places a bet, and its
winning quota is equal to the number of times the
match favorite wins, approximately 65%. The ensem-
ble methods work as designed and produce the fewer
signals the higher the number of member methods

38A suitable alternatives to using the – symmetric – volatility
could be the maximum drawdown of a strategy to reflect the usually
limited upside and large downside potential of placing a bet.

39With about 4,000 matches per year to forecast (see Table 3,
Panel B), this equates to betting on about 280 to 880 per year during
each of the seven annual periods.
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Table 5a

Results from betting strategies based on selected tennis match prediction models – using average bookmaker quotes

Returns (%)

Bets Bets I. Fixed II. Fixed III. Fixed IV. Kelly V. Variance-

placed won amount proportion expected criterion optimized

nruter)%()%(

Raw Risk-adj. Raw Risk-adj. Raw Risk-adj. Raw Risk-adj. Raw Risk-adj.

A. Betting on favorite

0. Baseline 100.0 65.3 –5.2 –0.07 –5.1 –0.07 –4.7 –0.06 –5.1 –0.07 – –

1. Logistic Regression 7.3 59.6 –1.3 –0.02 –1.4 –0.02 –1.8 –0.02 –1.4 –0.02 –0.3 0.00

2. Neural Network 22.0 57.9 –5.4 –0.06 –5.7 –0.07 –4.8 –0.06 –5.7 –0.07 –3.2 –0.04

3. Random Forest 7.1 41.9 –5.2 –0.04 –5.4 –0.05 –3.3 –0.03 –5.2 –0.04 –2.4 –0.02

4. Gradient Boosting M. 11.4 54.3 –3.8 –0.04 –3.9 –0.04 –3.5 –0.04 –3.8 –0.04 –4.0 –0.04

5. Support Vector M. 15.5 65.2 –3.8 –0.05 –4.1 –0.06 –3.7 –0.05 –4.1 –0.06 –3.6 –0.05

6. Ensemble (N = 2) 15.8 54.1 –3.9 –0.04 –4.1 –0.04 –3.7 –0.04 –4.1 –0.04 –3.5 –0.04

7. Ensemble (N = 3) 4.6 51.9 –1.1 –0.01 –1.3 –0.01 –1.3 –0.01 –1.3 –0.01 –2.9 –0.03

8. Ensemble (N = 4) 0.8 57.2 7.6 0.08 7.6 0.08 8.6 0.09 7.7 0.08 9.8 0.10

9. Ensemble (N = 5) 0.1 41.7 –26.8 –0.30 –23.9 –0.27 –23.0 –0.26 –23.8 –0.27 –19.0 –0.21

B. Betting on longshot

0. Baseline 100.0 34.7 –9.5 –0.06 –10.9 –0.07 –6.6 –0.04 –10.9 –0.07 – –

1. Logistic Regression 10.8 40.1 –4.1 –0.03 –3.2 –0.02 –2.0 –0.02 –3.4 –0.03 –1.8 –0.01

2. Neural Network 12.4 41.3 –4.6 –0.04 –3.5 –0.03 –3.3 –0.03 –3.1 –0.03 –3.7 –0.03

3. Random Forest 10.5 32.2 –10.7 –0.06 –10.6 –0.06 –5.9 –0.04 –10.0 –0.06 –4.8 –0.03

4. Gradient Boosting M. 14.6 29.9 –13.8 –0.08 –14.0 –0.08 –9.4 –0.05 –12.9 –0.07 –7.5 –0.04

5. Support Vector M. 28.3 33.4 –11.7 –0.07 –11.9 –0.07 –5.7 –0.03 –11.8 –0.07 –4.4 –0.02

6. Ensemble (N = 2) 18.9 35.9 –9.2 –0.06 –8.5 –0.05 –4.9 –0.03 –7.8 –0.05 –3.5 –0.02

7. Ensemble (N = 3) 6.7 34.4 –8.0 –0.05 –5.9 –0.03 –1.5 –0.01 –5.4 –0.03 –2.2 –0.01

8. Ensemble (N = 4) 1.4 40.1 –2.4 –0.02 –2.4 –0.02 –1.2 –0.01 –3.2 –0.02 –3.0 –0.02

9. Ensemble (N = 5) 0.2 47.6 31.5 0.21 33.7 0.22 22.6 0.15 30.4 0.20 15.7 0.10

The table compares the results of betting strategies on professional tennis matches over the period 2010 through 2019. Various prediction
models are calibrated and create signals when to place a bet on a future match and, if required for the money management strategy, also
