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Abstract. In 2018 the NCAA introduced a new metric, namely a four-Quadrant system intended to adjust for home-court
advantage when assessing quality wins in the selection and seeding process for the Division I Men’s Basketball Tournament.
We apply a linear programming procedure for ranking potential candidates for the tournament, based upon the traditional
criteria, show how the rankings change with the inclusion of the Quadrant metric, and conclude that the metric has a substantial
impact on the choices. We go on to show that the new ranking and choices are much more in sync with the NCAA Selection
Committee’s actual ranking and choices than had been the case absent the metric, leading to the inference that the metric
played an important role in the Committee’s decision making.

1. Introduction

The NCAA Division I Men’s Basketball Tour-
nament is a knockout (single-loss-elimination),
six-round, three-week annual event that has his-
torically been held in March, culminating in a
championship game played on the first Monday
evening in April. Over the years, the 64-team format
that has been in place since 1985 has undergone a
series of changes of varying import. The most recent
and impactful change became effective with the 2011
tournament, when 68 of the then 339 Division I teams
were invited to participate. But eight of the 68 were
required to play in four so-called play-in games that
would reduce the final set of competitors to the tradi-
tional 64-team format.

The 64 finalists are slotted into four brackets: nomi-
nally, East, West, Midwest, and South. In each bracket
the teams are seeded 1 through 16, with the “1” judged
to be the strongest and the “16” the weakest. The slot-
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ting is done so as to allow the four 1 seeds to play their
first-round games in the neutral-court venues that are
closest to their home courts. Insofar as is feasible,
similar courtesies are next extended to the 2 seeds,
and so on down the line.

In the first-round pairings, the seed numbers sum
to 17. Thus the presumed largest mismatches pair the
four top seeds and the four bottom seeds, and the
presumed nail-biters pair the four 8 s and the four
9 s. The 2018 tournament marked the first time in its
35-year history under the current format that a 16
– the University of Maryland (Baltimore County) –
defeated a 1 – the University of Virginia. If “chalk”
holds, in the sense that the higher seeds always pre-
vail, the sum of the seed numbers in the second-round
pairings will equal 9, and so forth in subsequent
rounds, with the four top seeds paired in the penulti-
mate round and the two surviving 1’s then competing
for the championship. Chalk, however, is honored
largely in the breach at tournament time, thanks to
both the inherent uncertainty in any sporting event
and the inherent fallibility of the ten-person Selection
Committee charged with selecting and seeding the 68
invitees. Hence the colloquial reference to the tourna-
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ment as March Madness aka The Big Dance. Indeed,
it is not at all uncommon for the betting market to
favor a lower seed over a higher seed, as the mar-
ket agents do not necessarily share the Committee’s
judgments.

And those agents are not alone. The list of invi-
tees and where they are seeded, along with the list of
the scorned, are rarely without controversy, as there
are no definitive rules guiding the Committee’s deci-
sions, beyond the strict requirement that invitations
to the dance must be issued to the champions of each
of the 32 basketball-playing conferences. The addi-
tional 36 invitations – the at-large selections - are
issued at the Committee’s discretion, which prior to
the 2018 tournament were guided only by some vague
NCAA mandates to the effect that attention should
be paid to such factors as strength of schedule (SOS),
a ratings percentage index (RPI) purporting to mea-
sure a team’s performance, given the performance of
its opponents and that of their opponents, a team’s
win percentage, and the “quality” of its wins and
losses. To help the Selection Committee differenti-
ate between high-quality and low-quality wins and
losses, the NCAA provided Team Sheets that sepa-
rate team schedules into four quadrants based on the
quality of their opponent. In 2017 for example, the
Team Sheets separated each team schedule based on
games played against teams with RPIs ranked in the
Top 50, RPIs ranked 51 to 100, RPIs ranked 101 to
200, and teams with RPI ranks below 201. In addi-
tion to identifying factors that should be attended to,
the NCAA specifically mandates that factors such as
conference affiliation or the reputation of the coach
should be excluded from consideration. The Commit-
tee members are also encouraged to watch as many
games as possible, especially those of teams to which
they have been assigned, and to supplement those data
with their eyeball tests.

