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Who’s good this year? Comparing
the information content of games
in the four major US sports
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Abstract. In all four major North American professional sports (baseball, basketball, football, and hockey), the primary aim
of the regular season is to identify the best teams. Yet the number of regular season games used to distinguish between the
teams differs dramatically between the sports, ranging from 16 (football) to 82 (basketball and hockey) to 162 (baseball).
While length of season is partially determined by factors including travel logistics, rest requirements, playoff structure and
television contracts, from a statistical perspective the 10-fold difference in the number of games between leagues suggests
that some league’s games are more “informative” than others. In this paper, we propose a method to quantify the amount of
information games yield about the relative strengths of the teams involved. Our strategy is to estimate a predictive accuracy
curve which assesses how well simple paired comparison models fitted from X% of games within a season predict the
outcomes of the remaining (100 − X)% of games, across multiple values of X. We compare predictive accuracy curves
between seasons within each sport and across all sports, and find dramatic differences in the amount of information yielded
by game results in the four major North American sports leagues.
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1. Introduction

In week 14 of the 2012 National Football League
season, the New England Patriots squared off on
Monday Night Football against the Houston Texans
in a game with major implications for both teams.
At the time, the Texans had the best record in the
conference (11 wins versus 1 loss) and were in
line to earn home-field advantage throughout the
playoffs, while the New England Patriots (9 wins, 3
losses) had the best record in their division and were
hoping to solidify their playoff position and establish
themselves as conference favorites. The Patriots ulti-
mately defeated the Texans 42-14, which led some
commentators to conclude that the Patriots were the
favorites to win the Super Bowl (Walker, 2012, Mac-
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Mullan, 2012) and that Tom Brady was the favorite
for the MVP award (Reiss, 2012). Others opined that
the game provided evidence that the Texans were
in reality less talented than they appeared over the
first 13 weeks of the season (Kuharsky, 2012). These
are strong conclusions to reach based on the results
of a single game, but the power of such “statement
games” is accepted wisdom in the NFL. In contrast,
it is rare for the outcome of a single regular-season
game to create or change the narrative about a team in
the NBA, NHL, or MLB. While one might argue that
the shorter NFL season simply drives commentators
to imbue each game with greater metaphysical mean-
ing, an alternative explanation is that the outcome
of a single NFL contest actually does carry more
information about the relative strengths of the teams
involved than a single game result in the other major
North American professional sports. In this paper,
we ask and attempt to answer the basic question:
how much does the outcome of a single game tell
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us about the relative strength of the two teams
involved?

In the four major North American professional
sports (baseball, basketball, football, and hockey),
the primary purpose of the regular season is to
determine which teams most deserve to advance to
the playoffs. Interestingly, while the ultimate goal of
identifying the best teams is the same, the number
of regular season games played differs dramatically
between the sports, ranging from 16 (football) to 82
(basketball and hockey) to 162 (baseball). Though
length of season is partially determined by many
factors including travel logistics, rest requirements,
playoff structure and television contracts, it is hard
to reconcile the 10-fold difference in the number
of games in the NFL and MLB seasons unless
games in the former are somehow more informative
about team abilities than games in the latter. Indeed,
while it would be near-heresy to determine playoff
eligibility based on 16 games of an MLB season
(even if each of the 16 games was against a different
opponent), this number of games is considered
adequate for the same purpose in the NFL.

There is a well-developed literature on the topic
of competitive balance and parity in sports leagues
(Owen, 2010; Horowitz, 1997; Mizak et al., 2005;
Lee, 2010; Hamlen, 2007; Cain and Haddock, 2006;
Larsen et al., 2006; Ben-Naim et al., 2006; Késenne,
2000; Vrooman, 1995; Koopmeiners, 2012). How-
ever, most papers focus on quantifying the degree
of team parity over consecutive years along with the
effects of measures taken to increase or decrease it. In
papers which compare multiple sports, season length
is often viewed as a nuisance parameter to be adjusted
for rather than a focus of inquiry. As a result, little
attention has been directed at the question of how
information on relative team strength accrues over
the course of a single season.

