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Forecasting college football game
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Abstract. There are many reasons why data scientists and fans of college football would want to forecast the outcome of
games – gambling, game preparation and academic research, for example. As advanced statistical methods become more
readily accessible, so do the opportunities to develop robust forecasting models. Using data from the 2011 to 2014 seasons,
we implemented a variety of advanced modeling techniques to determine which best forecasts the outcome of games. These
methods included ridge regression, the lasso, the elastic net, neural networks, random forests, k-nearest neighbors, stochastic
gradient boosting, and a Bayesian regression model. To evaluate the efficacy of the proposed models, we tested them on data
from the 2015 season. The top performers – lasso regression, a Bayesian regression with team-specific variances, stochastic
gradient boosting, and random forests – predicted the correct outcome over 70% of the time, and the lasso model proved
most accurate at predicting win-loss outcomes in the 2015 test data set.
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1. Introduction

College football has become a major business unto
itself. Gaul (2015) noted 10 of the larger institutions
investing in the sport earned revenues of $762 mil-
lion in 2012. Television contracts often value in the
billions; for example, to televise the College Football
Playoff for 12 years, ESPN reportedly paid $5.64 bil-
lion for the duration of the contract, per Bachman
(2012). However, the academic literature concern-
ing the prediction of college football outcomes is
fairly limited. Stefani (1977) detailed how to use a
least squares method to come up with rankings for
all college football teams, and then determine a win-
ner based upon which team has the better ranking.
Three years later, Stefani (1980) improved upon an
existing simple least squares method to rank teams
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weekly (i.e., not requiring the difference of rankings
to equal the margin of victory) and then used the
upgraded rankings to determine winners for specific
games. Elo (2008) highlighted his ranking system that
was originally used to compare chess players. Once
it was modified to include football, he presented an
equation that could be used to generate an expected
probability of Team A winning a game over Team B.
Delen, et al. (2012) took a slightly different approach
to rankings by using data mining techniques to predict
bowl games. Leung and Joseph (2014) abandoned the
idea of rankings altogether by using a classification
analysis to group teams, pick out two groups most
similar to the competing teams in a particular game,
analyze the outcomes when teams within those two
groups played each other, and used that information to
predict which team would win the game in question.

In this manuscript, we combine two sources of col-
lege football data – box scores and recruiting data
– and apply multiple modern modeling techniques
to identify the method that most accurately predicts
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the winner of NCAA football games. Specifically,
we train a series of models using data from the
2011–2014 seasons via ridge regression, the lasso,
the elastic net, k-nearest neighbors, neural networks,
gradient boosting machines, and a Bayesian hierar-
chical linear model. Our contribution to the literature
is two-fold: first, we identify a subset of variables that
are meaningful predictors of the outcomes of college
football games according to the methods used. Next,
we present the predictive power of the models by val-
idating them using data from the 2015 season. To the
best of our knowledge, our study is the most compre-
hensive with respect to the data considered in model
construction and validation.

2. Methodology

2.1. Dataset

The data used for this research consists of 4,339
games between Football Bowl Subdivision (FBS)
teams between the 2011 and 2015 seasons; the data
was provided by college football database adminis-
trator Marty Coleman2. To maximize the utility of
the data, several adjustments were made. First, we
removed games including non-FBS opponents (e.g.
FCS, Division II, etc.) as there was not complete
season data for schools at that level, nor are those
games (usually) representative of a traditional college
football game. Next, individual game results were
converted to season-long moving averages. For exam-
ple, to predict the outcome for Alabama’s sixth game
of the 2012 season, we used averages of their statistics
for all games available prior to this (excluding games
against opponents from lower classifications), as well
as averages of their opponent prior to Alabama’s sixth
game. For Alabama’s seventh game, we included
the results from the sixth game in the moving aver-
ages, and so forth. Additionally, we hypothesized
that outcomes could be related to relative differences
between the teams rather than absolute performance.
So, the following covariates were created: difference
in offensive points scored vs. opponent defensive
points allowed, difference in defensive points allowed
vs. opponent offensive points scored, difference in
yards per pass attempt (YPPA) between the team and
opposing defense as well as the team defense and
opposing offense, difference in yards per rush attempt

