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Abstract. The evaluation of player performance typically involves a number of criteria representing various aspects of
performance that are of interest. Pareto optimality and weighted aggregation are useful tools to simultaneously evaluate
players with respect to the multiple criteria. In particular, the Pareto approach allows trade-offs among the criteria to be
compared, does not require specifications of weighting schemes, and is not sensitive to the scaling of the criteria. The Pareto
optimal players can be scored according to their ranks or according to their distance from the global optimum for informative
comparisons of performance or for evaluating trade-offs among the criteria. These multi-criteria approaches are defined and
illustrated for evaluating batting performance of Major League Baseball players.
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1. Introduction

Albert (2010) defines sabermetrics as the science
of learning about baseball through objective evi-
dence. Grabiner (2014) indicates that the basic goal
of sabermetrics is to evaluate past player perfor-
mance and to predict future performance of player
contributions to their teams. The information can
be useful for determining who wins season awards
and when determining the value of making a certain
trade. The sabermetrician looks to contribute to this
field through creating new statistics to better assess
player performance (Albert, 2010). Often, these new
statistics are aggregations or combinations of existing
statistics.

This paper describes a multi-criteria approach
in which the sabermetrician can evaluate and rank
player performance using a simultaneous evalua-
tion of multiple criteria. Two popular approaches are
adopted from the multiple optimization literature: (1)
Pareto optimization discussed by Marler and Arora
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(2004) and (2) Weighted aggregation discussed by
Ngatchou et al. (2005). Pareto optimal solutions are
those which are not dominated or which cannot be
bettered with respect to all of the criteria under con-
sideration. Once Pareto solutions are determined, the
sabermatrician can examine trade-offs between the
criteria and identify the collection of players that
cannot be beat with respect to the specified criteria.
Weighted aggregation develops linear combinations
of the optimization criteria which can then be used to
rank or score the players. Weighted aggregation can
also be helpful for characterizing the performance of
those players that are Pareto optimal. As a result, the
proposed approach has the following advantages:

1. Allows for simple and informative simultane-
ous comparisons of numerous players in terms
of multiple performance criteria.

2. Avoids having to combine multiple criteria into
single metrics based upon complex specifica-
tions for weighting and scaling of the criteria.

3. Allows the trade-offs among the criteria to be
compared.

Koop (2002) recognizes that evaluation of base-
ball players is a difficult task since “baseball is
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fundamentally a multiple-output sport”. This author
uses frontier models to create an aggregator of the
multiple outputs pertaining to hitting in Major League
Baseball (MLB). A Bayesian modeling approach is
then implemented to estimate player efficiencies. The
proposed approach in this paper does not rely on com-
plicated modeling of aggregated outputs. Rather, the
multiple hitting criteria are evaluated directly with
observed or predicted data using Pareto optimality.
Weighted aggregations, in the form of ranks, are
then used to characterize the Pareto optimal play-
ers. Efficiencies are also calculated directly from the
best possible performance with respect to each of the
criteria. The proposed approach would be useful to
sabermetricians, general managers, and fantasy base-
ball players for assessing player performance with
respect to multiple criteria.

2. Multi-Criteria Optimization

Suppose there is interest in evaluating player per-
formance according to c criteria for a particular
collection of players ℵ. Let fi(x) denote a criterion
value for i = 1, 2, . . . , c involving a player x ∈ ℵ.
Furthermore, suppose each fi(x) ≡ −gi(x) is to be
maximized. As in Ardakani and Wulff (2013), the
multi-criteria setting can be stated as the optimization
problem

Maximize f(x) = (f1(x), f2(x), . . . , fs(x))
′

subject to x ∈ ℵ,
(1)

where f(x) denotes the criterion vector evaluated at
x. The utopia point corresponds to the criterion vec-
tor associated with the player who simultaneously
maximizes all criterion values. That is, xu is a utopia
point provided fi(xu) ≥ fi(x) for all x ∈ ℵ, for all
i = 1, 2, . . . , c. For c ≥ 2, the utopia point rarely
exists due to conflicts of simultaneously maximiz-
ing all the criteria. However, it is hoped that players
can be identified that are ‘close’ to the utopia point.
For an application to baseball hitters, the utopia point
could be better referred to as Batman since such a
player would be a mythical batting superhero.

2.1. Pareto optimality

Consider the problem of finding a solution (player)
according to (1). While Batman may not exist, a col-
lection of players may be identified that cannot be
bettered, or dominated, according to the c criteria.

Fig. 1. Illustration of the Pareto front and utopia point (Batman)
in a two-criteria maximization problem.

A player x∗ ∈ ℵ is said to dominate another player x
provided the following two conditions are met:

1. fi(x
∗) ≥ fi(x) for all i ∈ 1, 2, . . . , c, (2)

2. fi(x
∗) >fi(x) for all at least one i ∈ 1, 2, . . . , c,

A player is said to be Pareto optimal provided they
are not dominated by any other player in ℵ. The set
of Pareto optimal players constitutes the Pareto opti-
mal set (POS). The corresponding criteria vectors
f(x) comprise the Pareto front (PF). An overview of
Pareto-related concepts is available in Coello Coello
et al. (2007).

By definition, the Pareto optimal set is defined as
those players that are not Pareto dominated in the
sense of (2). Thus, the POS can be generated by
first forming the complement POSc, which is the set
of dominated players. This is done in the following
steps:

1. evaluate f(x) for all x ∈ ℵ, (3)
2. initialize POSc to be ? and perform the

following for each z ∈ ℵ
a. check if condition (2) is satisfied with x∗ ∈ ℵ

such that x∗ /= z ,

b. if (2) is satisfied, add z to POSc, otherwise
do not add z to POSc.

The steps in (3) identify the set POSc, so that
POS=(POSc)c is the set of non-dominated solutions
or the Pareto optimal set. The Pareto front consists of
f(x) for all x ∈ POS.

Figure 1 shows two performance criteria values
f1 and f2 so that c = 2. Batman corresponds to that
player who simultaneously maximizes both criteria.
The Pareto optimal set consists of the players lying on
the boundary of the criterion space closest to Batman.
This boundary forms the Pareto front. There are two
points which lie on an axis. These players maximize
either f1 or f2. Note that none of the Pareto optimal
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players can bettered in one criterion without deteri-
orating in the other criterion. If the two criteria are
highly positively correlated, then the Pareto front will
likely consist of only a few players. Otherwise, the
criteria conflict and the Pareto front will then likely
consist of numerous players.