Absent definitive guidance as to how large a role
each of the non-barred factors should play in the
Committee’s deliberations and collective judgments,
Reinig and Horowitz (2018), henceforth RH, prof-
fered a mathematical programming (MP) approach
to assigning weights to the pertinent factors which
would guide both the selection of the at-large teams
and the ranking and consequent seeding of all 68 invi-
tees. The 2011 rule that required the 65th through
the 68th-ranked teams to meet in one pair of play-in
games whose winners would fill two 16 seeds, and
the four lowest-ranked at-large teams to meet in the
second pair of play-in games, would still apply. As
emphasized by RH, the resulting recommendations

were not intended to replace the Committee’s judg-
ments, but rather to provide them a raison d’etre for
some of their choices and an impetus for articulating
the reasons for going in another direction in others.

RH carry out their analysis and provide ex post
recommendations for the 2012 through 2016 tour-
naments, which they show align quite well with
the respective Selection Committees’ selections and
seeding. More critically, they demonstrate the fea-
sibility of their approach by applying it ex ante to
the formal Selection Sunday announcement of the
Committee’s decisions. When doing so, they identi-
fied only a single case in which their approach yielded
a markedly different result from that of the Commit-
tee - that in which it ranked Illinois State as the 32nd
at-large selection, which as such would have merited
an invitation, as opposed to the Committee’s choice of
Marquette, which the MP approach had ranked 39th.

Then, in early February 2018, in time for imple-
mentation by the Selection Committee in making
its selections for the 2018 tournament, the NCAA
announced a major alteration to the system, one
intended to adjust for home-court advantage: namely,
the heretofore informally and selectively applied
principle that all else being equal, a road win is
superior to a win at a neutral site, which is in turn
superior to a home win. That is, some wins are
better than others and some losses are worse than
others, and a systematic recognition of such, which
historically entered into the Committee’s delibera-
tions in an unsystematic and ad hoc basis, was now
formalized through the metric of “Quadrant” wins
and losses wherein four Quadrants are defined in the
Team Sheets that summarize the data provided to the
Committee members. There, for example, Quadrant
1 (Q1) win-loss results are those compiled at home
against teams ranked 1 to 30 in accordance with RPI,
plus those compiled on neutral courts against teams
ranked 1 to 50 by RPI, plus those compiled on the road
against teams ranked 1 to 75 by RPI. At the other
extreme, Q4 win-loss results are those compiled at
home against teams ranked 161 or higher by RPI, plus
those compiled on neutral courts against teams ranked
201 or higher, plus those complied on the oppo-
nent’s court against teams ranked 241 or higher by
RPI. Individual game outcomes are listed within the
opponent’s Quadrant by RPI, and color-coordinated
to identify non-conference games and game site, and
to highlight losses. Thus, for example, the 2018 Team
Sheet for Virginia shows its lowest RPI-ranked oppo-
nent in Quadrant 1 to have been 61st-ranked Virginia
Tech, a road opponent that it defeated in Blacksburg,
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Virginia on January 3, 2018. Virginia’s February 10,
2018 home victory over that same 61st-ranked Vir-
ginia Tech in Charlottesville, Virginia, however, is
listed in Quadrant 2. Thus, greater merit is given to
beating Virginia Tech on the road than at home.

The addition of the new Quadrant metric in the
evaluation process drew mixed reviews in the media,
with some pundits viewing it as long overdue and
others criticizing it because it continues to place great
reliance on RPI, seen by some as a flawed measure.
Paul and Wilson (2015), in particular, provide a crit-
ical analysis of its use, and identify its principal flaw
as its focus on wins and losses and, unlike the Sagarin
ratings, its failure to consider margin of victory. But
did this new metric actually change anything? That is,
were the Committee’s 2018 selections any different
from those that would have obtained in its absence?
Unfortunately, there is no way of knowing that, short
of interviewing the individual members and solicit-
ing their impressions. But an alternative approach is
to proceed in the by now standard vein pioneered by
Coleman and Lynch (2001; 2009), and followed up
in Shapiro et al. (2009), Coleman et al. (2010; 2016),
Leman et al. (2014), and Paul and Wilson (2015),
which uses logit/probit regression modelling in the
attempt to identify the factors that had a statistically-
significant impact on the likelihood that a school did
or did not receive an at-large tournament bid. For
reasons that are discussed at the end of Section 4
below, that approach was unrewarding in the present
application.