determine how much to wager. A separate baseline model always predicts the match favorite or longshot, respectively, to win. In addition
to the five individual models, “ensembles” are used, which only produce a signal to place a bet if N of the models agree (N = 2,3, ... ,5).
The summary statistics comprise the proportion of matches that bets are placed on, how many of those are won, and the resulting returns
across all prediction periods. Returns are defined as profit/loss divided by the wagered amount. The “raw” returns are complemented by
their values adjusted by the respective volatility (“risk-adjusted”). Results are shown for bets on the match favorites according to their ATP
or WTP ranking at the time and those on the longshots in Panel A and B, respectively. All results are based on using average bookmaker
quotes in the market. Positive returns are shown in bold, and the highest risk-adjusted return is highlighted in gray.

are required to agree. Most of the returns are negative,
irrespective of the model and the money management
strategy. The only exception is an ensemble with four
member models that bets on less than one percent of
the matches and produces a return on investment of
about 10%. When risk-adjusting this figure, the rather
high volatility renders the risk-return figure approx-
imately 0.10. In financial markets, such a Sharpe
(1966) ratio would be considered a poor investment.
This phenomenon is also reported in the betting study
by Lyocsa and Vyrost (2018).

The picture is very similar when backing the
longshot instead. In this case, the ensemble method
requiring all five models to agree is the only one
to produce a positive return across the seven-year
period. While a raw return of up to 34% sounds

impressive, one needs to bear in mind that the
volatility is again substantial (risk-adjusted return
figure: 0.22). Notably, bets are only placed in 0.2%
of the cases here. Figure 3 illustrates the cumula-
tive P&L for the most successful strategies, together
with the raw and risk-adjusted returns for each annual
period. Panel (a) refers to betting on the favorite, panel
(b) to placing bets on the longshot. It is evident that
there were several years where the returns were neg-
ative, albeit with hardly any bets placed as indicated
by the “flat” cumulative P&L graph in these periods.

Another prominent observation pertains to the fact
that, for the majority of cases, the returns are lower
(more negative) when backing the longshot rather
than the favorite. This is consistent with the well-
studied longshot bias, i.e., the observation of higher
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Table 5b

Results from betting strategies based on selected tennis match prediction models – using most favorable bookmaker quotes

Returns (%)

Bets Bets I. Fixed II. Fixed III. Fixed IV. Kelly V. Variance-

placed won amount proportion expected criterion optimized

nruter)%()%(

Raw Risk-adj. Raw Risk-adj. Raw Risk-adj. Raw Risk-adj. Raw Risk-adj.

