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Abstract. Data from the pool rounds of three HSBC World Rugby Sevens competitions (2016-17, 201718, and 2018-19)
are used to investigate the number of tries required to win in international rugby sevens. The data consist of 4,391 tries
scored in 720 matches (1,440 team performances) and are used to calculate the probability of winning a match given that
T tries are scored (P[W|T]). The distribution of the number of tries scored by each team ranges from zero to nine and is
shown to be well-represented by a Poisson distribution computed from the mean value of tries scored in that competition.
The number of tries scored by the winning team in each match within a competition is well-described by a Gamma function
evaluated at the integer number of tries scored with parameters derived from the data set. This appears to be a novel result
not previously reported in the literature. Generalizing within each competition, teams scoring either zero tries or one try have
less than a 2% chance of winning; those scoring two tries win 10% to 20% of the time; three tries result in nearly a 50%
chance of winning; teams scoring four tries are almost sure to win (around 90%); and that for teams scoring five or more
tries winning is virtually assured. Based upon the results from these three tournaments we conclude that competitive teams
should strive to score three or more tries per match and that there is no winning advantage accrued by scoring more than

five tries.

1. Introduction

Rugby sevens is a version of rugby union played by
seven players on a team in two seven minute halves
rather than the full fifteen-a-side game played over
two 40 minute halves. The laws governing the two
games are substantially the same (Hingham et al.,
2014; van Rooyen, 2015). Considerable interest and
increased popularity have accompanied the game of
rugby sevens since it was selected as the Olympic ver-
sion of the game starting in 2016. Recent scientific
investigation of rugby sevens has primarily focused
on player movement patterns, physiological adapta-
tions to the demands of the game, injury rates and
modalities, and anthropometric analyses of players
(Hingham et al, 2014) providing considerable reli-
able information regarding fundamental aspects of
the game at the highest levels.
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The World Rugby Sevens Series is an annual
competition played by national sevens teams and
sanctioned by World Rugby, the International Fed-
eration for the sport. First played in the 1999/2000
season, the competition format has evolved over
the years. Currently and since 2015/2016 the series
is played as ten individual tournaments around the
globe spread typically from December to the fol-
lowing June. Two tournaments are usually played on
adjacent weekends and spaced by four to six week
intervals. Each tournament is two or three days in
length in which 16 international teams play in a pool
round — four pools of four teams each resulting in 24
matches — followed by a knock-out round involving
21 matches to determine overall standings within the
tournament.

Given the interest in rugby sevens it is interest-
ing that there is little in the literature regarding basic
fundamentals of the structure of the game. In their
study of rugby sevens match demands and perfor-
mance, Henderson et al. (2018) lamented the dearth of
research on international sevens match performance,
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physical activity, and skill involvement. van Rooyen
(2016) has commented that data pertaining to how
rugby sevens has developed are scarce. We might
expand on these comments to include the dearth
of research on the game’s fundamental structure to
include such elementary issues as the distribution of
the number of tries scored in matches or asking the
question of how many tries does a team need to score
to be reasonably certain of winning the match. The
primary objective of this paper is to shed some light
on these fundamental questions.

We begin by assuming that the number of tries
scored by a team is a good surrogate value for deter-
mining the winner of a rugby sevens match. If this
is true it follows that sevens teams should strive
to score tries to be successful. We believe that this
assumption is valid for the following reasons. In their
study of the 2011-2012 Sevens World Series Hing-
ham et al. (2014) report that the winning team in
344 of the 392 matches contested that year (88%)
scored more tries than the losing team. World Rugby
(2016) reports that from the 2011-2012 competi-
tion to the 2015-2016 competition the winning team
scored more tries in 85% to 91% of all matches.
Specifically in the 2015-2016 competition the win-
ning team scored more tries in 397 of the 450 matches
(88%). In the other 12% of matches the two teams
scored an equal number of tries with 41 of the 53
matches resulting in a win and 12 in a tie score. At no
time did any team win by scoring fewer tries than their
opponent. Based upon these data we conclude that
the number of tries scored seems to be an acceptable
surrogate for winning a sevens rugby match.

The primary question being asked in this study —
what is the probability of winning at sevens rugby
when a team scores T tries? — is a problem in con-
ditional probability. Bayes’ Theorem allows us to
find a quantitative answer to such questions based
upon observed evidence (Gelman et al., 2013). We
can write Bayes’ Theorem as

P[T|\W]P[W
p[Wm:%

where

P[W|T] is the probability of winning given that
a team scores T tries,

P[T|W]is the probability of scoring T tries given
that a team has won,

P[W] is the probability of winning a match in the
tournament

and P[T] is the probability of scoring T tries in the
competition.

The P[W|T] term is the value we are seeking;
P[T|W] is the probability of scoring T tries among
the winners (also termed the “likelihood” in the
Bayesian literature); P[W] is the probability of a
match having a winner in the pool round (essen-
tially the number of matches minus the number of
ties all divided by the number of matches (240) in
the pool round of all 10 tournaments); and P[7] is
the distribution of tries scored in the pool rounds. By
calculating each term we can evaluate the probability
of winning a match given the number of tries a team
scores.

2. Data and methods

Data used in this study are available from
World Rugby and are published online at
https://www.world.rugby/sevens-series. All calcula-
tions were performed with Microsoft Excel© 2010
spreadsheet software. Internal spreadsheet software
was used for calculating Poisson and Gamma distri-
butions. The confidence level for all interpretations
was set a priori at the 95% level. Standard statistical
tables (Rohlf & Sokal, 1969) were used in statistical
tests. The p-values reported for Chi Square results
were calculated using an online statistical calculator
found at https://home.ubalt.edu/ntsbarsh/Business-
stat/otherapplets/pvalues.htm#trkstwo.