What we can establish, however, is how the intro-
duction of this new metric would have altered the
selections and ranking and seeds obtained through
the application of the MP approach, and concurrently
attempt to infer its impact on the Committee’s deci-
sions. Doing so is the purpose of this paper.

Specifically, we use the RH approach to analyze
the 2018 tournament both with and without using
the new Quadrant system to determine what, if any,
impact the Quadrant system has had on NCAA selec-
tions and bracket rankings. It will be shown that while
absent the Quadrant data the recommendations of the
MP approach still align quite well with the Quadrant-
based decisions, incorporating those data into the
MP analysis do indeed alter the MP-based recom-
mendations and bring them even more in sync with
the Committee’s choices. The latter suggests, in turn,
that the Committee also incorporated these new data
into its decision processes. What our analysis further
suggests, however, is that the Committee members’
subjective impressions of the teams and what would

seem to be their non-systematic interpretations of the
data resulted in numerous inconsistencies in the final
team rankings, considered in a systematic sequence
of paired comparisons.

2. A brief overview of the mathematical
programming approach

RH (2018, p. 188) focus on a small but comprehen-
sive set of seven quantifiable factors that summarize
expert opinions of reporters and coaches, along with
specific team-performance measures, in the team-
ranking process. Those factors are: Associated Press
(AP) Poll Points; USA Today Coaches Poll Points;
Win Percentage; RPI; SOS; Wins against teams in
the Basketball Power Index (BPI) Top 50, or Quality
Wins; and Losses to Teams Other than Those in the
BPI Top 50, or Non-Quality Losses.

The procedure assigns a non-negative weight to
each of these factors. To assure the non-negativity of
the weight assigned to non-quality losses, these are
multiplied by negative one. To eliminate the influence
of unit-of-measurement in the factor-weighting pro-
cess, the factors are normalized prior to processing
the data. Then, with the normalized value of factor Xi
(i = 1, . . . , I) for team k (k = 1, . . . , K) denoted xki , the
implied linear evaluation of team k is Vk =

∑
wixki ,

where
∑

wi = 1 and wi≥0.
Team k is said to dominate team j and hence should

be ranked at least as high as team j when xki ≥xji for
all values of i, with the strict inequality holding for at
least one value of i (e.g., Loomba and Turban, 1974,
p. 232). Thus, for any pair of relationships in which
team k dominates team j, it is necessarily true that Vk -
Vj =

∑
(wi (xki – xji ) = Skj ≥0. To solve the problem,

RH select as their objective function the minimization
of the maximum Z = SM ≥Skj (k = 1, . . . , K), which
converts this into a readily-solved linear program-
ming (LP) problem. From the transitivity property,
when team j in turn dominates team h, it is necessarily
true that team k does as well. Thus it is not necessary
to specify that Skh ≥0. The LP process will see to it
that it does.

3. The approach applied to the 2018
tournament

We applied the RH approach to the 2018 tourna-
ment data in three stages. In the first stage, which
was implemented for data through February 26, we
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selected 80 teams from the full set of now 351 Divi-
sion I teams, less three teams ruled ineligible for hav-
ing failed the NCAA’s APL (academic) requirements.
The set initially included the teams that rated highest
in BPI to which we subsequently added what were at
the time the best-performing teams from conferences
that are generally regarded as being (informally) lim-
ited to one bid, and that failed to land a team in the
former set. The resulting sample comprised 80 teams.
The solution to the problem assured that we would be
able to pluck 36 at-large teams from the set, once each
of the 32 automatic bids had been determined.