In this paper, we aim to quantify the amount
of information each game yields about the rela-
tive strength of the teams involved. We estimate
team strength via paired-comparison (Bradley and
Terry, 1952) and margin-of-victory models which
have been applied to ranking teams in a variety of
sports (McHale and Morton, 2011; Koehler and Rid-
path, 1982; Sire and Redner, 2009; Martin, 1999).
The growth in information about the relative strength
of teams is quantified via a predictive accuracy curve
which describes how paired-comparison models fit-
ted from X% of the games in a season predict the
outcomes of the remaining (100 − X)% of games,
across multiple values of X (games are partitioned

into training and test sets at random to reduce the
impact of longitudinal trends over the course of a
season). A predictive accuracy curve is also obtained
for describing how paired-comparison models fit-
ted from X number of games from a season predict
the outcomes of the remaining games in the season,
across multiple values of X. We begin by describing
the data and analysis methods we used in Section 2.
Section 3 presents results from recent seasons of the
four major North American sports, and compares
the “information content” of games across the four
sports. In Section 4 we discuss the strengths and
limitations of our analysis.

2. Methods

2.1. Data

We consider game results (home and away
score) for the 2010-2015 seasons for the NFL, the
2010-2011 to 2015-2016 seasons of the NBA, the
2010-2011 to 2015-2016 seasons of the NHL, and
the 2010-2015 seasons of MLB. Game results for the
NFL, NBA and NHL were downloaded from Sports-
Reference.com (Drinen, 2014) and game results for
MLB were downloaded from Retrosheet (Smith,
2014). Only regular season games were considered
in our analysis. A small number of tie games were
removed from the data to simplify the fitting of mod-
els for binary win/loss outcomes, though we note that
there are models that can accommodate tied game
results (Rao and Kupper, 1967).

2.2. Quantifying Informativeness

Let G represent the outcomes (either a win/loss
indicator or margin of victory) from all the games
within a single season of a sport. Our goal is to
quantify the amount of information on relative team
strength contained in a set of games G ⊂ G, as the
proportion of the total number of games in the set
varies. We consider two types of paired compari-
son models in our work. Each game g ∈ G provides
information on the home team (Hg = i), away team
(Ag = j) and the game result as viewed from the
home team’s perspective. Let the binary win/loss
game result Wg = 1 if the home team wins the game,
otherwise Wg = 0, and let πi,j = P(Wg = 1), i.e.,
the probability that the home team, team i, defeats
the visiting team, team j in game g. We fit a logis-
tic regression model which is equivalent (see Agresti
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(2002)) to the standard Bradley-Terry model (Bradley
and Terry, 1952):

logit
(
πi,j

) = βi − βj + α, (1)

The βi and βj terms are the team strength parameters
for teams i and j, respectively, and α is a home-field
advantage parameter.

We fit a similar model when the actual game scores
are considered. In this context, home team margin of
victory (MOV) �g is recorded for each game; �g

is positive for a home team win and negative for a
home team loss (as noted above, a small number of
tie games with �g = 0 were excluded from our anal-
yses). The paired comparison model incorporating
margin of victory is:

μi,j = δi − δj + λ, (2)

where μi,j = E(�g) is the expected margin of victory
for the home team, team i, over the visiting team,
team j. δi and δj are team strengths on the margin-
of-victory scale for teams i and j, respectively, and
λ is a home-field advantage on the margin-of-victory
scale.

Both models (1) and (2) can be fit using standard
statistical software, such as R (R Core Team, 2013).
Given estimates β̂i, β̂j , and α̂ derived by fitting model
(1) to a set of games G, a predicted home team win
probability π̂g can be derived for every game g ∈
G′ ≡ G\G based on which teams i and j are involved.
A binary win/loss prediction for the home team is
obtained according to whether π̂g is greater/less than
0.5. Given estimates δ̂i, δ̂j , and λ̂ from fitting model
(2), home team margin of victory μ̂g can similarly be
predicted for every game in g ∈ G′. A binary win/loss
prediction for the home team is obtained according
to whether μ̂g is positive or negative.

Our metrics for summarizing the amount of infor-
mation on relative team strength are based on how
well the results of games in G allow us to predict the
outcomes of games in G′. Specifically, given G and
G′, our information metric is the fraction of games
in G′ which are correctly predicted using a paired
comparison model applied to G:

IBT (G, G′) =
∑

g∈G′ Wg [π̂g > 0.5]

|G′|
for the Bradley-Terry model (1)

IMOV (G, G′) =
∑

g∈G′ Wg [μ̂g > 0]

|G′|
for the margin-of-victory model (2)

where π̂g and μ̂g are estimates derived from game
results in G, and |G′| denotes the number of games
in G′. The BT and MOV superscripts denote the
Bradley-Terry (i.e., win-loss) and margin of victory
models respectively.