2.2. Scoring

A popular approach for finding an optimal solu-
tion to (1) is weighted aggregation as identified by
Ngatchou et al. (2005) or the weighting method as
identified by Ardakani and Wulff (2013). In this
approach, all c criteria are combined to form a single
objective function. The optimization problem is thus
reduced to one function from which a batter can be
scored and an optimal batter can be identified from
this score. In particular, the formulation for weighted
aggregation can be expressed as

Maximize h(x) =
c∑

i=1

wi |ki(x)| subject to x ∈ ℵ,

(4)
where ki(x) is a function of the criterion value and
the collection {wi} are weights for the contribu-
tion of criterion i. Often, the weights satisfy wi ≥ 0
and

∑
s
i=1 wi = 1. There are many approaches for

obtaining a single objective function (Ardakani and
Wulff, 2013). The expression in (4) can be extended
using the weighted p-norm method with powers p
greater than or equal to 1 in which |ki(x)| is replaced
by |ki(x)|p (Marler and Arora, 2004). Using (4), play-
ers are then ranked by the values of h, and the best
player is the one that maximizes h A disadvantage
of weighted aggregation is that it depends upon the
selected weights {wi}, and the selection of the weights
depends upon the scaling of the criteria. The task of
selecting the weights, and interpreting h, is made eas-
ier when the criteria are placed on comparable scales.
However, specifying a meaningful scale can be dif-
ficult. These disadvantages are not present with the
Pareto approach since POS and PF do not depend
upon weights or the scaling of the criteria.

A naive approach is to let ki(x) = fi(x). The saber-
metrician can prespecify the weights according to
their preferences, and rank players accordingly. How-
ever, the criteria could be on different scales which
leads to the scaling problems mentioned previously.
One approach to deal with differences in scales, and
which is consistent with player rankings, is to let
ki(x) = −ri(x) where ri(x) denotes the rank of player
x ∈ ℵ. with respect to criterion i. Then weights can

be assigned in relation to the importance that is to
be placed upon the rankings for criterion i. However,
the use of rankings can mask differences of magni-
tude within the criteria values between players. In
this study, players with ties in their criterion values
are assigned the maximum of the ranks.

It is also possible to use (4) to assess the distance a
player is from Batman, or from the hypothetical hitter
xu who maximizes each criterion value separately.
Marler and Arora (2004) recommend that the criteria
be on the same scale before measuring distance. In
particular, these authors consider the two scalings:

ki(x) = fi(x)

fi(xu)
, (5)

ki(x) = fi(x) − fi(xl)

fi(xu) − fi(xl)
. (6)

Equation (5) is the ratio between a player and Batman
for criterion i. Equation (6) represents the desirability
between a player and Batman for criterion i where xl

denotes the hypothetical player with lowest criterion
value in each of the criterion. This is the opposite of
Batman, or the Joker. Thus, (6) compares the differ-
ence of a player from Joker relative to the difference
of Batman from Joker for criteria i. As previously
mentioned, equation (4) can be generalized using
a power p to represent a weighted p-norm metric.
Equation (4) assumes p = 1 which corresponds to
the 1-norm or sum norm. Thus, (5) can be interpreted
as the sum norm distance a player is to 0 relative
to Batman. Equation (6) can be interpreted as the
sum norm distance a player is to Joker relative to
Batman.

As previously mentioned, a disadvantage of
weighted aggregation is that it depends upon the
selected weights {wi}. An experienced sabermetri-
cian would pre-specify weights according to the
specific objectives of the player performance eval-
uation. If there is no justified apriori rationale for
specifying the weights, then equal weights could be
used withwi = 1/c for i = 1, . . . , c. Equal weighting
amounts to finding the average of the criteria.

In this study, there was no rationale for pre-speci-
fying the weights. Thus, the weights were deter-
mined objectively using exploratory factor analysis
(EFA). EFA hypothesizes a model in which the cri-
teria are a linear combination of unobserved factors
and coefficients in this model, or loadings, that are
estimated to approximately reproduce the covariance
matrix among the criteria (Rencher, 2012, pp. 435–
441). A single factor model is hypothesized in
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this study, where that factor represents player
performance. The loadings are estimated using max-
imum likelihood (Rencher, 2012, pp. 452), and then
standardized to obtain the weights {wi} used in (4).
The loading equals the covariance between the corre-
sponding criterion and the factor representing player
performance (Rencher, 2012, pp. 440). Thus, the
higher the loading, the higher the weight for that
criterion since it is most linearly related to player
performance. The weights from the EFA approach
are used for both the scoring in (4) and scored ratio
to Batman in (5).

3. Primary Pareto Optimal Set

MLB hitting data for 2016 is taken from baseball-
guru.com which has annual hitting data in EXCEL
files under the player forecast section. Abbreviations
for various performance variables are given in Table 1
for convenience. As in Koop (2002), pitchers and hit-
ters with few AB are removed from the dataset. The
removal of pitchers results in 620 hitters. Hitters with
fewer than 60 AB are also removed to focus on full
time hitters and to eliminate possible anomalies. The
cut off of 60 AB is close to the first quartile of AB
for the 620 hitters (65 AB). The final data set consists
of n = 473 hitters. The hitting measures considered
here are given by the six performance variables (y) in
Table 1. These are the traditional well-known statis-
tics to assess offensive performance, and are listed
on popular baseball websites such as mlb.com. These
statistics measure various aspects of offensive per-
formance, including the ability of a hitter to get on
base, generate runs, and hit for power. These crite-
ria are also used in specific aggregations to formulate
several sabermetrics. To avoid concerns with using
the counting statistics (R, H, HR, RBI), these val-
ues are scaled by AB as recommended by Grabiner
(2014).

Table 2 shows the correlation matrix for the 2016
hitting performance measures for players in the can-
didate set ℵ. All correlations are positive. SLG
is moderately correlated with all the hitting mea-
sures, including OBP. HRr is correlated with RBIr
as expected. The highest correlation is 0.78 which
is observed between AVG and OBP as well as HRr
and SLG. These correlations are moderate and would
result in only mild concerns about multicollinearity
according to Kutner et al. (2004, pp. 406–410). It is
expected that statistics that are highly correlated will
be coherent or produce similar rankings of player per-

Table 1

Baseball abbreviations for variable names (n), performance vari-
ables (y), sabermetric variables (s), predictor variables (x)

Variable Description

n1 = AB At Bat
n2 = BB Base on Balls
n3 = CS Caught Stealing
n4 = H Hits
n5 = HR Home Runs
n6 = MVP Most Valuable Player
n7 = PA Plate Appearance
n8 = R Runs Scored
n9 = RBI Runs Batted In
n10 = ROY Rookie of the Year
n11 = SB Stolen Base
n12 = SF Sacrifices
n13 = SS Silver Slugger
n14 = TB Total Bases

y1 = Rr = R/AB Runs per At Bat
y2 = HRr = HR/AB Home Runs per At Bat
y3 = RBIr = RBI/AB Runs batted In per At Bat
y4 = AVG = H/AB Batting Average
y5 = OBP = (H + BB + HBP)/