The data were taken from the pool rounds of the ten
tournaments in each of three competitions (201617,
2017-18, and 2018-19) yielding 240 matches (480
team performances) per competition and 720 matches
(1,440 team performances) in aggregate. A total of
4,391 tries were scored in the pool rounds of the three
competitions. The study was restricted to the pool
rounds where each team competes against three other
teams selected based upon prior tournament rank-
ing and a random component (World Rugby, 2018).
Knock-out rounds are played among the more evenly
matched teams based upon pool round performance
in the tournament and might tend to skew the results
(future investigation can test this assumption). Addi-
tionally, tied results stand in the pool round while ties
must be broken in the knock-out round. Ties are part
of the game and should be considered when exam-
ining the number of tries required to win at rugby
sevens.
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Table 1

Data used in this study. Columns are the count of the total number of tries scored in the pool rounds of each competition and the number of
tries scored by the winning team in each match. Each competition contributed 480 team performances. Tied games do not produce a winner
hence the number of winners in each competition is less than 240. Also provided are the total numbers of tries scored in each competition
and by the winners in the pool round. The final columns are the averaged data taken over all three years. The lower part of the Table shows
the mean, variance, and standard deviation of the total number of tries and of the winning team’s tries in each competition and in the average

Tries 20162017 2017-2018 2018-2019 Average

Total ‘Winners Total Winners Total ‘Winners Total Winners
0 36 0 33 0 30 0 33.000 0.000
1 71 0 65 1 63 2 66.333 1.000
2 106 20 94 9 101 8 100.333 12.333
3 107 56 100 43 103 51 103.333 50.000
4 73 68 88 80 80 72 80.333 73.333
5 50 50 49 49 46 46 48.333 48.333
6 18 18 28 28 31 31 25.667 25.667
7 10 10 14 14 16 16 13.333 13.333
8 8 8 7 7 8 8 7.667 7.667
9 1 1 2 2 2 2 1.667 1.667
10 0 0 0 0 0 0 0.000 0.000
Sum = 480 231 480 233 480 236 480 233.333
Tries = 1397 981 1490 1053 1504 1069 1463.667 1034.333
Summary Statistics:
Mean = 2.910 4.247 3.104 4.519 3.133 4.530 3.049 4433
Var. = 3.217 2.117 3451 2.044 3.519 2.242 3.401 2.146
S.D. = 1.794 1.455 1.858 1.430 1.876 1.497 1.844 1.465

3. Results and discussion

The data used in this study are summarized in
Table 1. The total number of tries scored by teams in
each competition ranged from zero to nine. The mean
number of tries scored was about three. This is con-
sistent with data presented by World Rugby (2016)
for the 2015-2016 Sevens World Series where the
average number of tries scored in a match was 5.8
suggesting an average of 2.9 tries by each team. The
mean number of tries scored by the winning team in
the current study was nearly 4.5. These values — mean
number of tries scored and the mean number of tries
scored by the winning team — as well as the total num-
ber of tries scored and the total numbers of tries scored
by the winning teams are all observed to increase
throughout the three competitions. We suggest that
these trends could reflect improving attacking skills
and tactics or improved overall fitness through time.
Ultimately, however, analysis (not detailed here) over
the three competitions did not reveal any statistically
significant non-zero trends. Any possible verification
of these trends must wait for additional data. Also
shown in Table 1 is the distribution of the average
value of the data for each number of tries across the
three competitions. These data are similar to those of
each competition.

In each case the variance of the total num-
ber of tries scored exceeded the mean value (the

ratio was typically 1.1) evidencing what has been
termed “overdispersion” (Gelman et al. 2013:p.437).
Overdispersion can result from several mechanisms
including (Payne et al., 2018): 1) excess numbers of
zero observations (which might be caused by includ-
ing the results of several weaker teams in the data
set); 2) the presence of outliers (perhaps caused by
stronger teams “running up the score” against weaker
opponents); 3) violations of the assumption of inde-
pendence (where weaker teams consistently score
fewer tries and stronger teams consistently score
more tries); and 4) the possibility that the rate of
try scoring changes through time (see also Dean
& Lundy, 2016). Payne et al (2018) suggest that
the adverse effects of overdispersion on statistical
methods are not severe when the ratio of the com-
puted Chi Square value of the data divided by the
number of degrees of freedom under the Poisson
assumption is less than 1.2. The data sets from the
three competitions used in this study all have values
of this ratio of less than 1.13 (details not shown).
We conclude that any effects from overdispersion
are minor.

The modal number of tries scored — the number
of tries expected to be scored by a team — remained
steady at three in each competition and the modal
number of tries scored by the winners was constant
at four. Interestingly, in each competition no team lost
when scoring five or more tries.
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Table 2

The probability of scoring 7 tries (P[7]) in a match for all three
competitions and the average distribution

Tries 20162017 2017-2018 2018-2019 Average
P[T] P[T] P[T] P[T]
0 0.075 0.069 0.063 0.069
1 0.148 0.135 0.131 0.138
2 0.221 0.196 0.210 0.209
3 0.223 0.208 0.215 0.215
4 0.152 0.183 0.167 0.167
5 0.104 0.102 0.096 0.101
6 0.038 0.058 0.065 0.053
7 0.021 0.029 0.033 0.028
8 0.017 0.015 0.017 0.016
9 0.002 0.004 0.004 0.003
10 0.000 0.000 0.000 0.000
Sum = 1.000 1.000 1.000 1.000
P[T] versus Number of Tries Scored
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Fig. 1. The proportion of the number of tries scored in each com-
petition. The data are quite consistent year to year with equivalent
modal values of 3. The mean value of the number of tries scored
and the standard deviation and variance of the number of tries
scored both increased slightly through time.