A. Betting on favorite

0. Baseline 100.0 65.3 –0.7 –0.01 –0.8 –0.01 –0.5 –0.01 –0.8 –0.01 – –

1. Logistic Regression 40.2 64.2 0.7 0.01 0.4 0.01 0.7 0.01 0.4 0.01 0.4 0.01

2. Neural Network 49.0 62.6 –0.5 –0.01 –0.5 –0.01 –0.2 0.00 –0.5 –0.01 0.3 0.00

3. Random Forest 31.9 56.1 –1.0 –0.01 –1.1 –0.01 –0.7 –0.01 –1.2 –0.01 –0.6 –0.01

4. Gradient Boosting M. 36.4 59.1 –1.2 –0.01 –1.3 –0.01 –0.9 –0.01 –1.2 –0.01 –0.6 –0.01

5. Support Vector M. 40.3 65.3 0.8 0.01 0.6 0.01 0.9 0.01 0.6 0.01 1.1 0.01

6. Ensemble (N = 2) 60.4 61.1 –0.5 –0.01 –0.6 –0.01 –0.2 0.00 –0.6 –0.01 0.1 0.00

7. Ensemble (N = 3) 34.1 58.7 0.1 0.00 0.0 0.00 0.4 0.00 0.0 0.00 0.6 0.01

8. Ensemble (N = 4) 14.5 58.8 0.8 0.01 0.7 0.01 1.1 0.01 0.7 0.01 1.1 0.01

9. Ensemble (N = 5) 4.2 59.7 0.9 0.01 0.5 0.01 0.8 0.01 0.5 0.01 1.2 0.01

B. Betting on longshot

0. Baseline 100.0 34.7 0.6 0.00 0.1 0.00 1.3 0.01 0.1 0.00 – –

1. Logistic Regression 44.5 35.4 2.1 0.01 1.6 0.01 3.1 0.02 1.4 0.01 3.0 0.02

2. Neural Network 38.5 35.1 2.1 0.01 1.5 0.01 2.4 0.01 1.9 0.01 2.0 0.01

3. Random Forest 51.0 31.0 –0.6 0.00 –1.3 –0.01 0.9 0.01 –0.6 0.00 1.5 0.01

4. Gradient Boosting M. 50.1 31.2 –1.6 –0.01 –1.6 –0.01 0.3 0.00 –1.3 –0.01 1.3 0.01

5. Support Vector M. 51.2 35.2 0.8 0.00 0.1 0.00 2.0 0.01 0.1 0.00 2.1 0.01

6. Ensemble (N = 2) 71.9 33.1 0.4 0.00 –0.3 0.00 1.7 0.01 –0.1 0.00 2.1 0.01

7. Ensemble (N = 3) 46.5 31.9 0.3 0.00 0.1 0.00 1.9 0.01 0.2 0.00 2.4 0.01

8. Ensemble (N = 4) 20.7 33.8 –0.1 0.00 –0.8 –0.01 2.6 0.02 –0.7 0.00 3.3 0.02

9. Ensemble (N = 5) 6.0 39.1 9.1 0.06 8.2 0.05 9.4 0.06 8.0 0.05 8.5 0.05

The table compares the results of betting strategies on professional tennis matches over the period 2010 through 2019. Various prediction
models are calibrated and create signals when to place a bet on a future match and, if required for the money management strategy, also
determine how much to wager. A separate baseline model always predicts the match favorite or longshot, respectively, to win. In addition
to the five individual models, “ensembles” are used, which only produce a signal to place a bet if N of the models agree (N = 2,3, ... ,5) The
summary statistics comprise the proportion of matches that bets are placed on, how many of those are won, and the resulting returns across
all prediction periods. Returns are defined as profit/loss divided by the wagered amount. The “raw” returns are complemented by their values
adjusted by the respective volatility (“risk-adjusted”). Results are shown for bets on the match favorites according to their ATP or WTP
ranking at the time and those on the longshots in Panel A and B, respectively. All results are based on using the best available bookmaker
quotes in the market. Positive returns are shown in bold, and the highest risk-adjusted return is highlighted in gray.

expected returns accruing from short- than from long-
odds bets. It has been confirmed many times for the
tennis market as well. Franke (2020) argues that the
favorite-longshot bias is due to a misperception of
probabilities rather than risk preferences. However,
he also reveals evidence that bookmakers bias odds
in order to protect themselves from adverse events.40

Switching to Table 5b and the case where the most
favorable bookmaker quotes are used, one finds a lot
more cases with positive returns, even though these
do not exceed 1-2% in most cases. In risk-adjusted
form, the returns are again not attractive compared

40See, for example, Candila and Scognamillo (2017), Forrest
and McHale (2007) and Lahvicka (2013) for further discussion
of the longshot bias, its econometric analysis and reasons for its
existence.

to other typical “investments.” It is evident that a lot
more bets are placed compared to Table 5a, be it when
backing the favorite or the longshot. Especially for the
latter, proportionally more tend to be lost, which is
an indicator that the models are too “confident” when
better odds are offered.