(AB + BB + HBP + SF)
On Base Percentage

y6 = SLG = TB/AB Slugging Percentage

s1 = wOBA Weighted On-base Average
s2 = wRC+ Weighted Runs Created Plus
s3 = WAR Wins Above Replacement

x1 = G Games Played In
x2 = AB At Bats
x3 = AGE Player Age
x4,j4 = TEAM

(reference = COL)
Team of Player

x5,j5 = FP1 (reference = 1B) Player Fielding Position
x6,j6 = BATS (reference = R) Batting Side of Plate

Table 2

Correlation matrix for the six hitting performance measures

Rr HRr RBIr AVG OBP SLG

Rr 1 0.3963 0.3485 0.4920 0.5918 0.6037
HRr 0.3963 1 0.7609 0.1384 0.2919 0.7769
RBIr 0.3485 0.7609 1 0.3567 0.4227 0.7595
AVG 0.4920 0.1384 0.3567 1 0.7791 0.6899
OBP 0.5918 0.2919 0.4227 0.7791 1 0.6593
SLG 0.6037 0.7769 0.7595 0.6899 0.6593 1

formance. Thus, the presence of these correlations is
not an impediment to this multi-criteria approach.

The Pareto optimal set of 2016 MLB hitters with
respect to these six performance criteria is shown
in Table 3. This collection of 19 hitters lie on the
primary Pareto optimal set (POS1) since they are
non-dominated according to (2) and as such cannot
be bettered by any other hitter in the candidate set
with respect to these criteria. Within the Pareto opti-
mal set, players are ranked according to their scored
rankings across the six performance criteria using
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Table 3

Pareto optimal hitters, Pareto Front shown as ranks, scored rankings, scored ratios to Batman, and comments related to the evaluation of
player performance

name team pos bats age games ab Rr.R HRr.R RBIr.R AVG.R OBP.R SLG.R s.rank r.rank s.Batman comment

Sanchez NYA C R 23 53 201 35 [1] 4 41 26 [1] 16.02 [1] 0.9018 AL rookie 2
Arenado COL 3B R 25 160 618 10 21 2 53 44 4 20.74 2 0.8266 NL MVP 5, SS
Trout LAA OF R 24 159 549 [1] 73 20 16 [1] 13 21.36 3 0.8311 AL MVP, SS
Ortiz BOS 1B L 40 151 537 125 12 [1] 16 6 2 23.45 4 0.8645 Best Hitter,

AL MVP 6, SS
Votto CIN 1B L 32 158 556 15 77 35 6 2 13 25.2 5 0.8017 NL MVP 7
Cabrera DET 1B R 33 158 595 85 30 24 12 10 8 26.14 6 0.7963 AL MVP 9, SS
Bryant CHN 3B R 24 155 603 3 28 47 58 19 10 26.92 7 0.7985 NL MVP
Murphy WAS 2B L 31 142 531 46 101 7 2 13 3 27.71 8 0.8069 NL MVP 2, SS
Donaldson TOR 3B R 30 155 577 2 29 39 85 8 14 28.87 9 0.8076 AL MVP 4
Freeman ATL 1B L 26 158 589 30 47 92 34 6 5 34.93 10 0.7769 NL MVP 6
Braun MIL OF R 32 135 511 78 42 32 27 37 17 36.84 12 0.7631 NL MVP 24
Rizzo CHN 1B L 26 155 583 68 61 13 58 18 16 37.02 13 0.7676 NL MVP 4, SS
Blackmon COL OF L 29 143 578 6 83 140 8 22 11 45.67 15 0.7605 NL MVP 26, SS
Story COL SS R 23 97 372 19 9 9 131 128 7 46.11 16 0.7978 NL Rookie 4
Encarnacion TOR 1B R 33 160 601 49 13 3 183 82 26 55.05 20 0.7844 AL MVP 14
Altuve HOU 2B R 26 161 640 37 174 107 4 10 24 60.33 24 0.7362 AL MVP 3
Turner WAS OF R 23 73 307 32 130 197 3 46 7 68.96 29 0.7345 NL Rookie 2
Joyce PIT OF L 31 140 231 5 52 23 289 7 109 81.83 36 0.7449 Free Agent
LeMahieu COL 2B R 27 146 552 9 329 239 [1] 4 66 113.09 58 0.6928 NL MVP 15

the weights obtained from EFA. The weights deter-
mined from EFA for the 2016 data are 0.14 for Rr,
0.17 for HRr, 0.17 for RBIr, 0.15 for AVG, 0.15 for
OBP, and 0.22 for SLG. The mythical Batman con-
sists of a mixture of Sanchez (HRr, SLG), Trout (Rr,
OBP), Ortiz (RBIr), and LeMahieu (AVG). All bat-
ters have a scored ratio to Batman using (5) and the
EFA weights which ranges from 0.69 (LeMahieu) to
0.90 (Sanchez) for players in POS1.

POS1 identifies many well-known hitters in MLB
for 2016. In fact, POS1 identifies the 2016 hitting
award winners including the AL MVP, NL MVP, Sil-
ver Sluggers, vote-getters for MVP, and vote-getters
for ROY. As previously mentioned, this is one of the
objectives of sabermetrics. Sanchez had an incred-
ible rookie season and received the lowest scored
rank of all hitters given his production in Rr, RBIr,
SLG. He is also the closest to Batman. Ortiz, a vet-
eran hitter who had a fantastic year, received the
Best Hitter award which is well deserved given that
he is the third closest to Batman and had more AB
than Sanchez. Four COL players are in POS1 (Are-
nado, Blackmon, Story, LeMahieu) where they each
rank highly in a couple of the performance measures.
While these are good hitters, increased performance
might be expected at a hitter friendly park such as
Coors Field. Joyce, a free agent who plays in OAK
for 2017, might be an unexpected hitter to be included
in POS1. However, he ranks fifth in Rr. Of those who
rank higher, Trout has lower HRr, Donaldson has

lower RBIr, Bryant has lower OBP, and DeShields
(Table 4) has lower values in all other categories. By
the definition in (2), Joyce is non-dominated and so
is included in POS1.