3.1. Evaluating P[T]

P[T] is the probability of scoring T tries in the
competition. Data from Table 1 are used to calcu-
late P[T] for each competition and the average of all
three competitions by taking the value in the Total col-
umn for try values in each year and dividing by the
total number of team performances in that year. The
results are shown in Table 2 and plotted in Fig. 1. The
distributions are quite similar with, perhaps, a slight
shifting to the right (an increased number of higher
scoring tries were scored) through time. Data from
the 2016—17 competition may have exhibited too few
six and seven try performances relative to the other
two years. The shape of the distributions suggests a
Poisson process may be at work despite the slight
over-dispersion seen in the data.

The number of tries scored in a rugby sevens match
is an example of “count data.” The distribution of
count data may be expected to be described by the
Poisson distribution provided that the elements being
counted occur independently and with a constant
probability of occurrence at any given time (Gelman
etal., 2013).

The Poisson distribution is given (in the format of
this study) by the following equation (Forbes et al.,
2011:p.152):

where P[T] is the probability of scoring T tries in a
match, A is the mean number of tries scored within
the distribution of T (also equal to the variance of
the distribution of T), T is the number of tries scored,
and 7! is the factorial of the number of tries scored.
Some authors include a statement that the Poisson
distribution appears when the probability of an event
happening is relatively rare and there are a large num-
ber of opportunities for the rare event to occur (Sokal
& Rohlf, 1969:p.83). The Poisson distribution has
been found to be a good representation of data in
areas such as call traffic volumes at telecommuni-
cations centers, the length of lines at supermarkets
and restaurants, reliability engineering, and others
(Jones, 2019:p.214). Among the more interesting
results using the Poisson distribution were that the
number of Prussian cavalry soldiers killed by being
kicked by their horses each year from 1875 to 1894
(Jones, 2019:p.214; Panditt, 2016), and the number of
V-1 flying bombs that landed in various areas around
London during the Second World War (Clarke, 1946)
were both described by the Poisson distribution.
Researchers in goal scoring sports have sometimes
modeled score distributions as a Poisson distribu-
tion. Maher (1982) noted that many investigations
have found that the distribution of soccer scores from
English domestic competitions is described by the
Poisson distribution while noting that the distribu-
tion may be better described by the closely-related
negative binomial distribution. His study, however,
shows that the Poisson distribution gives a reason-
ably good fit to the data with some slight systematic
differences. Croucher (2002) concluded that the neg-
ative binomial distribution yields a better fit than the
Poisson but requires much more data collection and
calculation. Greenhough et al. (2002) concluded from
worldwide soccer scoring data that neither the Pois-
son nor the negative binomial distributions described
the distribution in the extreme values as the observed
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score distribution is too “heavy-tailed” (too many
high scores). They prefer extremal statistics as a bet-
ter fit but note that the Poisson or negative binomial
distributions are sufficient models for English soccer.
Popular articles written for the sports betting industry
(see Naoumis, 2019, for instance) often assume that
scores are distributed according to the Poisson distri-
bution but with little (if any) rigorous justification.

In ice hockey, Mullett (1977) showed that the dis-
tribution of the number of goals scored in the National
Hockey League follows a Poisson distribution. In a
fairly recent study on try scoring in rugby league,
Tonkes (2016) observed that the distribution of tries
scored in all 201 matches from the 2015 Australian
National Rugby League competition are well repre-
sented by a Poisson distribution. Jones (2019:p.215)
speculated that, while the total score in rugby may not
be distributed as a Poisson due to the differing number
of points for different ways of scoring, the number of
tries (and other ways of scoring such as penalty goals
and dropped goals) could be distributed as a Poisson
distribution.

There clearly is some difference of opinion regard-
ing how well the Poisson distribution describes soccer
and other goal scoring sports. The deviations from a
Poisson distribution that have been observed seem
minor and from the standpoint of practicality may
not be important. We can test this assumption for the
current data and draw conclusions regarding the pro-
priety of using the Poisson distribution to describe try
scoring in sevens rugby.

As part of this study we test how well the observed
distributions approach a Poisson distribution using
a Chi Square Goodness of Fit Test (Sokal & Rohlf,
1969). The result for the 2016-2017 competition is
shown as an example calculation in Table 3. In this
Table the data for seven tries and greater are pooled
together to ensure that there are at least five expected
occurrences in each try category (Sokal & Rohlf,
1969:p.568; Healey, 2005:p.295). For six degrees of
freedom, the calculated chi square value of 7.570 has
a p-value of 0.271. The coefficient of determination
(%) (Healey, 2005:p.404) comparing these two dis-
tributions was found to be 0.9890 meaning that the
Poisson distribution explains 98.9% of the variance in
the data. We conclude that the observed distribution is
not significantly different from a Poisson distribution
despite the slight over-dispersion.

Figure 2 compares the distribution of try data from
the 2016—17 competition with a Poisson distribu-
tion with the same mean. Based upon the chi square
goodness of fit analysis the differences between the

Table 3
Chi Square Goodness of Fit Test for 2016—17 competition data to
Poisson distribution. Data for seven tries and beyond are pooled
to ensure more than five expected values. The comparison is for
six degrees of freedom — one is lost for ensuring the total sums
to 480, and one for estimating the mean value of the distribution
(2.910). The critical value at the 5% level is 12.592. The calcu-
lated Chi Square is 7.570. The difference between the observed
data and the Poisson distribution is not significant. The calculated

P-value is 0.271
Tries Count Count Contrib.
Observed Poisson to Chi Sq.
0 36 26.137 3.721
1 71 76.071 0.338
2 106 110.699 0.199
3 107 107.393 0.001
4 73 78.140 0.338
5 50 45.484 0.448
6 18 22.063 0.748
7 10 9.173
8 8 3.337 1.775
9 1 1.079
>10 0 0.423
Sum = 480 480 7.570
df= 8-2=6
pvalue = 0.271

The vertical lines indicate values that were pooled together.