As in the case of using average bookmaker quotes,
no single model stands out versus the others in
terms of performance. The same applies to the used
money management strategy. The two most success-
ful strategies deliver returns of 1.1% and 10.1% for
the favorite and longshot, respectively, and are again
from the family of model ensembles. The corre-
sponding graphs in panels (c) and (d) of Fig. 3 are
very insightful. In spite of combining signals from
different approaches, a lot more bets – 18 to 30
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Fig. 3. Cumulative P&L and returns of the most profitable betting strategies. This figure shows the outcome of the most successful betting
strategies as per Tables 5a and 5b. Each subfigure provides the cumulative P&L, returns, and return-to-volatility (“Sharpe”) ratios [in gray].
The vertical dotted lines indicate the seven annual periods spanning 2013 through 2019. Using average bookmaker quotes, figures (a) and (b)
reflect the results from backing the match favorite [ensemble method with four members; variance-optimized money management strategy]
and the match longshot [ensemble method with five members; wagered amount as a fixed proportion of the bankroll], respectively. When
relying on the most advantageous bookmaker quotes for each match, figure (c) shows the results of backing the favorite [ensemble method
with four members; variance-optimized money management strategy] and (d) those for betting on the longshot [ensemble method with five
members; money management based on fixed expected returns].

times as many – are placed compared to panels (a)
and (b). This does ultimately translate into a higher
cumulative P&L. However, when taking the wagered
amounts into account and working with returns,
the outcomes are comparatively less favorable. As
in the case of average betting odds, there were
annual periods with negative returns or hardly any
wins.

Overall, the picture is mixed. The tennis betting
market as a whole leaves hardly any room for con-
sistent positive returns for a bettor. Even more sophis-
ticated machine learning models struggle with this
goal. Model ensembles are comparatively perform-
ing the best, but even when using those, one needs
to be prepared to invest over longer horizons since
there can easily be periods with zero or even negative
returns. With an average bookmaker margin (over-
round) of 6% across the 39,000 matches in the dataset,
this finding is not too surprising since any model
would need to at least generate this excess “over
the market” to become profitable at all. When risk-
adjusting betting returns, these are far less attractive
than those of typical financial investments. Market

liquidity constraints are another factor to consider in
a practical application. The presented results are con-
sistent, for example, with studies such as the one in
Lyocsa and Vyrost (2018): when applying various
betting rules based on odds and rankings, they find at
best weak evidence for market inefficiency and cast
doubt on literature that cites attainable profits in the
professional tennis betting market.

5. Conclusion and outlook

The paper analyzes approximately 39,000 profes-
sional men’s and women’s tennis matches over the
period 2010 through 2019. The used dataset combines
player, match, and betting market data and constitutes
one of the most comprehensive research undertakings
in this sports discipline. The study extends previ-
ous research by applying established statistical and
machine learning techniques including model ensem-
bles to investigate (a) the informational content of
betting odds and historical player and match data with
regard to predicting future match outcomes and (b)
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the ability for bettors to achieve consistently positive
(risk-adjusted) returns.

It is found that the official player rankings and
bookmaker odds together encompass most of the
information for a model-based prediction of match
outcomes. Historical match and player data such as
tournament series and round, age difference between
opponents, and home advantage hardly add any addi-
tional explanatory power. Differences in prediction
performance among the various machine learning
techniques are small. Prediction accuracy typically
reaches not more than about 70% and as such the
same level as model-free bookmaker odds alone. A
simple baseline approach using just the current rank-
ings to determine the match outcome – without any
model – is already correct about 65% of the time.

When applying the models to the sports betting
market, returns from strategies over the longer term
are mainly negative. This holds across most tested
models, various money management strategies, and
for backing the match favorites or longshots. The
use of model ensembles that combine the predictions
from various individual approaches proves promis-
ing, and achievable returns of 10% and more have
been detected. However, given the high volatility of
returns, the likely limited liquidity, and the inherent
model risk, the business case for an “investment”
in the professional tennis betting market remains
rather weak. Especially given the finding that, over
a multi-year horizon, even the best strategies exhibit
subperiods of zero or negative returns, other stud-
ies over only short periods that report an achievable
“edge” for bettors (e.g., Sipko (2015) and Cornman
et al. (2017)) need to be interpreted with caution.