The multi-criteria approach is also helpful for
learning about trade-offs among the criteria. Figure 2
shows plots involving just two criteria which can be
compared to the idealized plot in Fig. 1. The crite-
ria HRr and SLG have the second highest correlation
(Table 2) which is evident by the linear relationship
shown in Fig. 2 (b). Based upon just these two criteria,
a reduced POS (POSr) would just consist of Sanchez,
who is also the reduced Batman. Nevertheless, other
POS1 hitters are rather scattered throughout these two
criteria. The criteria OBP and SLG have the sixth
highest correlation (Table 2) and the linear relation-
ship can be seen in Fig. 2 (d). Now, the POSr from just
these two criteria would consist of Sanchez, Ortiz,
and Trout. The POS1 hitters are all located in the
upper right of the plot. There are indications that
SLG and OBP are redundant statistics in identify-
ing these best hitters. The criteria Rr and RBIr have
the third smallest correlation (Table 2) as is evident
by the larger cloud of points in Fig. 2 (a). The POSr
consists of a longer front than that in Fig. 2 (d) which
contains Ortiz, Arenado, and Trout. Even though the
POS1 hitters are all located in the upper right of the
plot, the criteria values are also more spread out than
they are in Fig. 2 (d). The criteria HRr and AVG
have the smallest correlation (Table 2) as might be
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Table 4

Secondary Pareto optimal hitters, Secondary Pareto Front shown as ranks, scored rankings, scored ratios to Batman, and comments related
to the evaluation of player performance

name team posl bats age games ab Rr.R HRr.R RBIr.R AVG.R OBP.R SLG.R s.rank r.rank s.Batman comment

Cruz SEA OF R 35 155 589 62 8 30 71 60 [9] 36.77 [11] 0.7859 AL MVP 15
Betts BOS OF R 23 158 672 16 109 50 11 65 19 44.85 [14] 0.7503 AL MVP 2, SS
Beltre TEX 3B R 37 153 583 98 61 29 39 65 31 51.44 [17] 0.7425 AL MVP 7
Cano SEA 2B L 33 161 655 57 41 83 44 88 23 53.92 [18] 0.7428 AL MVP 8
Cespedes NYN OF R 30 132 479 105 27 27 101 67 25 54.58 [19] 0.7527 NL MVP 8, SS
Diaz STL SS R 25 111 404 24 134 75 39 33 37 57.83 21 0.7231 NL ROY 5
Ramirez BOS 1B R 32 147 549 123 63 [5] 75 57 46 58.70 22 0.7453
Goldschmidt ARI 1B R 28 158 579 13 137 64 45 [3] 71 58.81 23 0.7359 AL MVP 11
Rodriguez PIT 1B R 31 140 300 58 39 14 141 107 37 62.47 25 0.7436
Machado BAL 3B R 23 157 640 52 46 107 53 112 23 63.10 26 0.7316 AL MVP 5
Martinez DET OF R 28 120 460 108 96 118 24 37 18 64.61 27 0.7185
Dozier MIN 2B R 29 155 615 36 15 74 152 128 15 65.47 28 0.7514 AL MVP 13
Seager SEA 3B L 28 158 597 113 82 60 107 49 57 75.90 31 0.7081 AL MVP 12, SS
Naquin CLE OF L 25 116 321 66 123 179 47 28 32 78.87 32 0.6981 AL ROY 3
Toles LAN OF L 24 48 105 17 253 97 17 37 46 80.10 33 0.7012
Carpenter STL 3B L 30 129 473 33 118 137 134 20 46 81.19 34 0.7011
Ho Kang PIT 3B R 29 103 318 153 22 8 224 96 34 82.00 37 0.7418
Seager LAN SS L 22 157 627 42 136 261 21 46 35 91.12 41 0.6856 NL ROY
Yelich MIA OF L 24 155 578 185 178 44 44 27 78 91.45 42 0.6851 NL MVP 19, SS
Santana CLE 1B B 30 158 582 96 44 109 203 57 60 91.65 43 0.7032
Schimpf SDN 2B L 28 89 276 28 10 16 395 140 23 93.65 45 0.7513
Bradley BOS OF L 26 156 558 38 107 88 158 104 74 94.05 46 0.6928
Trumbo BAL OF R 30 159 613 92 [2] 33 218 253 23 94.54 47 0.7479 AL SS
Kinsler DET 2B R 34 153 618 7 113 177 68 121 76 95.35 48 0.6945
Healy OAK 3B R 24 72 269 193 93 156 27 149 29 102.13 51 0.6850
Pearce BAL 1B R 33 85 264 201 86 187 68 31 69 104.58 53 0.6772
Bour MIA 1B L 28 90 280 262 70 21 177 55 92 107.19 54 0.6957
Davis OAK OF R 28 150 555 94 3 18 265 303 29 108.31 55 0.7414
Harper WAS OF L 23 147 506 44 100 43 283 16 155 109.42 56 0.6904
Napoli CLE 1B R 34 150 557 48 34 25 306 161 105 109.90 57 0.7089
Dahl COL OF L 22 63 222 8 228 298 16 82 53 116.90 67 0.6727
Rosales SDN 3B R 33 105 214 31 35 65 351 216 66 120.91 72 0.7019
Bautista TOR OF R 35 116 423 70 79 68 333 55 132 122.03 74 0.6811
Carter MIL 1B R 29 160 549 95 6 41 374 225 57 123.68 78 0.7164
Ross CHN C R 39 67 166 137 37 10 351 88 148 125.58 80 0.6989
Segura ARI 2B L 26 153 637 72 230 326 9 49 57 125.84 81 0.6535 NL MVP 13
Vargas MIN 1B B 25 47 152 21 23 191 346 161 53 127.03 83 0.6969
Davis BAL 1B L 30 157 566 26 19 115 378 169 115 133.77 95 0.6913
Grandal LAN C B 27 126 390 254 14 17 354 141 86 134.00 96 0.7012 NL MVP 22
Pedroia BOS 2B R 32 154 633 45 293 248 11 37 138 135.83 102 0.6409
Swanson ATL SS R 22 38 129 83 297 190 34 24 154 136.99 103 0.6372
Fowler CHN OF B 30 125 456 12 254 308 115 16 142 148.11 117 0.6391
Hazelbaker STL OF L 28 114 200 25 39 146 331 333 83 152.81 126 0.6752
Rivera NYN 2B R 27 33 105 409 253 97 [5] 128 91 156.73 134 0.6358
Maybin DET OF R 29 94 349 11 399 224 16 24 209 159.43 138 0.6279
Zunino SEA C R 25 55 164 400 7 12 420 245 96 180.10 155 0.6745
Recker ATL C R 32 33 90 458 308 55 107 13 175 182.33 158 0.5976
Peraza CIN SS R 22 72 241 367 391 312 8 112 231 239.71 243 0.5553
DeShields TEX OF R 23 74 182 [4] 310 428 417 414 419 342.85 375 0.4991

expected given the differences between power hitters
and base hitters. Due to this conflict, the PF shown in
Fig. 2 (b) is the longest, and the POSr consists of the
six hitters LeMahieu (more of a base hitter), Murphy,
Votto, Cabrera, Ortiz, and Sanchez (more of a power
hitter). The criteria HRr and AVG demonstrate the
most conflict among any pair of these criteria.

4. Secondary Pareto Optimal Set

Another tier of hitters can be identified in a sec-
ondary Pareto optimal set (POS2). The second-tier
players are non-dominated according to (2) using a
restricted candidate set in which the POS1 players are
first removed, or ℵ2 = ℵ − POS1. The POS2 in this
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Fig. 2. Plots of the Pareto front involving (a) Rr and RBIr, (b) HRr and SLG, (c) HRr and AVG, (d) OBP and SLG.

section is developed from the same MLB hitting data
considered in section 3 for the 2016 season which
consists of the n = 473 hitters, but without the 19
hitters on POS1 identified in Section 3.