Comparison between Observed Count and
Poisson Distributions
2016-2017 Competition

Count

m Observed

@ Poisson

o 1 2 3 4 5 6 7 8 9 10
Number of Tries Scored

Fig. 2. Distribution of the count of the number of tries scored in
the pool round of the 2016-2017 competition compared with a
Poisson distribution with the same mean (A=2.9104). The p-value
of the Chi Square Goodness of Fit is 0.271 and the Coefficient of
Determination (%) =0.9890.

two curves are attributable to sampling and are not
significant. The overall agreement between the two
distributions is apparent.

Table 4 provides a summary of the results for the
Chi Square Goodness of Fit Test for all three years
and the averaged data. As with the 2016-17 data,
the distributions of the number of tries scored in
the other two competition years do not differ signif-
icantly from a Poisson distribution — p-values are all
well in excess of 0.05 and the values of 7 are all
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Table 4

Results of Chi Square Goodness of Fit Test for observed data by
competition year and for the average distribution versus Poisson
distribution with the same mean. Columns are for competition year,
the number of degrees of freedom for the chi square test, the coeffi-
cient of determination, the chi square critical value at the 95% level,
the observed chi square of the comparison between the observed
data and the Poisson distribution, the calculated p-value, and the
result of the test. NS =observed distribution is not significantly
different from a Poisson distribution at the 95% confidence level

Year Critical Observed
a2 ChiSq. ChiSq. p-value Result

2016-17 6 0.9890 12.592 7.570 0.271 NS
2017-18 7 0.9850 14.067 9.084 0.247 NS
2018-19 7 09911 14.067 7.891 0.342 NS
Average 7 0.9930 14.067 7.277 0.401 NS

in the vicinity of 0.98 or 0.99. We conclude that we
can be confident that the distributions of the num-
ber of tries scored in each year of the Sevens World
Series we investigated closely follow a Poisson dis-
tribution with a mean value () equal to the observed
mean for the competition. Also, the distribution of
the averaged data is not significantly different from
a Poisson. This is to be expected as a result of the
Additive Property of the Poisson distribution (Jones,
2019:p.212).

These results suggest that the distribution of the
number of tries scored within each competition con-
form to a Poisson distribution. This result may be
disconcerting to some. Panditt (2016) argues that the
conformance of any real distribution to a Poisson dis-
tribution could be interpreted as evidence that the
occurrence of each event is random and not the result
of intent or design. Such a conclusion might trouble
us — despite the consistency of the Laws under which
the game is played; despite the consistent application
of these Laws by Referees; despite the time spent by
coaches training and developing their teams; despite
the decisions and actions of the players — scoring tries
in rugby sevens would seem to be as random as Prus-
sian cavalry officers dying from horse kicks or the
location of the impacts of V-1 flying bombs during
World War Two.

In reality, the apparent randomness is due to our
focus on the collective probability of the number
of tries scored in sevens rugby. Each individual try
has an identifiable set of predisposing factors illumi-
nated by the studies of performance analysis in sevens
rugby. Each try is scored in a more deterministic man-
ner that we can observe and possibly predict given the
opponents or the status of the game. It is only when
we look at all of the matches and all of tries scored

Table 5
The number of ties and winning probability (P[W]) in each com-
petition year pool round and the average distribution. P[W]is less
than 0.5 due to the occurrences of tied matches

Year Ties P[W]
2016-17 9 0.481
2017-18 7 0.485
2018-19 4 0.492
Average 20 0.486

within a competition that the random nature appears
(Panditt, 2016).

3.2. Evaluation of P[W]

We can calculate the probability of winning a
match (P[W]) for each competition directly from
the data in Table 1. This probability equals the total
number of winning performances divided by the total
number of matches (240). In each competition the
value of P[W] is less than 0.5 due to the existence of
tied scores in the pool rounds. The values of P[W] by
competition year and the average are given in Table 5.
The number of ties per competition is seen to decrease
through time and P[W] increased slightly. The prob-
ability of winning was fairly stable equaling between
0.48 and 0.49 in each competition and in the overall
average value.

3.3. Evaluation of P[TIW]

The likelihood function given by P[T|W] — the
probability of scoring T tries given that a team has
won —is the third value we compute from the observed
data. The likelihood provides all of the informa-
tion contained in the data regarding the relationship
between try scoring by the winning teams (Box &
Tiao, 1973:p.10). The distributions of P[T|W] for all
three of the competitions are given in Table 6 and
shown in Fig. 3. This figure shows that very few win-
ning teams scored fewer than two tries. The most
likely number of tries scored by the winning team
was 4. The distributions show that the range of tries
scored by winning teams still spans the range of zero
to nine tries — the same as for the number of tries
scored in the competitions as a whole. The distribu-
tions of P[T|W] and P[T] have different shapes with
different means and variance. The P[T|W] distribu-
tion is more peaked than the P[T] distribution and the
means and the modes of the distributions have been
shifted to the right to higher values. While still resem-
bling a Poisson distribution, detailed analysis of the
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Table 6

The likelihood function (P[T|W]) for three competitions and the
average distribution

2016-17 2017-18 2018-19 Average
Tries P[TIW] P[TIW] P[T|W] P[T|W]
0 0.000 0.000 0.000 0.000
1 0.000 0.004 0.008 0.004
2 0.087 0.039 0.034 0.053
3 0.242 0.185 0.216 0.214
4 0.294 0.343 0.305 0.314
5 0.216 0.210 0.195 0.207
6 0.078 0.120 0.131 0.110
7 0.043 0.060 0.068 0.057
8 0.035 0.030 0.034 0.033
9 0.004 0.009 0.008 0.007
10 0.000 0.000 0.000 0.000
Sum = 1.000 1.000 1.000 1.000
P[T|W] versus Number of Tries Scored
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Fig. 3. The proportion of the number of tries scored by the winning
team in each competition (P[T|W]). Note the failure of any team
scoring zero tries to win. In the 2016-2017 competition no team
won when scoring one try. The mean value of the number for tries
scored by the winning team and the standard deviation and variance
of tries scored by the winning team both increase slightly through
time. The modal value in each competition was 4.