The procedure was repeated the following week
using the data through March 5. By this time, how-
ever, five conference champions had already been
determined: Michigan (Big Ten), Loyola-Chicago
(Missouri Valley), Murray State (Ohio Valley), Lip-
scomb (Atlantic Sun), and Radford (Big South). The
former three had qualified for inclusion in the set by
virtue of their BPI standing. As was the case in the
second go-round, we juggled some teams from the
earlier set to take advantage of the previous week’s
results, which included the conclusion of the regu-
lar season in several conferences as well as the early
rounds of conference tournaments in several others.
The results of the new trial, in particular, suggested
that we might have overlooked a team such as Penn
State or Utah that was peaking at the right time. We
also took advantage of the insights of such so-called
and well-known “bracketologists” as Joe Lunardi
(ESPN) and Jerry Palm (CBS), to name two, to help
assure that we were not overlooking reasonable can-
didates for an invitation to the dance. Although the
procedure itself does not constrain the number of
teams that can be considered, from a practical com-
putational standpoint it makes sense to eliminate at
the outset those teams that would seem to have elim-
inated themselves by virtue of their failure to win
enough games. Thus, our final file and application on
Selection Sunday, which used the data through March
10 and the win-loss results of March 11, included 84
teams. Since tournament play in five conferences was
still taking place on that day, the set included at least
two teams from each of the latter conferences, which
is why both Harvard and Pennsylvania (Ivy League),
and both Georgia State and UT-Arlington (Sun Belt)
were included.

We then re-ran our analysis using the Team Sheet
ranked data used by the Committee. Thus, for exam-
ple, in place of W%, we use Y5 = W% rank. And since
a higher win percentage implies a lower-numbered
rank, switching to ranked data means multiplying the

data by negative one, so as to assure the assignment
of non-negative weights to all the factor ranks. We
also drop the poll data in favor of the POM (Ken
Pomeroy) = Y1 and SAG (Jeff Sagarin) = Y2 ratings,
both of which are widely used and cited. We chose
not to incorporate either KPI (Key Performance Indi-
cator) or SOR (Strength of Record), since neither of
these metrics enjoys either status. In place of RPI we
use the Average RPI of the teams Beaten = Average
RPI Wins = Y3 and Average RPI of the teams Lost
To = Average RPI Loss = Y4. SOS is introduced in the
ranked format as Y6. We do not separately consider
in-conference data and performance. Finally, we nor-
malize all these ranked data, with the normalized rank
of Yk (k = 1, . . . , 6) denoted yk . The normalization
to eliminate the influence of unit-of-measurement is
applied even with the ranked data since, for exam-
ple, the means range from 59.36 (y1) to 163.62 (y3),
and the standard deviations range from 45.64 (y5) to
90.65 (y6). The latter do not reflect multiplying by
negative one prior to processing. In the next section
we extend our analysis to include the Quadrant data.
In the interest of parsimony, the results both with and
without the Quadrant data are presented in five basic
tables, labeled accordingly Table 1 through Table 5.
The immediate focus and discussion, however, is con-
fined to the results for the six-factor Non-Quadrant
analysis, as so labeled in the tables.

From the first row in Table 1 it is seen that with six
salient factors the 84-team final sample of schools
results in 1,225 dominant rules - that is, conditions
imposed on the ranking of the teams - of which
434 are non-redundant. The first row of Table 2
provides the minimax weights attached to each of
the six factors (variables), Y1, ... , Y6. We remark en
passant, that consistent with the historical results
and those for the 2017 tournament (RH, 2018, pp.
184-185) RPI Wins = Y3 is assigned a zero weight,
but RPI Losses = Y4, which reflects quality losses,
is assigned a large weight of w4 = 0.4774. The latter
is marginally higher than the w5 = 0.4516 weight
that is assigned to win percentage. SOS also enters
into the process, but with a relatively minor role:
w6 = 0.0710. As was generally the case with the two
polls, neither the Pomeroy nor the Sagarin ratings
came into play. Thus a coach that wants to impress
the LP scheme would be well advised to play a tough
schedule, win a lot of those games, and suffer his
losses to high-performing teams.