POS2 is shown in Table 4 and consists of 49
well known hitters where the scored ratio to Bat-
man ranges up to 0.79 (Cruz) and down to 0.50
(DeShields). POS 2 also identifies several award win-
ners which is consistent with one of the objectives
of sabermetrics. POS2 contains the NL ROY (Sea-
ger), the AL ROY 3 (Naquin), and the NL ROY
5 (Diaz). It also contains 5 Silver Slugger award
winners (Betts, Cespedes, Seager, Yelich, Trumbo)
along with various other hitters who received MVP
votes. POS2 notably also contains a number of well-
known hitters including Beltre (2004, 2010, 2011,
2014 SS), Goldschmidt (2013, 2015 NL MVP 2 and
SS), Cano (2005 AL ROY 2 and 2006, 2010, 2011,
2012, 2013 SS), Machado (2015 AL MVP 4 and
2016 AL MVP 5), Harper (2012 NL ROY, 2015 NL
MVP), Bautista (2010, 2011, 2014 SS), and Pedroia
(2007 AL ROY, 2008 AL MVP and SS). These batters
had good hitting seasons in 2016, but may not have

received the same accolades as they did in previous
seasons.

A few players have scored ratio to Batman greater
than 0.75 (Cruz, Betts), and a few more have
scored rankings in the top 19 (Beltre, Cano, Ces-
pedes). POS2 contains players who have Rr ranked
4 (DeShields), HRr ranked 2 (Trumbo), RBIr ranked
5 (Ramirez), AVG ranked 5 (Rivera), OBP ranked
3 (Goldschmidt), and SLG ranked 9 (Cruz). While
POS2 contains good hitters according to some of
these metrics, these players are dominated by players
in POS1 in terms of the other metrics. For example,
Goldschmidt performs well in OBP, but is domi-
nated by Trout and Votto. Trumbo hit the most HR
in 2016 (47) which produces the second highest HRr
(0.0767), but Sanchez has higher HRr (0.0995), and
Sanchez dominates Trumbo in all other categories.

5. Predicted Pareto Optimal Set

It is expected that particular hitters have an advan-
tage to be Pareto optimal due to hitter friendly parks,
team affiliations, or through regular playing time.
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Certain fielding positions are also reserved for the
bigger and better hitters. A predicted Pareto opti-
mal set (PPOS) can be constructed from multivariate
predictions that are adjusted for these variables.
The Multivariate Analysis of Variance (MANOVA)
(Rencher and Christensen, 2012) is a tool that can be
used to assess the predictor variable contributions and
to obtain the predicted criteria values. Pareto opti-
mality and weighted aggregation is then applied to
these multivariate predicted values and the resulting
uncertainty is propagated through the analyses using
repeated sampling or the parametric bootstrap (Efron
and Tibshirani, 1993, Section 6.5) from the predictive
distribution.

The same MLB hitting data for 2016 is used here
as that in sections 3 and 4. However, only qualify-
ing hitters are included who meet the minimum plate
appearance (PA) requirement of 502. For validation,
MLB hitting data for 2017 is taken from baseball-
guru.com. There are 146 qualifying hitters for the
2016 season and 144 qualifying hitters for the 2017
season. Predictions are based upon the data from the
2016 season. The predictor variables (x variables)
considered here are listed in Table 1. Factors, such as
Team, Fielding Position, and Bats, include indicator
variables for each level, except for the reference level
(Kutner et al., 2004, pp. 313–324). The multiple cri-
teria, or multiple response variables (y variables) are
listed in Table 1 which can be denoted as the matrix
Y. The partial Wilks’ Lambda test is conducted for
the six predictors and for quadratic terms involving
Age, G, AB to identify statistically important pre-
dictors. The test results are shown in Table 5 for the
reduced model containing the statistically important
predictors. Based upon these statistical test results,
the predictions are based upon TEAM, FP1, BATS,
AB, G, and G∧2 where the latter term denotes the
quadratic trend in games played. Table 6 gives the
estimated coefficients (B̂) from which the predicted
hitting performance values are obtained as Ŷ = XB̂
where X is the design matrix containing the values of
the predictors for all of the qualifying hitters.

It is also necessary to account for uncertainty
in the predictions of future performance. This is
accomplished using a parametric bootstrap where
the performance criteria are obtained using repli-
cate draws (REP) for each player i (yREP

i ) from the
MANOVA predictive distribution

Normal(ŷi, [1 + xi
′(X′X)−1

xi]S), (7)

where ŷi is the predicted criteria for player i, xi

contains the covariate values for player i, and S

Table 5

Partial MANOVA tests of the statistically important predictor vari-
ables using the Wilks’ Lambda test

predictor df test stat approx F num Df den Df Pr(> F)

TEAM 29 0.109 1.59 174 603 < 0.0001
FP1 5 0.500 2.56 30 406 < 0.0001
BATS 2 0.661 3.87 12 202 < 0.0001
AB 1 0.536 14.59 6 101 < 0.0001
G 1 0.783 14.59 6 101 0.0003
G∧2 1 0.766 5.15 6 101 0.0001

is the estimated covariance matrix from MANOVA
(Rencher and Christensen, 2012, pp. 370– 371). The
predictive distribution in (7) accounts for the uncer-
tainty in the predictions and the uncertainty in the
responses (performance criteria). A total of 500 repli-
cate draws are taken from (7). For each draw, players
on the primary predicted Pareto optimal set (PPOS1)
are identified and their scored ranking of the cri-
teria is calculated. The weights for the scoring are
based upon EFA for the 2016 data. Uncertainty is
then assessed by examining the proportion of repli-
cate draws in which a player in included in PPOS1
(pPPOS1) and a 90% percentile interval is calculated
for the scored ranking of the replicate draws.

Validation of the predictions is performed using the
data from the 2017 season. Table 7 shows the 19 play-
ers who are actually Pareto optimal (POS1) for the
2017 season. Uncertainty in the predictions is shown
in the percent of replicate draws in which these play-
ers are predicted to be Pareto optimal (pPPOS1) and
the 5%, 50%, 95% percentiles of the scored rankings
from the replicate draws using the predictive distribu-
tion in (7). The criteria pPPOS1 provides a summary
on a 0-1 scale where higher percentages denote a
higher probability of that player being PPOS1. The
ranking of the players in terms of pPPOS1 (pPPOS1r)
is also shown in Table 7. The percentile intervals can
be quite wide demonstrating large variability in the
scored rankings across all of the criteria.