P[T|W] distributions has revealed that the true form
of the observed distributions is better described by
the related Gamma distribution. Jones (2019:pp.224-
226) illustrates how the Poisson distribution and the
Gamma distribution are complementary functions.

The equation for the Gamma distribution is given
by (Gelman et al., 2013:p.578) as (written in the for-
mat of this study):

P[T|W] = L p@-n,(%)
BT (@)

where

T=the number of tries scored by the winning
teams,

2 . . _ .
o= ;‘—2 is the “shape factor” where X is the

observed mean number of tries scored by the win-
ning team and s is the variance,

B = % is the “scale factor”
and I'(«) is the Gamma function of the value o
(Artin, 1964).

The Gamma function is a complicated expression
equal to (in the format of this study):

o
[(a) = / e Trelar
0

and is a constant for a given value of . The values of
the Gamma function are automatically evaluated in
Microsoft Excel©when computing the Gamma dis-
tribution.

We note that the Gamma distribution is a con-
tinuous distribution while P[T|W] is a discrete
distribution. We find that if we evaluate the values
of the Gamma distribution only at the discrete inte-
ger values of T in computing P[T|W] we observe
that the values of P[T|W] sum to 1 as required of a
true probability. Hence, in this study the Gamma dis-
tribution reported is actually a discrete distribution
represented by the integer values of the continuous
Gamma distribution. There is, of course, a risk of this
approach as we would expect that the change from a
continuous to a discrete function should add another
source of variance. In the end the data will tell us of
this discrete approach is satisfactory or not.

We also note that if @ > 1 (i.e. — the square of the
mean exceeds the variance) the value of the Gamma
distribution equals zero when 7=0. This requires that
any team scoring zero tries cannot win if the distribu-
tion of P[T|W]is truly a Gamma distribution. While
itis possible for a team to win by scoring only penalty
goals or dropped goals in rugby, scoring in these ways
is highly unusual in the seven-a-side game. The data
used in this study show that teams did not win without
scoring at least one try.

The three distributions of P[T|W] (Table 6 and
Fig. 3) are quite similar in appearance. There is evi-
dence that the data from the 2016-2017 competition
tend towards smaller values of 7 and the data for the
2018-2019 competition tends towards higher values
of T. The mean values of T shown in Table 1 con-
firm that the average number of tries scored by the
winning teams was not stationary through time and
increased in each competition. In all three competi-
tions no team won when scoring zero tries and any
team scoring one try is unlikely to win.
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Table 7

Chi Square Goodness of Fit Test for2016-2017 P[T|W]to Gamma
distribution. Data for zero to two tries and for eight tries and beyond
are pooled to ensure more than five expected values. Comparison
is for four degrees of freedom — one is lost for ensuring the total
sums to 231, one for estimating the value of « (8.51865) and one
for estimating the value of f (0.49852). The critical value at the
5% level is 9.488. The calculated Chi Square is 4.122. The differ-
ence between the observed data and the Gamma distribution is not
significant. The calculated P-value is 0.390

Count Count Contrib. Gamma Data

Tries Winners Gamma to Chi Sq.

0 0 0.000 Mean = 4.247
1 0 0.801 0.016 Var. = 2.117
2 20 19.764 S.D.= 1.455
3 56 56.065  0.000 alpha = 8.51865
4 68 65.600  0.088 beta = 0.49852
5 50 47.247  0.160

6 18 25.035 1.977

7 10 10.733  0.050

8 8 3.941

9 1 1.285 1.832

>10 0 0.527

Sum= 231 231 4.122
df = 7-3=4
p-value = 0.390

The vertical lines indicate the values pooled.

We can perform a Chi Square Goodness of Fit Test
between P[T|W] and the Gamma distribution with
parameters computed from the observed mean and
variance within the data set of one competition. An
example calculation is provided for the 2016—17 com-
petition in Table 7 and plotted in Fig. 4 showing that
the distribution of tries scored by the winning team
essentially follows a Gamma distribution. Here the
p-value was 0.390 and the 72 value between the data
and the Gamma distribution was 0.9875. The compar-
ison between the two distributions provided in Fig. 4
shows that the agreement is striking.

Table 8 summarizes the Chi Square Goodness of
Fit Tests for all three competitions and the averaged
data. For the three competitions the p-values were in
excess of 0.390 and the 12 values ranged from about
0.97 to 0.99. For each competition year the values
of P[T|W] are consistent with a Gamma distribu-
tion. Table 9 is a summary of the parameters used in
computing the Gamma distributions. For these three
years, the values of & range from 8.519t0 9.993 and 8
values range from 0.452 to 0.499. Additional research
isneeded to test any universality associated with these
values of a and § but their relative consistency over
three years’ of Sevens World Series competition sug-
gests there may be a common process at work.