As seen from the first and third columns of Table 3,
there are seven principal differences between the 36
“implied” and actual at-large invitations, where the
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Table 1

Rules and objective function for the two variable sets

Team Set Teams Dominant Non-Redundant Minimax Objective
Analyzed Rules Rules function

Non-Quadrant (six variables) 84 1,225 434 2.47
Quadrant Expansion (10 variables) 84 1,137 477 2.15

Table 2

Minimax solution weights for the two variable sets

Team Set POM SAG RPIW RPIL WP SOS Q1W Q1&2W Q3L Q3&4L

Non-Quadrant 0.0000 0.0000 0.0000 0.4774 0.4516 0.0710 ––– ––– ––– –––
(six variables)

Quadrant Expansion 0.0000 0.0000 0.0000 0.2598 0.2896 0.0000 0.1105 0.3400 0.0000 0.0000
(10 variables)

former comprise the 36 at-large teams that are ranked
highest by the LP method, applied to the 84 sample
teams, using the first row of weights in Table 2.
Seven discrepancies is quite large by the standards
of RH (2018). Specifically, the LP approach would
have recommended non-invitees Middle Tennessee,
St. Mary’s, Nebraska, Louisville, Mississippi State,
Southern California, and Utah, while bypassing
the Committee’s selections of Missouri, Alabama,
Providence, Texas, Oklahoma, Arizona State, and
Syracuse.

Table 4 lists the 68 invitees, the source of the invi-
tation, and the NCAA rank. The fourth (numerical)
column gives each team’s rank as determined through
the minimax weights applied to all 84 teams. Finally,
the third row in each of the two blocs of Table 5
summarizes these results in two non-parametric cor-
relations: the generally more conservative Kendall’s
tau = 0.731 and Spearman’s rho = 0.901, both of
which are statistically significant at p < 0.0001. In
light of the strength of the correspondence, and in
the attempt to avoid further cluttering up of the table,
we have not included either the actual or the implied
seeds, the derivation of which is a straight-forward
task that we leave to the particularly involved reader.

4. The RH approach applied anew with the
quadrant data included

The Quadrant data are introduced through four
additional factors: the first two of which are intended
to reflect Quality Wins:

Y7 = Quadrant 1 Wins;
Y8 = Quadrant 1 and Quadrant 2 Wins;
The second two reflect non-quality losses:
Y9 = Quadrant 3 Losses;

Y10 = Quadrant 3 and Quadrant 4 Losses.

The inclusion of the Quadrant data has three prin-
cipal effects. First, as a technical matter, and as seen
in the second row of Table 1, it results in 88 fewer
dominant rules (because domination is more difficult
to achieve with additional factors to consider), but
43 additional rules are non-redundant (for precisely
the same reason). Second, and more pertinently, these
data essentially cut in half the weights assigned to RPI
Losses and W% and eliminate SOS in its entirety. In
place of the latter two factors, the new results give
the highest weight, w8 = 0.3400, to Quadrant 1 plus
Quadrant 2 wins – that is quality wins - and a lesser
weight of w7 = 0.1105 to Quadrant 1 wins alone. It
is thus immediately apparent that the Quadrant Wins
data, but not the Quadrant Loss data, have an impor-
tant impact on the LP results, and the factors that
the results suggest will be important in the LP rec-
ommendations. These results, however, continue to
bear the message that at-large bids will hinge upon
coaches playing a tough schedule and winning most
of those games. Third, as is apparent from the sec-
ond column of Table 3, including the Quadrant Wins
data brings the LP recommendations much more in
line with the Committee’s choices. Specifically, to
all intents and purposes the two lists overlap and
only differ in that the LP approach would still rec-
ommend Southern California and Middle Tennessee
for at-large bids instead of the Committee’s choices
of Arizona State and Syracuse. That is, we’ve gone
from seven different selections down to two different
selections, for at-large bids. This is also seen in the
second column of rankings in Table 4, which show
that all but two of the Quadrant-based LP-ranked Top
68 teams correspond to those so–ranked by the Selec-
tion Committee, which necessarily corresponds to the
two-team difference in the at-large selections.
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Table 3