For a given season, we estimated IBT and IMOV

for sets of game results corresponding to 12.5%,
25.0%, 37.5%, 50.0%, 62.5%, 75.0% and 87.5% of
the games in each available season. For a given season
percentage X%, training data sets G1, G2, . . . , GK

were formed by randomly sampling games corre-
sponding to X% of that season, and test data sets
G′

1, G
′
2, . . . , G

′
K were created as the within-season

complements of the training sets. That is, if Gk

consists of a number of games corresponding to
X% of the season, then G′

k contains the remain-
ing (100-X)% of games in that season. Games were
sampled at random so as to reduce the influence
of temporal trends in team strength over the course
of a season. For example, baseball teams who are
out of playoff contention often trade away valu-
able players and give playing time to minor league
prospects in August and September, so that team
strength at the end of the season may be quite differ-
ent than at the beginning. The full algorithm appears
below.

1. For X = 12.5, 25, 37.5, 50, 62.5, 75, and 87.5:
(a) Generate 100 training sets G1, G2,

. . . , G100 (and complementary test sets
G′

1, G
′
2, . . . , G

′
100) by randomly sam-

pling X% of games without replacement
from G.

(b) For each training set Gk:
i. Fit models (1) and (2) to the games in Gk.

ii. Obtain binary win/loss predictions for the
games in the test set G′

k.
iii. Evaluate the information metrics

IBT (Gk, G
′
k) and IMOV (Gk, G

′
k)

(c) Average the computed information met-
rics to estimate the predictive accuracy of
paired comparison models fitted to data
from X% of the entire season (IBT and
IMOV ).

2. Summarize IBT and IMOV across different val-
ues of X.

The above approach defines a predictive accuracy
curve which quantifies how the ability to predict game
outcomes changes as a higher proportion of the sea-
son’s games are used in a predictive model. Through
a similar process, we produced a predictive accuracy
curve which quantifies how the ability to predict game
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outcomes changes as a higher number of games from
the season are used in the model.

2.3. Information accrual rate

In addition to quantifying the accuracy of pre-
diction models, we also sought to measure how
quickly information accrued in each sport, i.e.,
how rapidly prediction accuracy improved as the
number of games used to fit the prediction model
increased. We therefore calculated a sport-specific
information accrual rate based on the derivative of
the IMOV curve. Specifically, we calculated the infor-
mation accrual rate as follows:

1. Fit a fourth-degree (quartic) polynomial equation,
via least squares, to the sport-specific values of
IMOV for all years since 2010.

2. Compute the derivative of the fitted curves (a triv-
ial task since the curve is defined by a polynomial)
to define an instantaneous information accrual
rate, i.e., the rate of change in IMOV for a pre-
diction model using any given number of games
or fraction of games in the season.

For the sake of brevity, we present information
accrual rates for IMOV only; the same steps could
easily be applied to compute information accrual
on the basis of IBT . The fitted quartic polyno-

mial curves and information accrual rate curves for
the four sports are presented in Section 3. Model
coefficients and their corresponding standard error
estimates are provided in Tables A1 through A4 in
Appendix A.

3. Results

Figures 1 through 4 summarize the trajectories of
IBT and IMOV for multiple seasons in each of the four
major U.S. sports. The natural null model comparison
for these curves is the “home-field advantage” (HFA)
model which chooses the home team to win every
game; in these plots, the predictive accuracy of the
HFA model is represented by a horizontal solid line.
The average win probability for the home team (as
determined by the parameters α and λ in models (1)
and (2) respectively) varies from approximately 53%
to 61% across the four sports. The home team winning
between 55% and 60% of NFL games, approximately
60% of NBA games, and between 50% and 55% of
MLB and NHL games is consistent with previous
studies of home-field advantage (Pollard and Pollard,
2005; Liardi and Carron, 2011).