Comparison between Observed Count and
Gamma Distributions
2016-17 Competition

W Winners

Count
8

#Gamma

0 1 2 3 4 5 6 7 8 9 10
Number of Tries Scored

Fig. 4. Comparison between P[T|W] and a Gamma distribution
for the 2016—17 competition with parameters computed from the
data in Table 1 and given in Table 7. The p-value of the Chi Square
Goodness of Fit is 0.390 and 72 is 0.9875.

Table 8

Results of Chi Square Goodness of Fit Test for observed P [ T| W]
by competition year versus Gamma distribution calculated from
the observed mean and variance. Columns are for competition
year, n=number of winners, the number of degrees of freedom
for the chi square test, the coefficient of determination, the chi
square critical value at the 95% level, the observed chi square of
the comparison between the observed P [T| W] and the Gamma
distribution, the calculated P-value, and the result of the test.
NS =observed distribution is not significantly different from a
Gamma distribution

Year Critical Observed
n df > ChiSq. ChiSq. p-value Result

2016-17 231 4 09875 9.488 4.122 0390 NS
2017-18 233 4 0.9687 9.488 4.142 0387 NS
2018-19 236 4 09763 9.488 3201 0525 NS
Average 233.33 4 0.9868 9.488 2205 0.698 NS

Table 9

Values computed from the data in Table 1 to compute the param-
eters for the Gamma distributions for P [ T'| W] — alpha and beta

Year Gamma Gamma Observed Observed
alpha beta Mean S.D.
2016-17 8.51865 0.49852 4.247 1.455
2017-18 9.99321 0.45224 4.519 1.430
2018-19 9.15292 0.49489 4.530 1.497
Average 9.15795 0.48404 4433 1.465

As a check on the veracity of this result a Monte
Carlo-type experiment was performed using 5,000
paired samples from a Poisson distribution with mean
of 3. As shown in the Appendix to this study, the
10,000 variates are found, as expected, to be dis-
tributed as a Poisson distribution, and the distribution
of the 4,208 “winners” of the comparisons between
the samples were seen to be well described by the
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Gamma distribution with parameters computed from
the winners of the sample pairs. The theoretical num-
ber of equal-try matches in this example is found to
result in 16.7% ties and the sample of 5,000 “win-
ners” during this experiment resulted in 15.8% ties
(792 values). These compare well to the previously
mentioned World Rugby (2016) data for the 2015-16
competition where the winning team scored more
tries in 88% of the matches and in the remaining 12%
of the matches the number of tries scored was equal.
The difference between the theoretical value for the
number of equal-try matches and the observed value
are not significant at the 95% level.

We conclude that the distributions of P[T|W] in
these data are consistent with a discrete distribution
represented by the integer values of a continuous
Gamma distribution. We believe that this is a novel
point that has not been demonstrated previously in
the literature. We note that there is no compelling
a priori reason for this to occur. Gamma distribu-
tions are typically used to describe such phenomena
as the time of the n-th occurrence of several events
distributed as a Poisson process; amounts of rainfall
over an area; the size of loan defaults and insurance
claims; the flow of items through manufacturing or
distribution facilities and processes; the demand on
web servers; the timing of disk drive failures; and the
demand on telecommunications centers (Jones, 2019,
p- 227). The distribution of the number of tries scored
by the winning team in a pairwise competition where
the number of tries scored is a Poisson process is not
similar to any of these processes.

The results of this study, including the Monte Carlo
simulation, strongly suggest that the distribution of
P[T|W] truly follows the Gamma distribution. Fur-
ther research is necessary to discern why this is so.

3.4. Evaluating P[W|T]

We are now in a position to use Bayes’ Theorem
to calculate P[W|T] — the probability of winning
a match in the World Rugby Sevens World Series
given the number of tries scored by a team. We note
that while P[W|T] can be computed accurately in
this manner, it turns out that there is a simpler and
mathematically equivalent way to get there (Stone,
2013:p.70). P[W|T] can be computed directly from
the count data given in Table 1. Within any given
competition, P[W|T1] is equal to the number of times
the winning team scored 7 tries divided by the total
number of times that 7 tries were scored.

Table 10

P[W|T] for each competition and the average distribution com-
puted from the data in Table 1

Tries 2016-17 2017-18 2018-19 Average
PIW|T] P[W|T] P[W|T] P[W|T]
0 0.000 0.000 0.000 0.000
1 0.000 0.015 0.032 0.015
2 0.189 0.096 0.079 0.123
3 0.523 0.430 0.495 0.484
4 0.932 0.909 0.900 0.913
5 1.000 1.000 1.000 1.000
6 1.000 1.000 1.000 1.000
7 1.000 1.000 1.000 1.000
8 1.000 1.000 1.000 1.000
9 1.000 1.000 1.000 1.000

P[W[T] versus Number of Tries Scored

m2016-17
n2017-18
=2018-19

Probability

Number of Tries Scored

Fig. 5. The probability of winning given that a team scores 7 tries
(P[W|T]) for three competitions. Teams that scored one try or did
not score a try had essentially no chance of winning. The 50-50
point for winning was about 3 tries, and teams scoring five or more
tries were certain to win in these competitions.

Table 10 shows the values of P[W|T'] for each com-
petition and these are plotted in Fig. 5. We see that the
distribution is a step-like pattern rising from a proba-
bility of zero when no tries are scored to a probability
of 1.00 when five tries are scored and is constant
at 1.00 thereafter to the maximum observed number
of tries. The winning probability from scoring only
one try is quite bleak, reaching an average value of
fewer than two wins in each 100 matches. Scoring
two tries raises the winning probability from 10% to
20%. With three tries a team is close to winning 50%
of its matches (43% to 52%). Four tries resulted in a
fairly high certainty of a win, ranging from 91% to
93% of the time. Five or more tries resulted in certain
victory in these competitions.