2 His data can be found on his website: http://www.seldomuse
dreserve.com/?page id=8805

(YPRA) between the team and opposing defense as
well as the team defense and opposing offense, dif-
ference in pass yards between the team and opposing
defense as well as the team defense and opposing
offense, difference in rush yards between the team
and opposing defense as well as the team defense
and opposing offense, turnover difference, win per-
centage difference, difference in total offensive and
defensive plays, and difference in both offensive
yards and defensive yards allowed. Note that these
were differences of the moving averages. Lastly, com-
posite team rankings from 247sports.com were used
to quantify the level of talent on each team. The
247 composite team rankings (2012) are generated
by “a proprietary algorithm that compiles rankings
and ratings listed in the public domain by the major
media recruiting services.” The recruiting classes for
each school each receive an annual composite score
based upon how other recruiting services ranked the
group as a whole. Because college players have four
years of eligibility, the four classes preceding the
year of the games will capture the quality of tal-
ent playing in a specific game. This study includes
all class rankings dating back to 2008, so that fresh-
men from the 2008 class (becoming true seniors in
2011) can be represented in the dataset. Because
it often takes talent some time to develop – espe-
cially at well-established schools – we included four
lags of composite rankings, as well as averages of
the previous two, three, and four annual compos-
ite rankings. Lastly, in college football, home field
advantage has been found to be an important con-
sideration. Moskowitz and Wertheim (2011) studied
nineteen different sports at varying levels spanning
more than forty countries. In college football, they
discovered that 64.1% of all home teams won, rank-
ing sixth among the nineteen sports studied. They
also found that, “in 140 seasons of college football,
there has never been a year when home teams have
failed to win more games than road teams.” (p. 113).
Fair and Oster (2007) estimated the home field advan-
tage in college football to be between 4.1 and 4.7
points. Given this information and the fact that there
are three possible locations – home, away, and neu-
tral – we created a “field status” variable that gives
equal weight to home and away status: a value of 1
was assigned for all home games, 0 for neutral, and
–1 for away games. In total, 83 candidate predictors
were available3. The outcome variable was chosen
to be the difference in point total, as it retains more

3 A full list is given in the appendix.
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information about the matchup compared to a binary
“win” or “loss.”

2.2. Models Considered

In terms of modeling frameworks, we selected the
following:

– Ridge Regression
– Least absolute shrinkage and selection operator

(lasso)
– Elastic Net
– Neural Network
– Random Forests
– K-Nearest Neighbors
– Bayesian Linear Model with Team Specific Vari-

ances

A high-level overview of most of these frameworks
can be found in James et al. (2013), among other
sources. Ridge regression, as explained by Hoerl and
Kennard (1970) is a linear model, but instead of cal-
culating coefficients by minimizing the residual sum
of squares as in ordinary least squares regression, a
penalty term is added based on the L2 norm of the
regression parameters, causing shrinkage. The pri-
mary benefit is that it reduces the variance introduced
by correlated predictors, at the expense of introduc-
ing bias in the form of a penalty term (with the
hope of reducing the overall mean squared error).
Tibshirani (1996) explained the least absolute shrink-
age and selection operator (lasso) is similar to ridge
regression with the exception that it penalizes the L1
norm of the regression parameters. This penalty has
the added benefit of shrinking some of the regres-
sion parameters to zero, functioning as a variable
selection technique. This feature is especially use-
ful given the large number of variables in the data set
and uncertain utility of many of them. Ridge regres-
sion and the lasso can be thought of as being on
opposite ends of the spectrum – the ridge penalty
shrinks parameter estimates but keeps them all in the
model, while the lasso shrinks some to exactly zero
(with the number of non-zero coefficients decreas-
ing as the penalty increases). A further extension of
ridge regression and lasso regression was developed
by Zou and Hastie (2005), who present elastic net
regression as a function of the two, with a second
tuning parameter introduced to control the degree
to which the model moves closer to ridge regres-
sion or lasso regression. An additional benefit is
the elastic net tends to select correlated variables
together, keeping them either in or out of the model,

while lasso regression tends to select one arbitrar-
ily. These three methods were implemented in R
(2016) using the glmnet package written by Fried-
man, Hastie and Tibshirani (2010), with all tuning
and penalty parameters chosen via repeated 10-fold
cross-validation within the caret package, written by
Kuhn (2008).