At-Large Selection Results for Quadrant Expansion and Non-Quadrant
Expansion compared to NCAA 2018 Selection Committee

Team NCAA At-Large LP Quadrant LP Non-Quadrant
Only Rank Expansion Rank Expansion Rank

Xavier 1 2 2
North Carolina 2 1 11
Duke 3 5 5
Purdue 4 4 3
Michigan St. 5 9 1
Tennessee 6 7 4
Texas Tech 7 8 15
Auburn 8 10 9
Wichita St. 9 6 6
West Virginia 10 3 12
Clemson 11 11 8
Ohio St. 12 13 10
Florida 13 12 35
Miami (FL) 14 18 13
Houston 15 14 23
TCU 16 23 18
Texas A&M 17 15 29
Arkansas 18 17 17
Nevada 19 16 14
Rhode Island 20 21 7
Seton Hall 21 26 27
Creighton 22 31 21
Virginia Tech 23 22 22
Missouri 24 28 –––
Florida St. 25 29 33
Kansas St. 26 19 16
NC State 27 25 30
Alabama 28 33 –––
Providence 29 27 –––
Butler 30 32 36
Texas 31 36 –––
Oklahoma 32 35 –––
UCLA 33 30 31
St. Bonaventure 34 20 20
Arizona St. 35 ––– –––
Syracuse 36 ––– –––
Southern California ––– 24 32
Middle Tenn. ––– 34 19
Saint Mary’s (CA) ––– ––– 24
Nebraska ––– ––– 25
Louisville ––– ––– 26
Mississippi St. ––– ––– 28
Utah ––– ––– 34

And in a closely-related vein, but from the some-
what different perspective of the non-parametric
correlations of Table 5, it is seen that the Kendall
coefficient increases to τ = 0.892, and the Spearman
coefficient increases to ρ = 0.981, when the Quadrant
data determine both the at-large selections and the
overall ranking of all 68 invitees.

We also applied the logit-regression approach, in
two stages, to the 52-team sample of at-large can-
didates (i.e., teams receiving automatic bids were
removed from the set) that survived our initial cut

for the RH analysis. In the first stage, as inde-
pendent variables we included the six basic factors
running from Y1 = POM to Y6 = SOS. In the sec-
ond stage we added the four Quadrant metrics,
Y7, ... ,Y10. In first-stage solution, only Y5 = W% rank
has a statistically-significant (p = 0.029) parameter
estimate (w5 = 0.054). Five of the estimates have the
“correct” positive sign, but w1 = –0.085 (p = 0.316), if
taken seriously would imply that being well-regarded
by Pomeroy is a detrimental to an aspirant’s hopes.
In the second-stage solution, none of the parameters



B.A. Reinig and I. Horowitz / Analyzing the impact of the new quadrant system 331

Table 4

NCAA Selection Committee Tournament Rankings compared to LP Solutions for Quadrant and Non-Quadrants Variable Sets

Team NCAA Bid NCAA LP Quad. LP Non- Team Bid NCAA LP Quad. LP Non-
Rank Exp. Rank Quad Rank Rank Exp. Rank Quad Rank