These results might inform coaching decisions
regarding teams in the Sevens World Series. To
remain competitive teams evidently must have the
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consistent ability to score three or more tries per
match. Without this there is no pathway towards suc-
cess in these competitions (van Rooyen, 2015). Even
with three tries per match and the resultant 50%
winning probability it is unlikely that a team will
consistently finish in the top two places in pool play.
If a team fails to finish in the top two of their pool
and they eventually win the Challenge Trophy (the
knock-out round for the third and fourth place finish-
ers in each pool) the maximum number of points they
can acquire is only 36% of the points the tournament
champion receives (van Rooyen, 2015). Competitive
teams must routinely finish in the top two of their pool
which, according to the values of P[W|T] developed
in this study, requires routinely scoring more than
three tries per match.

Teams can be quite certain of winning by scoring
four tries in a match and virtually certain of winning
by scoring five or more tries. There is no additional
benefit to be accrued (based on the data used in this
study) from scoring more than five tries. While the
observed distribution of P[T] accounts for the prob-
ability of scoring up to nine tries in a match — and
there have been 145 occurrences of six or more tries
in a match in 1,440 team performances (an observed
probability of 0.10) — from a practical perspective the
effort required to score more than five tries is essen-
tially wasted. We strongly suspect that in some future
Sevens World Series matches a team will score five
or more tries and lose the match but this has not been
observed in the last three years. At present there is no
evidence that “running-up the score” provides tangi-
ble benefits in terms of winning matches in exchange
for the additional effort. There may, however, be real
psychological benefits over future opponents from
scoring more than five tries in a match. Coaches must
weigh the costs and benefits.

Finally, we believe that most experienced rugby
sevens coaches sense much of the results of this study
intuitively. It should surprise no high level sevens
rugby coach that their team needs to score three or
more tries in a match to be competitive, provided
that the team’s technical and tactical abilities (partic-
ularly in defense) are good enough. The benefit of
this study is that we can now address this issue more
quantitatively. Two tries does not just result in losing
a rugby sevens match, two tries loses the match for
a team approximately 80% of the time. Four tries do
not just generally ensure a victory, four tries is suffi-
cient to win 90% of the time. This quantification of
the game and the education of coaches who can artic-
ulate and interpret the probabilities will allow them

to make better decisions on how they should prepare
their teams.

4. Conclusions

Analysis of the number of tries scored by teams in
the pool round in three years of the World Rugby Sev-
ens World Series and the number of tries scored by
the winning teams in those competitions has allowed
us to determine the probability of winning given the
number of tries scored (P[W|T]) in these competi-
tions. We also can formulate some generalizations
regarding the distributions of the number of tries
scored (P[T]) and the number of tries scored by the
winning teams (P[T|W1]).

The distribution of the number of tries scored by
teams (P[T]) in the pool rounds ranged from 0 to
9. The distribution in each competition was well-
defined by a Poisson distribution with the Poisson
parameter A equal to the observed mean number
of tries scored. The number of tries scored by the
winning teams (P[T|W]) in the pool rounds was
well-approximated by a Gamma distribution with
parameters computed from the observed mean and
variance of the distributions. The Gamma distribu-
tion holds through all three competition years and is
supported by a Monte Carlo experiment on pairwise
samples from a Poisson distribution with the mean
number of tries scored equal to three. We believe that
this is a new observation not previously reported in
the literature.

The probability of winning a match (P[W]) in each
competition was seen to approach but be less than
0.5 due to the number of tied games in the pool
rounds. The observed winning percentages in each
of the three competitions ranged from about 0.48 to
0.49.

Using data on P[T|W], P[T] and P[W] for each
competition we computed the probability of winning
given the number of tries scored (P[W|T]) using
Bayes’ Theorem. The results for each competition
show that teams cannot expect to win if they score
zero or one try per match and the chances of winning
with scoring two tries is no better than 20%. Three
tries results in about a 50-50 chance of winning. Four
tries result in an approximately 90% surety of win-
ning, and winning was guaranteed by scoring five or
more tries.

We finish by opining that more quantitative studies
of sevens rugby are needed. The results of studies that
provide quantitative data and information to sevens
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rugby coaches allow them to make better informed
decisions about how their teams should play the
game.
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5. Appendix - Monte Carlo Simulation of
P[TIW]

We seek to verify that the likelihood function
(P[T|W]) in sevens rugby is distributed as a Gamma
distribution. Consistent with observations of sevens
rugby we assume that: 1) the number of tries scored
is distributed as a Poisson variable, and 2) the num-
ber of tries scored is a good surrogate for the number
of points scored (data — not presented here — from
the pool rounds of two tournaments (Dubai and Los
Angeles) from the 2018-19 HSBC Sevens show the
correlation between number of tries scored and the
number of points scored is about 0.98). The match is
won by the team that scores more tries.

Consider a pairwise sampling of 5,000 pairs of
Poisson-distributed variates. We compare the sam-
ples (simulated tries) and determine the “winner” of
the match to be the variate with a greater value. If the
values are the same we borrow from tic-tac-toe and
declare it to be a “cat’s game” — the tie stands without
a winner but the variates are still included in the total
number of values sampled from the original distribu-
tion. This provides us with 10,000 variates and up to
(but probably fewer than) 5,000 winners.

For this simulation we sample from a Poisson dis-
tribution with a parameter A equal to 3 which is a
reasonable approximation to the average number of
tries a team scores in a sevens rugby match. The Pois-
son distribution was generated by a Microsoft Excel©
2010 Random Data generator. Table A1 provides the
distribution of the Monte Carlo simulation and the
Poisson distribution while Fig. A1 shows a compari-
son between the distributions. The plot shows that the
fit between the sampled Poisson distribution and the
theoretical distribution is excellent. The coefficient of
determination (2) between the two cumulative dis-
tributions is 0.9990. There is a slight surplus of 3 try
observations, but this is not deemed critical. We con-
clude that the simulation data are demonstrated to be
defined by the Poisson distribution.