3.1. National Football League

The percent of games correctly predicted on the
test set versus the average number of games per team
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Fig. 1. Percent of games correctly predicted on test set vs. average number of games per team in training set, NFL seasons 2010-2015.
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Fig. 2. Percent of games correctly predicted on test set vs. average number of games per team in training set, NBA seasons 2011-2016.

in the training set for the 2010-2015 National Foot-
ball League seasons is displayed in Fig. 1. Both paired
comparison models (i.e., those which incorporate and
ignore margin of victory) outperform simply picking
the home team to win every game. The margin of vic-
tory model appears to perform slightly better than the
paired comparison model, though the differences are
modest (and in the 2014 season, non-existent). The
prediction accuracy of both models improves as the
number of games used to make predictions increases,
with the rate of increase in accuracy (i.e., information)
being largest for the first 4-6 games per team included
in the model. While the rate of increase in accuracy
slows as additional games are added to the predic-
tion model, it is notable that accuracy continues to
increase even beyond 10-12 games in most years.

3.2. National Basketball Association

Results for the National Basketball Association
can be found in Fig. 2. The NBA was the most
predictable of the four major North American pro-
fessional sports leagues. Using 87.5% of games as
a training set, our model was able to predict with
over 65% accuracy across seasons. The NBA also had
the largest home court advantage with home teams
winning approximately 60% of games. There was vir-
tually no advantage in including margin of victory in

our models. The only major difference between the
NFL and NBA was the growth of information over
the season. While the accuracy of our predictions
for the NFL continued to improve as more games
were added to the training set, model accuracy for
the NBA did not improve substantially once more
than 25% of games (i.e., ≥ 21 games per team) were
included in the training set. Analyses using the seg-
mented package in R for fitting piecewise linear
models (Muggeo, 2003, 2008) confirmed an inflec-
tion point in the prediction accuracy curve when
approximately 25-30 games per team were used in
the model.

3.3. Major League Baseball and the National
Hockey League

Results from Major League Baseball and the
National Hockey League are found in Figs. 3 and 4,
respectively. The results for MLB and the NHL were
quite similar, in that both leagues were substantially
less predictable than the NFL and NBA. The per-
centage of games correctly predicted for MLB never
exceeded 58% even when 140 games (87.5% of a
season) were included in the training set. The NHL
was slightly better but our model was never able to
predict more than 59% of games correctly. Prediction
accuracy was rarely more than 2-3 percentage points
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Fig. 3. Percent of games correctly predicted on test set vs. average number of games per team in training set, MLB seasons 2010-2015.

better than the simple strategy of picking the home
team in every game for either league. For example,
the maximum predictive accuracy in the NHL was
achieved in the 2012-2013 season when the home
team win probability was relatively high at 57%. And,
during the 2011-2012 season, picking the home team
performed better than paired comparison models con-
structed using a half-season’s worth of game results.

3.4. Comparing the sports

Here, we summarize and compare the predictive
accuracy of the MOV model for the four major sports,
aggregated across the years of available data. Results
from the win-loss model were similar, and are not
shown. Figure 5a is an aggregated version of the
per-sport predictive accuracy plots, and summarizes
predictive accuracy versus the number of games used
in the training set. Figure 5b also plots predictive
accuracy, but versus the proportion of games used in
the training set. Information accrual rates (see Section
2.3) are summarized, per game and per proportion of
games, in Figs 6a and 6b.

Figures 5a and 6a show that on a per-game
basis, NFL games are most informative. Over the
first five games (per team) used in the prediction
model, prediction accuracy improves by at least 1%
per game, with the most dramatic improvements

(3-4% per game improvement rate) accruing after
the initial 2-3 games. The initial 5-10 games of the
NBA season offer more modest, but still substantial,
improvements of approximately 1% accuracy per
game. Initial NHL games are slightly more infor-
mative than initial MLB games, but the per-game
improvements in predictive accuracy are below 0.5%
and 0.2% respectively.