Four of the players in Table 7 (Judge, Stanton, Zim-
merman, and Freese) are not qualifiers in the 2016
season and so do not have predictions. Goldschmidt,
Blackmon, and Arenado are on the actual POS1 for
2017 and are in the top 10 in terms of pPPOS1 based
upon the 2016 predictions. The percentile intervals
for these players contain low scored rankings. In par-
ticular, Arenado is predicted to be POS1 in nearly
80% of the replicate draws and 90 percent of his
scored rankings are between 1 and 44. Arenado and
Blackmon likely have high predictions since they
play for COL. Goldschmidt and Rendon are POS1
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Table 6

MANOVA regression coefficient estimates

predictor Rr HRr RBIr AVG OBP SLG

(Intercept) 1.3121 0.4311 0.6549 0.4809 2.0755 0.4453
TEAM ARI –0.0178 0.0003 –0.0199 –0.0277 –0.0250 –0.0146
TEAM ATL –0.0392 –0.0151 –0.0371 –0.0347 –0.0423 –0.0459
TEAM BAL –0.0353 0.0041 –0.0335 –0.0580 –0.0746 –0.0399
TEAM BOS –0.0163 –0.0037 –0.0052 –0.0224 –0.0238 –0.0188
TEAM CHA –0.0545 –0.0148 –0.0375 –0.0451 –0.0550 –0.0548
TEAM CHN –0.0098 –0.0020 –0.0100 –0.0409 –0.0154 –0.0160
TEAM CIN –0.0252 –0.0040 –0.0235 –0.0343 –0.0461 –0.0545
TEAM CLE –0.0193 –0.0067 –0.0253 –0.0434 –0.0420 –0.0353
TEAM DET –0.0284 –0.0013 –0.0276 –0.0265 –0.0348 –0.0436
TEAM HOU –0.0303 –0.0118 –0.0350 –0.0341 –0.0338 –0.0455
TEAM KCA –0.0585 –0.0109 –0.0449 –0.0573 –0.0803 –0.0617
TEAM LAA –0.0226 –0.0141 –0.0283 –0.0189 –0.0185 –0.0552
TEAM LAN –0.0275 –0.0094 –0.0383 –0.0297 –0.0376 –0.0293
TEAM MIA –0.0498 –0.0203 –0.0438 –0.0221 –0.0362 –0.0557
TEAM MIL –0.0250 0.0069 –0.0172 –0.0377 –0.0351 –0.0449
TEAM MIN –0.0193 0.0012 –0.0360 –0.0559 –0.0307 –0.0365
TEAM NYA –0.0431 –0.0120 –0.0446 –0.0383 –0.0492 –0.0550
TEAM NYN –0.0227 0.0193 0.0024 –0.0374 –0.0290 –0.0204
TEAM OAK –0.0382 –0.0027 –0.0330 –0.0413 –0.0659 –0.0502
TEAM PHI –0.0559 –0.0152 –0.0567 –0.0406 –0.0538 –0.0576
TEAM PIT –0.0346 –0.0130 –0.0261 –0.0293 –0.0322 –0.0433
TEAM SDN –0.0133 –0.0139 –0.0464 –0.0621 –0.0697 –0.0384
TEAM SEA –0.0322 0.0057 –0.0184 –0.0355 –0.0432 –0.0326
TEAM SFN –0.0335 –0.0157 –0.0244 –0.0379 –0.0357 –0.0413
TEAM STL –0.0307 –0.0114 –0.0282 –0.0252 –0.0193 0.0059
TEAM TBA –0.0497 0.0033 –0.0254 –0.0481 –0.0660 –0.0488
TEAM TEX –0.0301 0.0014 –0.0122 –0.0232 –0.0406 –0.0333
TEAM TOR –0.0268 0.0037 –0.0108 –0.0460 –0.0397 –0.0494
TEAM WAS –0.0183 0.0042 0.0044 –0.0302 –0.0168 –0.0126
FP1 2B 0.0073 –0.0158 –0.0341 –0.0010 –0.0186 –0.0352
FP1 3B 0.0088 –0.0062 –0.0191 –0.0061 –0.0132 –0.0131
FP1 C 0.0010 –0.0073 –0.0180 0.0077 –0.0010 –0.0047
FP1 OF 0.0091 –0.0075 –0.0260 –0.0135 –0.0199 –0.0295
FP1 SS –0.0085 –0.0189 –0.0394 –0.0132 –0.0324 –0.0643
BATS B –0.0012 –0.0043 –0.0130 0.0116 0.0105 0.0050
BATS L 0.0014 –0.0035 –0.0095 0.0005 0.0087 0.0025
AB 0.0001 0.0001 0.0000 0.0004 0.0001 0.0006
G –0.0169 –0.0059 –0.0078 –0.0039 –0.0245 –0.0288
G∧2 0.000059 0.000022 0.000030 0.000009 0.000085 0.000098

for 2017 and also have pPPOS1 values greater than
0.3. These predictions are helpful since these play-
ers are not POS1 for 2016 as shown in Table 3. Cruz
and Altuve are POS1 for 2017 and these players do
have a relatively high pPPOS1 of 0.158, and 0.222,
respectively.

As would be expected, not all players on POS1
for 2017 are predicted well based upon just the 2016
performance data. Ozuna, Murphy, Turner, Gonza-
lez, Davis, Alonso had surprising seasons in 2017,
even though pPPOS1 for Gonzalez and Murphy is
about 0.1. The scored rankings of Ozuna and Trout
for 2017 do not fall within the 90% percentile inter-
val based upon the predictions. The pPPOS1 values

are 0.156 for Trout and 0.182 for Votto which do
not rank overly high even though they are POS1
for 2017. The prediction model penalizes Trout in
terms of R, HR, SLG and penalizes Votto in terms
of AVG, OBP, SLG, so that these players perform
better than expected according to the predictions. On
the other hand, there are some players in the top 10
of pPPOS1 from the 2016 predictions who are not
POS1 for 2017. Cabrera of DET (pPPOS1 = 0.372),
Cano of SEA (pPPOS1 = 0.338), Gonzalez of COL
(pPPOS1 = 0.412) each spent time on the disabled list
in 2017. Such injuries may have impacted their 2017
season and some of these players did not perform as
well as expected. Betts of BOS has a high pPPOS1 of
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Table 7

Pareto optimal hitters along with covariate values, ranks of the performance criteria, and scored ratios to Batman for the 2017 season. Prediction information from the 2016 season is included
using the proportion of time the player is predicted to be Pareto optimal (pPPOS1), player ranking in terms of pPPOS1 (pPPOS1r), and the 5%, 50%, 90% percentile values of the scored rankings

from the parametric bootstrap. Comments are included to characterize the POS results

nameLast TEAM FP1 BATS AGE G AB Rr.R HRr.R RBIr.R AVG.R OBP.R SLG.R s.rank r.rank s.Batman pPPOSl pPPOSlr 5% 50% 95% comment