Virginia Auto 1 1 4 NC State At-Large 35 33 42
Villanova Auto 2 3 7 Alabama At-Large 36 41 –––
Kansas Auto 3 2 18 Providence At-Large 37 35 –––
Xavier At-Large 4 5 3 Butler At-Large 38 40 48
North Carolina At-Large 5 4 17 Texas At-Large 39 44 –––
Duke At-Large 6 9 9 Oklahoma At-Large 40 43 –––
Purdue At-Large 7 8 5 UCLA At-Large 41 38 43
Cincinnati Auto 8 6 2 St. Bonaventure At-Large 42 28 30
Michigan St. At-Large 9 16 1 Arizona St. At-Large 43 ––– –––
Tennessee At-Large 10 13 8 Syracuse At-Large 44 ––– –––
Michigan Auto 11 14 11 San Diego St. Auto 45 51 53
Texas Tech At-Large 12 15 23 Loyola Chicago Auto 46 50 50
Auburn At-Large 13 17 14 New Mexico St. Auto 47 45 33
Wichita St. At-Large 14 11 10 Davidson Auto 48 48 52
Gonzaga Auto 15 19 6 South Dakota St. Auto 49 46 24
Arizona Auto 16 10 19 Murray St. Auto 50 47 27
Kentucky Auto 17 12 16 Buffalo Auto 51 49 37
West Virginia At-Large 18 7 20 UNCG Auto 52 55 60
Clemson At-Large 19 18 13 Col. of Charleston Auto 53 53 56
Ohio St. At-Large 20 21 15 Marshall Auto 54 52 54
Florida At-Large 21 20 47 Bucknell Auto 55 56 51
Miami (FL) At-Large 22 26 21 Montana Auto 56 54 49
Houston At-Large 23 22 34 Wright St. Auto 57 59 61
TCU At-Large 24 31 28 SFA Auto 58 57 57
Texas A&M At-Large 25 23 41 Lipscomb Auto 59 61 58
Arkansas At-Large 26 25 26 Georgia St. Auto 60 63 64
Nevada At-Large 27 24 22 Cal St. Fullerton Auto 61 62 62
Rhode Island At-Large 28 29 12 Iona Auto 62 64 63
Seton Hall At-Large 29 34 39 UMBC Auto 63 60 59
Creighton At-Large 30 39 31 Penn Auto 64 58 55
Virginia Tech At-Large 31 30 32 Radford Auto 65 65 65
Missouri At-Large 32 36 ––– LIU Brooklyn Auto 66 67 67
Florida St. At-Large 33 37 45 NC Central Auto 67 68 68
Kansas St. At-Large 34 27 25 Texas Southern Auto 68 66 66

Notes: The LP Quad. Expansion solution includes (ranks) Southern California (#32) and Middle Tenn. (#42). The LP Non-Quad solution
includes (ranks) Middle Tenn. (#29), Saint Mary’s (CA) (#35), Nebraska (#36), Louisville (#38), Mississippi St. (#40), Southern California
(#44), Utah (#46).

Table 5

Non-parametric correlations between the NCAA Selection Committee’s 68-team
ranking and the implied ranking using the LP Quadrant Expansion and Non-quadrants weights

Correlation Measure (N = 68 teams) NCAA Rank Quadrant Non-Quadrant
Expansion

Kendall’s tau NCAA Rank 1.000
Quadrant Expansion 0.892 1.000
Non-Quadrant 0.731 0.752 1.000

Spearman’s rho NCAA Rank 1.000
Quadrant Expansion 0.981 1.000
Non-Quadrant 0.901 0.911 1.000

are statistically significant (p ≤ 0.978), and four of
the estimates have the “wrong” negative sign.

The logit approach fails, at least in this particu-
lar application and we suspect falls short in some of
its earlier applications as well, because of a serious
collinearity problem that manifests itself in two ways:

notably, the coefficient estimates are highly unstable
and shift in both sign and order of magnitude depend-
ing upon which factors are included in the equation.
Thus, each of the ten binary-logit regressions run with
just one factor included as an independent variable
results in a “correctly-signed” parameter estimate,
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eight of which are highly significant (p ≤ 0.007),
with two only somewhat less-so (two-tail p-values:
0.050 < p < 0.093); one-tail p-value : p < 0.05). Fur-
ther, none of the estimates for the basic six factors
exceed 0.104, while the estimates for the four Quad-
rant metrics range from 0.597 to 0.934. By contrast,
with all ten factors in the equation, the parameter esti-
mates vary in absolute magnitude from a low of 0.261
to a high of 114.727 and as mentioned above, four
have the wrong sign. Assuredly, none of this makes
it a hopeless problem, so it becomes incumbent upon
the analyst – perhaps abetted by a stepwise proce-
dure - to decide when to stop either eliminating or
adding factors and to live with the implied collinear-
ity. The problem is scarcely unique to the present
application, although it would seem to be espe-
cially vexing in this application given the presence of
many performance measures all trending in the same
direction.