Figures 5b and 6b place data on the same horizontal
scale, comparing predictive accuracy and information
accrual rate as the proportion of games used in the pre-
diction model varies. From Figure 6b, we see that the
first 10-15% of games included in the NBA predic-
tion model actually provide more information than the
first 10-15% of games included in the NFL prediction
model. However, the information accrual rate of NBA
games quickly approaches zero beyond this point,
whilepredictionmodelaccuracycontinues to improve
in the NFL model beyond 50% of games. Indeed, at
the point where 25% of games have been included
in the prediction model, the information accrual rate
of the NBA is very similar to that of the MLB and
NHL (∼0.1%), while the NFL’s information accrual
rate is more than 2.5 times higher (∼0.25%). Informa-
tion accrues at a more modest rate for MLB and NHL
games; for these two sports, as in the NBA, the accrual
rate is essentially zero once 30% of the season’s games
are included in the prediction model.
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Fig. 4. Percent of games correctly predicted on test set vs. average number of games per team in training set, NHL seasons 2011-2016.

4. Discussion

Our results reveal substantial differences between
the major North American sports according to how
well one is able to discern team strengths (and hence
predict the outcomes of future games) using game
results from a single season. NBA games are most
easily predicted, with paired comparison models hav-
ing good predictive accuracy even including a small
fraction of the season; indeed, since our informa-
tion metric for the NBA appears to plateau at around
25 games, a large fraction of games in the NBA season
are superfluous from the point of view of distinguish-
ing the best and worst teams in the league. NFL game
results also give useful information for determining
relative team strength. On a per-game basis, NFL con-
tests contain the largest amount of information, and
unlike in the other sports substantial information con-
tinues to accrue though the majority of the season’s
games. While we randomly permuted the order of
games when adding them to our prediction model
instead of considering them in their scheduled order,
our results suggest that for the NBA, NHL, and MLB,
the first quarter of the season provides most of the
information necessary for determining relative team
strength, while games in the second half of the NFL
season contribute useful information in determining
the strongest teams.

The predictive ability of paired comparison models
constructed from MLB and NHL game data remains
limited even when results from a large number of
games are used. One interpretation of this finding
is that, in comparison to the NBA and NFL, games
in MLB and the NHL carry little information about
relative team strength. Our results may also reflect
smaller variance in team strengths (i.e., greater parity)
in hockey and baseball: Because our information met-
ric considers the predictive accuracy averaged across
all games in the test set, if most games are played
between opposing teams of roughly the same strength
then predictive models based only on paired compar-
isons will fare poorly. Indeed, the inter-quartile range
for winning percentage in these sports is typically on
the order of ∼20%, while in football and basketball
it is closer to 30%.

Our observation that the hockey and baseball regu-
lar seasons do relatively little to distinguish between
teams’ abilities is reflected in playoff results in
these sports, where “upsets” of top-seeded teams by
teams who barely qualified for the postseason hap-
pen much more regularly than in the NFL and NBA.
Specifically, for the six seasons of available data
lower-seeded teams won first-round playoff series
43.8% of the time in the NHL, and 58.3% of the
time in MLB (Drinen, 2014, Smith, 2014). However,
lower-seeded teams won only 25.0% of divisional
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Fig. 5. Proportion of games correctly predicted by margin of victory model
(
IMOV

)
for four major U.S. sports leagues. Lines are quartic

polynomials fit to data from each sport aggregated across the years 2010-2016. (a) Information accrual rate by number of games used in
prediction model. Number of games truncated at 41 for readability. (b) Information accrual rate by proportion of season games used in
prediction model.

round playoff games in the NFL, and 27.1% of
first-round games in the NBA. While there are
many considerations when designing playoff struc-
tures (Bojke, 2008), an argument could be made for
increasing the number of teams that qualify for the
MLB playoffs since the current 10-team format is
likely to exclude teams of equal or greater ability
than ones that make it. Using similar logic, one might
also argue that perhaps the NBA playoffs are overly
inclusive as there is ample information contained in

regular season game outcomes to distinguish between
the best teams and those that are merely average.

The enormous discrepancy in the informative-
ness of game results between hockey and basketball,
which both currently play seasons of the same length,
is notable. One possible explanation for why basket-
ball game results more reliably reflect team strength is
that a large number of baskets are scored, and the Law
of Large Numbers dictates that each team approaches
their “true” ability level more closely. In contrast,
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Fig. 6. Information accrual rate (first derivative of IMOV curve) for four major U.S. sports leagues. (a) Information accrual rate by number
of games used in prediction model. Number of games truncated at 41 for readability. (b) Information accrual rate by proportion of season
games used in prediction model.