The neural network – a non-parametric model –
was described by Günther and Fritsch (2010) as being
based upon the makeup of the human brain, where
electrical signals are transmitted to different neu-
rons through axons and dendrites and received by
synapses. In application, attributes of a dataset go
into the model through the use of input nodes. As
it passes through to the hidden layer(s), assigned
weights adjust the importance of the input (the higher
the weight, the greater the importance). Once it passes
through the necessary hidden layers, it reaches an
output layer representing a target value. In this study,
the output is the projected point difference between
two teams and the hidden layers are constructed from
combinations of the different variables in the dataset.
Collinearity can cause computational problems in
this modeling paradigm, so pairs of highly corre-
lated predictors were identified (in this case, with
r > 0.75) and, amongst the pairs, the predictors with
the largest mean absolute correlation with the remain-
ing predictors was removed. We fit a neural network
using the nnet package in R from Günther and Fritsch
(2016) by tuning the number of hidden units and the
weight decay, and then determining whether bagging
improved the model fit. Breiman (2001) explained
how random forests are generated from another non-
parametric algorithm that relies on bootstrapping and
random sampling of predictors to build a series of
decision trees, and then uses the average of the indi-
vidual predictions as the overall ensemble prediction.
They were fit using the randomForest package in
R from Liaw and Wiener (2002), with the number
of randomly selected predictors as the only tuning
parameter. The k-nearest neighbors (KNN) approach,
explained by Altman (1992), uses Euclidean dis-
tances to identify which observations are nearest in
proximity, and then uses the mean of the outcome for
the neighbors as its prediction; this was done via the
FNN package in R by Beygelzimer et al. (2013) with
the number of neighbors as the only tuning param-
eter. Friedman (2001) discusses gradient boosting, a
tool that has recently gained lots of traction in the
machine learning community. This technique opti-
mizes an objective function that is a combination of a
loss function and a regularization function, with the
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general principle being to define a parsimonious but
predictive model. It iteratively builds an ensemble of
decision trees that – while individually are not strong
predictors – become strong when taken together. The
xgboost package by Chen et al. (2017) is highly cus-
tomizable and is often used in big data competitions4.
Tree boosting functions were used, with the follow-
ing tuning parameters: max tree depth, percentage
of columns sampled, percentage of rows sampled,
the number of rounds, minimum child weight, and
eta. The caret package was used to select the tuning
parameters here, as well as for the neural network and
random forest.

The Bayesian framework was the last major mod-
eling paradigm considered. Similar to South et al.
(2017), we use a linear model to predict the outcome,
but in this case allowed for team-specific precisions
(note that a model with team-specific regression coef-
ficients was also tested, but is not reported as it was
inferior to the model presented below). The model
specification is as follows:

yij ∼ Normal(μij, τi),

μij = β0 + β1X1ij + · · · + βpXpij,

βp ∼ Normal(0.001, 0.001),

τi ∼ Gamma(1, 1).

where yij is the predicted point difference for team
i on game j, and p is the number of predictors in
the model (with the predictors being those identified
by penalized regression). Each team was assigned its
own precision (τi).

A combination of R and WinBUGS (Lunn et al.
(2000)) were used to fit the model. Note that Win-
BUGS uses precision (the inverse of variance) in the
specification of a normal distribution, which explains
the use of the precision parameter rather than the stan-
dard deviation in the presented model specifications.
Also note that conventional non-informative priors
were assigned to the parameters.

One additional challenge in the analysis was
introduced due to the necessity of including statis-
tics related to opponent strength. For example, in
instances where SMU played Houston, the decision
had to be made whether to call SMU the “team”
and Houston the “opponent,” or vice versa. The most
unbiased way to address this was via random chance,
and this was the approach taken for each game in

4 https://www.kdnuggets.com/2017/10/xgboost-top-machine-
learning-method-kaggle-explained.html

the data set. While this did introduce an extra source
of variability (via the random selection process), it
allowed for the estimation of the effect of the field
status parameter as discussed in Section 2.1. Further,
in the modern era of college football, it is common
for teams to pay lesser opponents to play road games
at their venues, meaning the home/away status of a
game is not necessarily independent of team quality5.
The models were trained and validated after taking
this approach, but to understand the implications of
the random assignment of “team” and “opponent,”
we repeated the random assignment process a total
of 50 times. To minimize the computational burden,
the initial tuning parameters (chosen from the first
random assignment) were retained and the models
were re-fit according to these parameters. The sub-
sequent root mean squared errors from the validation
sets were stored, allowing for an analysis of variance
(with post-hoc comparisons) to explore whether there
was any separation between the methods. Lastly, the
predicted outcomes for the top performing models
were converted using a decision rule – a positive value
indicated a predicted victory for the team over their
opponent, and a negative value indicated the oppo-
site; this was done to give a more intuitive measure
of model strength.