Trout LAA OF R 26 114 402 2 4 21 17 8 2 8.72 1 0.8357 0.156 43 10.00 64.00 122.00 POS1
Judge NYA OF R 25 155 542 [1] 2 5 46 9 3 10.24 2 0.8736 NA NA NA NA NA NA
Votto CIN 1B L 34 162 559 11 17 22 7 7 9 12.25 3 0.7718 0.182 31 5.00 41.50 113.95 POS1
Goldschmidt ARI 1B R 30 155 558 5 16 2 29 12 11 12.33 4 0.7887 0.370 [9] 2.00 20.00 82.95 PPOS1,

POS2
Stanton MIA OF R 28 159 597 6 [1] [1] 51 23 [1] 12.50 5 0.8624 NA NA NA NA NA NA
Blackmon COL OF L 31 159 644 4 28 40 2 17 4 15.85 6 0.7635 0.410 [5] 2.00 26.50 91.00 POS1
Freeman ATL 1B L 28 117 440 9 18 41 15 11 6 16.51 7 0.7474 0.152 48 7.00 50.00 120.95 POS1
Arenado COL 3B R 26 159 606 33 23 3 13 29 6 16.66 8 0.7636 0.798 [1] 1.00 4.00 43.95 PPOS1,

POS1
Zimmerman WAS 1B R 33 144 524 25 10 6 22 52 10 19.52 9 0.7638 NA NA NA NA NA NA
Cruz SEA OF R 37 155 556 37 8 4 40 28 13 20.28 10 0.7562 0.158 41 6.05 54.00 120.95 POS1,

PPOS2
Ozuna MIA OF R 27 159 613 64 24 7 11 31 15 23.83 11 0.7329 0.020 115 37.05 107.50 143.00
Murphy WAS 2B L 32 144 534 20 69 24 5 19 17 25.95 14 0.7015 0.098 59 10.05 67.00 130.00
Rendon WAS 3B R 27 147 508 47 52 10 23 16 21 27.59 15 0.7086 0.302 17 3.00 28.00 91.95 PROS2
Altuve HOU 2B R 27 153 590 10 77 79 111 4 16 32.19 20 0.7783 0.222 25 6.00 40.00 114.95 POS1
Gonzalez HOU OF B 28 134 455 73 47 9 22 28 24 32.52 22 0.7002 0.114 54 11.05 61.00 124.95
Turner LAN 3B R 33 130 457 52 62 48 5 10 24 33.51 24 0.6797 0.074 70 13.00 72.00 133.00
Davis OAK OF R 30 153 566 44 6 13 117 6 26 33.56 25 0.8158 0.042 92 20.00 81.00 136.95 POS2
Alonso SEA 1B L 30 142 451 46 21 61 83 2 41 42.15 32 0.7555 0.036 100 23.05 89.00 140.00 traded
Freese PIT 3B R 34 130 426 141 126 105 88 [1] 138 102.72 114 0.5888 NA NA NA NA NA NA



S.S. Wulff and W.P. De Silva / A multi-criteria approach for evaluating major league baseball batting performance 95

0.554, but had a disappointing 2017 season, particu-
larly in terms of AVG and OBP. Encarnacion (CLE)
and Rizzo (CHN) also have high pPPOS1 values
of 0.468 and 0.386, respectively. While they do not
appear on POS1 for 2017, they do appear on POS2
for 2017. Thus, their performance was good, even
though it may not have been as good as predicted.

6. Pareto Optimal Set with Other Criteria

It is important to recognize that the proposed multi-
criteria approach can be easily implemented with any
collection of criteria that a manager believes best
characterizes player performance. This is the first
advantage of the proposed multi-criteria approach
mentioned in section 1. However, selection of the
criteria is critical in that it must represent the
player performance characteristics that are of spe-
cific interest to the performance assessment. A few
considerations are presented below when it comes
to thinking about the multiple criteria and how they
compare to some popular sabermetrics. The multi-
criteria approach is also demonstrated in this section
using wOBA, wRC+, and WAR.

The multiple criteria previously considered are
the widely available traditional measures of batting
performance (R, HR, RBI, H, OBP, SLG). There
are concerns about these traditional hitting statistics.
Even though Grabiner (2014) mildly endorses AVG,
it has been criticized by some, such as Albert (2010),
for not addressing other ways to get on base, and for
not distinguishing the type of hit. The statistics R and
RBI have been criticized because they depend upon
other factors that may not directly reflect player con-
tribution such as scoring off the hit of another batter
or needing to have runners on base (Grabiner 2014).
Albert (2010) presents strong arguments that better
measures of hitting are OBP, SLG, and OPS. On the
other hand, rather than focusing on arguments that a
statistic is flawed, it can be informative to recognize
that statistics measure different aspects of hitting that
cannot be captured in a single sabermetric. As stated
by Grabiner (2014), “Batting average does fairly well
because it counts hits, but it ignores power and walks,
which are also important.” That point does not nec-
essarily mean AVG is flawed, but that it measures
a different aspect of hitting than does OBP or SLG.
An advantage of the multi-objective approach is in
its ability to work with a multitude of statistics that
account for different aspects of player performance
and for its ability to evaluate the trade-offs among
these different aspects. This is the third advantage

of the multi-criteria approach that is mentioned Sec-
tion 1.

Concerns about traditional hitting statistics could
lead a sabermatrician to apply the proposed approach
with a different set of hitting performance mea-
sures. Some popular sabermetric statistics can be
formulated from (4). In particular, this includes the
following:

On-Base Plus Slugging (OPS)=OBP+SLG, (8)
Gross Production Average (GPA) =

(1.8 × OBP) + SLG)/4,

Runs produced (RP) = R + RBI – HR,

Isolated Power (ISO) = SLG − AVG,

Secondary Average (SecA) =
BB

AB
+

TB

AB
− H

AB
+ SB

AB
− CS

AB
.

Another more complicated statistic, which is
similar in form to SecA, is Weighted On-Base
Average (wOBA) that is scaled by PA rather than
AB. In particular, OPS is touted by Albert (2010) as
a modern sabermetric. Yet, OPS is merely a specific
weighted aggregation of OBS and SLG. However,
this may not the best combination of OBP and SLG to
represent hitting performance for a particular group
of hitters. For example, Grabiner (2014) mentions
the linear combination should be 1.2 × OBP + SLG
where the value 1.2 is usually ignored. The second
advantage of the multi-criteria approach mentioned
in section 1 is that such combinations and weights do
not have to be specified as the performance in terms
of OBP and SLG can be simultaneously considered
and evaluated.