The presented results should motivate further
research in the field of sports prediction and bet-
ting and tennis as one of the prominent disciplines
in particular. The use of recurrent neural networks
(Hochreiter and Schmidhuber (1997)) has been pro-
posed to model the outcome of sports events.41

With connections between neurons allowed to form
directed cycles, a potential intertemporal dependence
between matches and their outcomes (for example,
the fitness of a player in a given week) could be
integrated. Hubacek et al. (2019) propose convo-
lutional neural networks (LeCun et al. (1998)) for
match outcome prediction, to handle a large amount
of player-related statistics as input.

41See, for example, Petterson and Nyquist (2017), in the con-
text of soccer.

The calibration methodology itself might be
amended to go beyond the standalone calibration
of a classification system as the first step and the
design of betting strategies as the second step. Alter-
natively, one could integrate the possible payouts
from the odds into the model, for example, through a
custom loss function. Reinforcement learning (see,
for instance, Sutton and Barto (2018)) could help
to address the problem field from a dynamic pro-
gramming angle, with “agents” iteratively optimizing
betting decisions based on past successes and failures.

On the data side, sentiment indicators obtained
from social media have been suggested for sports pre-
diction and betting purposes (Van Rheenen (2017),
Brown et al. (2018)). Using match details such as
serve and set statistics for the model calibrations
could be useful especially for short-term forecasts
such as “in-play” predictions and betting.

With regard to turning any type of research on bet-
ting strategies into actual profit, Kaunitz et al. (2017)
elaborate on their experience of being blocked by
bookmakers once their devised soccer betting strat-
egy started to be profitable. Nevertheless, the sports
betting market is – and will remain – an excellent
source of information that robust statistical models
can extract a plethora of insights from.
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Paper, Università Degli Studi di Salerno, March.

Chavda, J., Patel, N. and Vishwakarma, P., 2019, Predicting Ten-
nis Match Winner and Comparing Bookmakers Odds using
Machine Learning Techniques, Working Paper, National Col-
lege of Ireland, July.

Clarke, S. R. and Dyte, D., 2000, Using Official Ratings to Sim-
ulate Major Tennis Tournaments, International Transactions
in Operational Research, 7, 585-594.

Cornman, A., Spellman, G. and Wright, D., 2017, Machine Learn-
ing for Professional Tennis Match Prediction and Betting,
Working Paper, Stanford University, December.

Cortes, C. and Vapnik, V. N., 1995, Support-Vector Networks,
Machine Learning, 20, 273-297.

Cortez, P. and Embrechts, M. J., 2013, Using Sensitivity Analysis
and Visualization Techniques to Open Black Box Data Mining
Models, Information Sciences, 225, 1-17.

Cortis, D., 2015, Expected Values and Variances in Bookmaker
Payouts: A Theoretical Approach Towards Setting Limits on
Odds, The Journal of Prediction Markets, 9(1), 1-14.

De Araujo Fernandes, M., 2017, Using Soft Computing Tech-
niques for Prediction of Winners in Tennis Matches, Machine
Learning Research, 2(3), 86-98.

Del Corral, J. and Prieto-Rodriguez, J., 2010, Are Differences in
Ranks Good Predictors for Grand Slam Tennis Matches?,
International Journal of Forecasting, 26, 551-563.

Forrest, D. and McHale, I., 2007, Anyone for Tennis (Betting)?,
The European Journal of Finance, 13, 751-768.

Franck, E., Verbeek, E. and Nuesch, S., 2010, Prediction Accuracy
of Different Market Structures – Bookmakers versus a Betting
Exchange, International Journal of Forecasting, 26, 448-459.

Franke, M., 2020, Do Market Participants Misprice Lottery-type
Assets? Evidence from the European Soccer Betting Market,
The Quarterly Review of Economics and Finance, 75, 1-18.