NHL games are typically low-scoring affairs, fur-
ther compounded by the fact that a large fraction
of goals are scored on broken plays and deflections
which seem to be strongly influenced by chance. We
have not analyzed data from soccer, but it would be
interesting to explore whether the “uninformative-
ness” of hockey and baseball game results extends
to other sports, or whether the relatively low parity of
soccer makes individual games more “informative”
according to our metrics.

Our analysis has several limitations. First, we
chose to quantify information via the predictive

accuracy of simple paired comparison models. It is
possible that using more sophisticated models for pre-
diction might change our conclusions, particularly
for sports like the NBA where the predictiveness
curve plateaus early. Nevertheless, we doubt that
using more complex models would erase the sizable
between-sport differences that we observed. One pos-
sible explanation for the fact that the outcome of a ran-
domly chosen baseball game is hard to predict based
on previous game results is the significant role that the
starting pitcher plays in determining the likelihood
of winning; the “effective season length” of MLB
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could be viewed as being far less than 162 games
because each team-pitcher pair carries a different win
probability. However, in additional analyses (results
not shown), we fitted paired comparison models
including a starting pitcher effect and this did not sub-
stantially affect our results. Second, it could be argued
that team win probabilities change over the course of
a season due to roster turnover, injuries, and other
effects. By randomly assigning games to our training
and test set without regard to their temporal ordering,
we are implicitly estimating “average” team strengths
over the season, and applying these to predict the out-
come of an “average” game. We chose a random sam-
pling approach over one which would simply split the
season because we wanted to eliminate time trends
in team strengths when describing how information
accrued as more game results were used to build
prediction models. Our approach therefore does not
directly describe how predictive accuracy improves
as games are played in their scheduled order.
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Appendix A

Table A1

Fitted coefficients for the quartic polynomial model E
(
IMOV
g

)
= β0 + β1g+β2g

2 + β3g
3 +

β4g
4, where IMOV

g is the proportion of games correctly predicted by a MOV model trained on
g game results. The functions are plotted in Fig. 5a.

League β0 β1 β2 β3 β4

MLB 0.505 0.002 −3.07E-05 2.46E-07 −7.04E-10
NBA 0.537 0.016 −6.25E-04 1.03E-05 −5.91E-08
NFL 0.454 0.065 −9.16E-03 6.26E-04 −1.61E-05
NHL 0.504 0.004 −1.40E-04 2.07E-06 −1.11E-08

Table A2

Fitted coefficients for the quartic polynomial model E
(
IMOV
p

)
= β0 + β1p + β2p

2 + β3p
3 +

β4p
4, where IMOV

p is the proportion of games correctly predicted by a MOV model trained on
game results representing a proportion p of the season. The functions are plotted in Fig. 5b.

League β0 β1 β2 β3 β4

MLB 0.50 0.29 −0.83 1.09 −0.51
NBA 0.54 1.33 −4.37 5.95 −2.81
NFL 0.45 1.04 −2.35 2.56 −1.06
NHL 0.50 0.37 −1.01 1.25 −0.56

Table A3

Standard error estimates for coefficients of quartic polynomial model E
(
IMOV
g

)
= β0 + β1g +

β2g
2 + β3g

3 + β4g
4, where IMOV

g is the proportion of games correctly predicted by a MOV
model trained on g game results. The functions are plotted in Fig. 5a.

League β0 β1 β2 β3 β4

MLB 2.71E-03 3.69E-04 1.14E-05 1.23E-07 4.30E-10
NBA 4.67E-03 9.56E-04 5.63E-05 1.20E-06 8.28E-09
NFL 3.10E-02 2.28E-02 5.30E-03 4.83E-04 1.50E-05
NHL 5.22E-03 1.07E-03 6.29E-05 1.34E-06 9.25E-09

Table A4

Standard error estimates for coefficients of quartic polynomial model E
(
IMOV
p

)
= β0 + β1p +

β2p
2 + β3p

3 + β4p
4, where IMOV

p is the proportion of games correctly predicted by a MOV
model trained on game results representing a proportion p of the season. The functions are
plotted in Fig. 5b.

League β0 β1 β2 β3 β4

MLB 0.003 0.060 0.300 0.528 0.299
NBA 0.005 0.078 0.375 0.660 0.375
NFL 0.031 0.365 1.357 1.978 0.985
NHL 0.005 0.088 0.427 0.751 0.427