Some managers have become quite accustomed to
particular sabermetrics for measuring player perfor-
mance. As mentioned previously, the multi-criteria
approach can be applied to any collection of criteria.
As a demonstration, consider the collection wOBA,
wRC+, and WAR defined by Fangraphs (2018b).
Weighted On-Base Average (wOBA) combines dif-
ferent aspects of hitting and weights them according
to the actual run value. Weighted Runs Created Plus
(wRC+) attempts to credit a batter for the value of
a hitting outcome while controlling for park, league,
and year effects. Wins Above Replacement (WAR)
is designed to measure overall player contribution,
beyond just hitting, by comparing team wins com-
pared to a replacement player. The data for these
three sabermetrics are taken from Fangraphs (2018a)
for the 2016 season and contains 146 hitters who are
qualifying hitters with more than 502 plate appear-
ances (PA).
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Table 8

Primary and Secondary Pareto optimal hitters based upon the sabermetrics wOBA, wRC+, WAR listed in order of the scored ranking (s.rank)

name Team G PA wOBA wRC+ WAR s.rank r.rank s.Batman POS

Trout Angels 159 681 0.418 170 9.6 1.36 1 0.9991 primary
Donaldson Blue Jays 155 700 0.403 155 7.4 4.72 2 0.8903 secondary
Murphy Nationals 142 582 0.408 155 5.7 6.60 3 0.8450 secondary
Bryant Cubs 155 699 0.396 148 7.8 6.96 4 0.8812 secondary
Votto Reds 158 677 0.413 159 5.3 7.20 6 0.8461 secondary
Ortiz Red Sox 151 626 0.419 164 4.5 11.16 8 0.8385 primary
Betts Red Sox 158 730 0.379 137 8.3 12.08 9 0.8578 secondary

Fig. 3. Plots of the players in terms of (a) wOBA and WAR, (b) wOBA and wRC+with labels for those players on the Primary and Secondary
front. In (a), players on the Primary Pareto front are connected with a solid line while players on the Secondary Pareto front are connected
with a dotted line.

For these three sabermetrics, Table 8 gives the Pri-
mary Pareto optimal set (POSS1) and the Secondary
Pareto optimal set (POSS2). The weights for these
three criteria using EFA for the 2016 data were deter-
mined to be 0.36 for wOBA, 0.36 for wRC+, and
0.28 for WAR. The players are ordered in Table 8
according to the scored rankings. Ortiz is included
on POSS1 since he had the highest observed wOBA
which is slightly higher than that for Trout. If it were
not for this value, then Trout would be the Batman
with respect to these three criteria for which he still is
very close (0.9991). POSS2 consists of Donaldson,
Bryant, Murphy, Votto, and Betts. All these players
are dominated by Trout and Ortiz who both have
higher wOBA and wRC+ than any player on the sec-
ondary front. Figure 3 shows the players in POSS1
and POSS2 in terms of just two criteria. The pairwise
correlation between wOBA and wRC+ is evident as
expected since wRC+ is similar to wOBA, but con-
trols for park, league, and year effects. Thus, player
rankings for 2016 using wOBA are quite similar to
those using wRC+. There is some conflict between
wOBA and WAR since WAR measures additional

player contributions beyond just hitting. The plot of
wRC+ and WAR looks quite similar. The Pareto opti-
mal sets POSS1 and POSS2 are much smaller than
those presented in section 4 (POS1) and section 5
(POS2). This is due to fact that only three sabermet-
rics are used as the criteria and that two of these are
highly correlated (0.9837). Nevertheless, all the play-
ers identified in POSS1 and POSS2 are included in
POS1, except for Betts who is included in POS2. Betts
is in POSS2 in large part due to his high value for
WAR, which is the second highest.

It should be noted that there are also concerns
about the use of these sabermetrics since wOBA does
not adjust for hitting friendly parks, wRC+ does not
differentiate positions, and WAR may not be devel-
oped enough to conduct player rankings (Fangraphs,
2018b). On the other hand, players have been ranked
based upon WAR by the Baseball-Reference (2018).
Due to these types of concerns, Fangraphs (2018) rec-
ommend in their discussion of WAR that one “should
always use more than one metric at a time when evalu-
ating players”. The proposed multi-criteria approach
conducts this very task conveniently and efficiently.
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7. Summary

A multi-objective approach is proposed in this
paper that allows for informative comparisons of
players in terms of multiple performance criteria,
avoids complex combinations of the criteria into
single metrics, and allows trade-offs among the cri-
teria to be evaluated. The approach is demonstrated
for evaluating baseball player batting performance
through simultaneous consideration of multiple per-
formance metrics. Traditional metrics, such as R, H,
HR, RBI, AVG, OBP, SLG, are initially used for these
evaluations. The primary Pareto optimal set (POS1)
identifies those batters who are non-dominated or
who cannot be beat with respect to these criteria. The
secondary Pareto optimal set (POS2) identifies a sec-
ond group of batters who are non-dominated apart
from those batters in POS1.The Multiple Analysis

of Variance (MANOVA) is used to generate predic-
tions while also addressing the uncertainty in the
predictions and the uncertainty associated with the
criteria. The uncertainty can then be propagated to
the Pareto optimal sets and to the scored rankings for
predicting performance results in an upcoming sea-
son. Weighted rankings or the relative distance to the
utopia point (Batman) are also shown to be helpful
when it comes to ordering players with respect to the
multiple criteria.

As an implementation example, the website
mlb.com/stats contains statistics from which selected
players can be ranked. Figure 4 shows a default view
from this website for the 2016 MLB season. A few
differences in the rankings can be observed from
Fig. 4 and the previous rankings presented here due to
their restriction to players who are qualifying hitters.
However, simple adjustments to Fig. 4 can be made

Fig. 4. Screen shot of www.mlb.com/stats for 2016.

www.mlb.com/stats for 2016
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so that it can accommodate multiple criteria. That is,
the user could be allowed to select multiple criteria
items from among the hitting criteria such as R, HR,
RBI, AVG, OBP, and SLG. Then the proposed calcu-
lations can be quickly applied so that players who are
in POS1 are highlighted and players are then ordered
according to their scored ranking across the criteria
or according to their relative distance from Batman.
As a result, Fig. 4 would more closely match that in
Table 3.

The proposed approach is useful to casual fans,
fantasy baseball players, and general managers for
identifying the top players according to multiple cri-
teria and to evaluate trade-offs among the criteria. The
approach can be implemented rather easily with any
collection of criteria that is perceived to best repre-
sent the type of player performance that is of interest.
The criteria can be traditional, modern, or some com-
bination. In addition, it is often necessary to fill out
baseball rosters by position, in which case it makes
more sense to implement the multi-criteria selection
procedures separately for each position and likely
with different criteria according to the expectations
pertaining to that position. This approach could even
involve a combination of hitting and fielding criteria.
The proposed approach is also not limited to baseball.
Baseball is often regarded as the sabermetric sport
due to the wide availability of data, but other sports
are now collecting various types of performance-
based data. These multi-objective techniques would
be useful tools to enhance sabermetrics.
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