Friedman, J. H., 2001, Greedy Function Approximation: A
Gradient Boosting Machine, The Annals of Statistics, 29,
1189-1232.

Gao, Z. and Kowalczyk, A., 2019, Random Forest Model Identifies
Serve Strength as a Key Predictor of Tennis Match Outcome,
Working Paper, Darlington School, Rome (GA), October.

Gedeon, T. D., 1997, Data Mining of Inputs: Analyzing Magnitude
and Functional Measures, International Journal of Neural
Systems, 8, 209-218.

Ghosh, S., Sadhu, S., Biswas, S., Sarkar, D. and Sarkar, P. P.,
2019, A Comparison Between Different Classifiers for Ten-
nis Match Result Prediction, Malaysian Journal of Computer
Science, 32, 97-111.

Gilsdorf, K. F. and Sukhatme, V. A., 2008, Testing Rosen’s Sequen-
tial Elimination Tournament Model: Incentives and Player

Performance in Professional Tennis, Journal of Sports Eco-
nomics, 9, 287-303.

Gorgi, P., Koopman, S. J. and Lit, R., 2019, The Analysis and
Forecasting of Tennis Matches by Using a High-dimensional
Dynamic Model, Journal of the Royal Statistical Society:
Series A, 182, 1393-1409.

Gu, W. and Saaty, T. L., 2019, Predicting the Outcome of a Tennis
Tournament: Based on Both Data and Judgments, Journal of
Systems Science and Systems Engineering, 28, 317-343.

Hastie, T., Tibshirani, R. and Friedman, J., 2009, The Elements of
Statistical Learning. Data Mining, Inference, and Prediction.
2nd edition, Springer, New York (NY).

Hochreiter, S. and Schmidhuber, J., 1997, Long Short-Term Mem-
ory, Neural Computation, 9, 1735-1780.

Hubacek, O., Sourek, G. and Zelezny, F., 2019, Exploiting
Sports-betting Market using Machine Learning, International
Journal of Forecasting, 35, 783-796.

Ingram, M., 2019, A Point-based Bayesian Hierarchical Model to
Predict the Outcome of Tennis Matches, Journal of Quanti-
tative Analysis in Sports, 15, 313-325.

Irons, D. J., Buckley, S. and Paulden, T., 2014, Developing an
Improved Tennis Ranking System, Journal of Quantitative
Analysis in Sports, 10, 109-118.

Kaunitz, L., Zhong, S. and Kreiner, J., 2017, Beating the Book-
ies with Their Own Numbers – and How the Online Sports
Betting Market is Rigged, Working Paper, The University of
Tokyo, November.

Kelly, J. L., 1956, A New Interpretation of Information Rate, The
Bell System Technical Journal, 35, 917-926.

Klaassen, F. J. G. M. and Magnus, J. R., 2003, Forecasting the
Winner of a Tennis Match, European Journal of Operational
Research, 148, 257-267.

Knottenbelt, W. J., Spanias, D. and Madurska, A. M., 2012,
A Common-opponent Stochastic Model for Predicting the
Outcome of Professional Tennis Matches, Computers and
Mathematics with Applications, 64, 3820-3827.

Koning, R. H., 2011, Home Advantage in Professional Tennis,
Journal of Sports Sciences, 29, 19-27.

Kovalchik, S. A., 2016, Searching for the GOAT of Tennis Win
Prediction, Journal of Quantitative Analysis in Sports, 12,
127-138.

Lahvicka, J., 2013, What Causes the Favorite-Longshot Bias? Fur-
ther Evidence from Tennis, Applied Economics Letters, 21,
90-92.

Langseth, H., 2013, Beating the Bookie: A Look at Statistical
Models for Prediction of Football Matches, Working Paper,
Norwegian University of Science and Technology, Septem-
ber.

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., 1998,
Gradient-based Learning Applied to Document Recognition,
Proceedings of the IEEE, 86, 2278-2324.

Leitner, C., Zeileis, A. and Hornik, K., 2009, Is Federer Stronger
in a Tournament without Nadal? An Evaluation of Odds and
Seedings for Wimbledon 2009, Austrian Journal of Statistics,
38, 277-286.