Rather than pursue variable reduction, or propose
a model with classic symptoms of multicollinearity,
we take a linear programming approach that allows
us to maintain all available variables and assign inter-
pretable weights which are necessarily in the “right”
direction. Doing so comes at the cost of forgoing tests
of statistical significance for each coefficient, how-
ever, we analyze the resulting solution by the degree
to which it accurately mirrors that of the commit-
tee and use that similarity as basis for testing for
statistical significance.

5. Consistency in the selection committee’s
ranking

The genesis for the MP approach was a paper by
Becker et al. (1997), which used LP to determine
a set of weights in a weighted-average evaluation
scheme that would produce aggregate ratings for, in
the present context, a set of 348 eligible NCAA Tour-
nament candidates such that one team would rank
first and another 348th. Zappe et al (1993) extended
this approach by applying it to Bill James’ ranking
of the 10 greatest Major League Baseball players at
each of the eight regular positions (James, 1988).
Their intention was to see whether a set of weights
exists that is consistent with James’ ranking, which
in fact was the case, implying that James was con-
sistent in his ranking process. It is now our intention
to see whether there exists a set of weights for the
ten invitation-determining factors that produces a
ranking consistent with the Selection Committee’s

ranking of its 68 invitees. Specifically, we attempted
to determine a set of weights that rates Virginia first,
Villanova second, Kansas third, and so forth, as seen
in Table 4, based on the set of 67 constraints of the
form Vk − Vj = ∑

(wi (xki − xji) = Skj ≥ 0, where
i = k + 1. Thus, the first constraint states that the over-
all evaluation of Virginia is at least as great as the
evaluation of Villanova, and the second states that the
evaluation of Villanova is at least great as the eval-
uation of Kansas, and so forth. There is no feasible
solution to this problem!

Indeed, we invoked several different formulations
of the objective function and were repeatedly rebuffed
by what we suspect to be some combination of the
members failing to employ a systematic overall eval-
uation scheme, their considering factors other than
those for which the data are provided on the Team
Sheets, and the members liberal use of the eye-ball
test and their in-season observations from watching
specific teams to which they’d been assigned.

For further insight, we eliminated the non-
negativity part of the constraint and re-ran the
program using a maximin objective function, since
with negative Skj’s we want to minimize the extent
to which the constraints are violated. The solution
that we obtained produced zero weights for Y1 and
Y3, and only three weights in excess of 0.12 – those
for Y5, Y6, and Y7. Thirty-seven of the “slack” vari-
ables are positive, which implies consistency with the
Committee’s overall ranking of the teams in those
particular paired comparisons, and 30 are negative,
which belies the relative ranking of that particular
pair. While acknowledging consistency to be the hob-
goblin of little minds, we nonetheless confess to
finding the lack thereof to be troubling where tour-
nament ranks and the general public’s confidence in
the ranking process, are concerned.

6. Conclusions

Our primary goal in undertaking this project was
to determine the impact of the introduction of the
NCAA’s new Quadrant metric on the selections
and ranking of the teams invited to participate in
the 2018 Men’s Basketball Tournament - when the
decision-making process is guided by the mathemat-
ical programming approached proffered by Reinig
and Horowitz (2018). An important secondary goal
was to infer its impact on the Selection Committee’s
decisions. We believe we have accomplished both
goals.
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In the former regard, we have demonstrated that the
model’s rankings were dramatically altered when the
metric was incorporated into the analysis. In the lat-
ter regard we demonstrated that those rankings were
much more in sync with those of the committee than
they had been in its absence, which suggested it did
indeed impact the Committee’s decisions.

In a related vein, we showed that there is no set
of (linear) factor weights that can produce the Com-
mittee’s rankings, because of a combination of human
frailty and the fact that some basketball teams are bet-
ter than others in some aspects of the game, or at least
in some quantified performance aspects of the game,
and worse in others. This demonstration reinforces
our confidence in the mathematical approach to the
ranking process, which is based on the establishment
of the dominant relationships that obtain among the
teams, such that one team is said to be definitively
superior to another, only when it performs at least as
well as the other in all aspects of the game that enter
into the overall-performance-evaluation process. As
an unintended bonus, we hope to have convinced
others as well.
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