The pairwise sampling of the Poisson distribution
produced 4,208 “winners.” The distribution of the
winners was modeled as a Gamma distribution ~T (e,
B) with « and B computed from the data (Forbes et
al., 201:p.111). The Gamma distribution referred-to
here is a discrete distribution represented by the inte-
ger values of a continuous Gamma distribution. The
computed values of o and 8 from the Poisson winners
are 7.0794 and 0.5897. As these values are computed
from the sample data they are subject to variation
— other samples would yield different but similar

Table A1l
Cumulative proportion of simulated tries scored in simulation
of 10,000 Poisson variables and a Poisson distribution (A =3).
The coefficient of determination (r2) between the distributions is

0.9990
Tries Observed  Poisson
P[T] P[T] Poisson Distribution:

0 0.050 0.050 Mean = 3.000

1 0.149 0.149 Var. = 3.000

2 0.225 0.224

3 0.231 0.224 Observed Distribution:
4 0.165 0.168 Mean = 2.990

5 0.097 0.101 Var. = 2.990

6 0.049 0.050

7 0.023 0.022

8 0.008 0.008

9 0.003 0.003

10 0.001 0.001

11 0.000 0.000

12 0.000 0.000

Sum= 1.000 1.000

Comparison between Observed Probability and
Poisson Distributions for Monte Carlo Simulation
0.25
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Fig. Al. Comparison between the distribution of 10,000 samples
drawn from a Poisson distribution and the theoretical cumulative
Poisson distribution (A =3). The coefficient of determination (r2)
between the two distributions is 0.9990.

values. Table A2 and figure A2 show a comparison
between the computed likelihood (P[T|W]) from the
winners and the theoretical Gamma distribution. The
fit between the data and the Gamma distribution is
quite close with the coefficient of determination equal
t0 0.9987. There are slight deviations between the two
distributions at try values of 1 and 7, but the overall
fit is striking.

Finally, the number of cat’s games observed from
our Poisson sample is 792 out of 5,000 (15.8%). The
theoretical number of ties using the pairwise Poisson
test can be calculated from the expected P[T] for each
value of T and summed over all values of T. The prob-
ability of scoring T tries and the opponent scoring 7'
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Table A2

Cumulative probability of winning given the number of simulated

tries scored in 4,208 paired Poisson samples P[7T| W] and the

Gamma Distribution with & =7.07940 and B =0.58966. The coef-

ficient of determination (2) between the two distribution is equal
to 0.9987

Tries Observed Gamma

P[TIW] P[T|W] Gamma Function:

0 0.000 0.000 Mean = 4.174
1 0.016 0.009 Var.= 2.461
2 0.109 0.115

3 0.245 0.247 alpha= 7.07940
4 0.254 0.261 beta= 0.58966
5 0.188 0.186

6 0.107 0.103

7 0.053 0.048

8 0.019 0.020

9 0.007 0.007

10 0.002 0.003

11 0.000 0.001

12 0.000 0.000

Sum= 1.000 1.000

tries is equal to (P [T])3. Summing these over 7 values
of zero to 12 yields an expected percentage of equal
try games as 16.7%. The observed number of equal-
try performances from the 2018-2019 Sevens World
Series as part of this study was 34 out of 240 (14.2%).
These values are all of similar magnitude. We can
compare the probabilities of equal number of tries
from the 2018-19 competition (0.142) with the the-
oretical probability of equal tries (0.167) via a Z-test
for a single sample proportion (Healey, 2005:p.213):

pP1— P2

[p=pp’
n

p1 and p are the probability values derived from
theory and the competition, respectively, and

n is the number of matches in the competition
(240).

7 =

where

We find that the computed Z-value for this test
is 1.038. The two-tailed critical value at the 95%
level is 1.96. The p-value is 0.299, and we con-
clude that the observed value of the proportion of
equal-try matches (0.142) is not significantly differ-
ent from the theoretical value (0.167). We also see that
the observed probability computed from our samples
of 10,000 Poisson distributed variates (0.158) falls

Comparison between Observed Probability and
Gamma Distributions for Monte Carlo Simulation
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Fig. A2. Comparison between the theoretical Gamma distribution
(=7.0794, $=0.5897) and the distribution of P[ 7| W] derived
from 4,208 winners. The coefficient of determination (2) between
the two distributions is 0.9987.

between the theoretical value and the value computed
for the 2018-2019 Sevens World Series and it, too,
would not be significantly different.

We can confirm this result by performing an arcsine
t-test (Sokal & Rohlf, 1969):

__arcsin,/py — arcsin,/p>

N 820.8
n
where

p1 and p> are the probability values derived from
theory and the competition, respectively, with the arc-
sine expressed in degrees, and

n=number of matches in the competition (240).

The factor 820.8 is a “constant representing the
parametric variance of a distribution of arcsine trans-
formations of proportions or percentages” (Sokal &
Rohlf, 1969:p.607).

We find that the #-value of this comparison is 1.072
with a p-value is 0.284. The critical #-value at the 95%
level is 1.96. We conclude again that the observed
number of equal-try matches does not deviate signif-
icantly from the theoretical value.

We conclude, therefore, that the likelihood func-
tion for the simulated data conforms well to the
discrete distribution represented by the integer values
of a continuous Gamma distribution with parameters
drawn from the observed distribution of winners in
our Poisson pairwise sample.