S. Wilkens / Sports prediction and betting models in the machine learning age 117

Lisi, F. and Zanella, G., 2017, Tennis Betting: Can Statistics Beat
Bookmakers?, Electronic Journal of Applied Statistical Anal-
ysis, 10, 790-808.

Lyocsa, S. and Vyrost, T., 2018, To Bet or Not to Net: A Reality
Check for Tennis Betting Market Efficiency, Applied Eco-
nomics, 50, 2251-2272.

Ma, S.-M., Liu, C.-C., Tan, Y. and Ma, S.-C., 2013, Winning
Matches in Grand Slam Men’s Singles: An Analysis of Player
Performance-related Variables from 1991 to 2008, Journal of
Sports Sciences, 31, 1147-1155.

Martin, C. and Prioux, J., 2015, Tennis Playing Surfaces: Effects on
Performance and Injuries, Journal of Medicine and Science
in Tennis, 20(3), 6-16.

McHale, I. and Morton, A., 2011, A Bradley-Terry Type Model
for Forecasting Tennis Match Results, International Journal
of Forecasting, 27, 619-630.

Murphy, K. P., 2012, Machine Learning: A Probabilistic Perspec-
tive. MIT Press, Cambridge (MA).

Pencina, M. J., D’Agostino Sr., R. B., D’Agostino Jr., R. B. and
Ramachandran, S. V., 2008, Evaluating the Added Predictive
Ability of a New Marker: From Area under the ROC Curve
to Reclassification and Beyond, Statistics in Medicine, 27,
157-172.

Pettersson, D. and Nyquist, R., 2017, Football Match Prediction
using Deep Learning. Recurrent Neural Network Applica-
tions, Master’s Thesis, Chalmers University of Technology,
Gothenburg, June.

Platt, J. C., 2000, Probabilistic Outputs for Support Vector
Machines and Comparison to Regularized Likelihood Meth-
ods, in: Smola, A. J., Bartlett, P., Schoelkopf, B. and
Schuurmans, D. (eds.), Advances in Large Margin Classifiers.
MIT Press, Cambridge (MA).

Ribeiro, M. T., Singh, S. and Guestrin, C., 2016, “Why Should
I Trust You?”: Explaining the Predictions of Any Classifier,
Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD),
San Francisco (CA), 1135-1144.

Rifkin, R. and Klautau, A., 2004, In Defense of One-vs-all Classi-
fication, Journal of Machine Learning Research, 5, 101-141.

Rue, H. and Salvesen, O., 2000, Prediction and Retrospective Anal-
ysis of Soccer Matches in a League, Journal of the Royal
Statistical Society: Series D, 49, 399-418.

Scheibehenne, B. and Broeder, A., 2007, Predicting Wimbledon
2005 Tennis Results by Mere Player Name Recognition, Inter-
national Journal of Forecasting, 23, 415-426.

Schmidhuber, J., 2015, Deep Learning in Neural Networks: An
Overview, Neural Networks, 61, 85-117.

Sharpe, W. F., 1966, Mutual Fund Performance, The Journal of
Business, 39, 119-138.

Sipko, M., 2015, Machine Learning for the Prediction of Pro-
fessional Tennis Matches, Master’s Thesis, Imperial College
London, June.

Somboonphokkaphan, A., Phimoltares, S. and Lursinsap, C., 2009,
Tennis Winner Prediction Based on Time-Series History with
Neural Modeling, Proceedings of the International MultiCon-
ference of Engineers and Computer Scientists, Hong Kong.

Strumbelj, E., 2014, On Determining Probability Forecasts from
Betting Odds, International Journal of Forecasting, 30, 934-
943.

Sutton, R. S. and Barto, A. G., 2018, Reinforcement Learning: An
Introduction. 2nd edition, MIT Press, Cambridge (MA).

Van Rheenen, S., 2017, The Sentiment Bias in the Market for Ten-
nis Betting, Thesis, Erasmus Universiteit Rotterdam, April.