3. Results

3.1. Features retained using penalized
regression

The repeated 10-fold cross validation found that
lasso regression was a better predictive framework
than the elastic net or ridge regression. Table 1 lists
the 26 variables retained by lasso regression (recall
that, aside from the field status variable, they are all
average measures up to the point in the season of the
corresponding observation).

Knowledgeable college football fans will note
the selected variables are quite reasonable, as game
location, measures of offensive volume and effi-
ciency (YPRA, total yards, YPP, point differential),
defensive volume (rushing yards allowed, total yards
allowed), opponent offensive volume and efficiency
(rushing attempts, yards per play, point differential),
opponent defensive volume and efficiency (passes

5 https://www.sbnation.com/college-
football/2018/8/30/17431764/college-football-scheduling-
cupcake-games-why

https://www.kdnuggets.com/2017/10/xgboost-top-machine-learning-method-kaggle-explained.html
https://www.sbnation.com/college-football/2018/8/30/17431764/college-football-scheduling-cupcake-games-why
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Table 1

Lasso selected variables

Rushing Attempts Yards Per Rush Attempt (YPRA) Total Yards Yards Per Play (YPP)
Turnovers Committed (TO) Penalty Yards Accrued Pass Attempts Against YPRA Allowed
Turnovers Forced Point Differential Opponent Offense Pass Yards Opponent Offense Yards Per Play
Opponent Offense Penalty

Yards
Opponent Defense YPPA Opponent Defense Rush Yards

Allowed
Opponent Defense Total Yards

Allowed
Opponent Defense Yards Per

Play Allowed
Opponent Turnovers Forced Opponent Defense Penalty Yards

Accrued
Opponent Point Differential

Difference in Team and
Opponent Win Percentage

Composite Ranking (CR), Lag 2 Average CR (Last 2 Years) Average CR (Last 3 Years)

Average CR (Last 4 Years) Field Status

faced, YPRA allowed, total yards allowed, yards per
play allowed, turnovers forced), difference in win
percentage and team talent were all predictive of
outcome. Additionally, the signs of the regression
coefficients also matched with intuition – for exam-
ple, increases in team offensive metrics (such as total
yards gained) and opponent defensive metrics (such
as YPRA allowed) led to an increase in the expected
point differential, while increases in team defensive
metrics (such as rushing yards allowed) or opponent
offensive metrics (such as yards per play) lowered the
expected point differential.

Figure 1 displays the variables according to their
importance, calculated via the varImp function from
the caret package. The bars have also been colored
by the sign of the parameter estimates. For example,
as the gap in win percentage between the team and
its opponent increases, so does the estimated point
differential (in favor of the team); contrastingly, as
the opponent offense’s YPP increase, the expected
point differential decreases.

From this, it is clear that though 26 variables were
selected by the lasso, the efficacy of the model is
driven by only a few of them – notably the difference

Fig. 1. Variable importance, Lasso selected variables
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in team strength, location of the game, and overall
opponent offensive and defensive strength. We note
that the estimated lasso regression coefficients for
field status was 3.6, implying a swing of over a touch-
down advantage when playing at home versus playing
away, after controlling for the other metrics in Table 1.

Though the “black box” approaches (KNN, neu-
ral networks, gradient boosting, and random forests)
do not give specific information about the magnitude
or direction of the predictors, a variable importance
metric is still available via the caret package. The
most important variables according to this metric
were consistently the difference in win percentage
between the team and current opponent, average point
differential for the current opponent, average point
differential for the team, and location – seeming to
agree with the types of variables selected by the lasso
regression.

3.2. Model evaluation

For parsimony, the retained variables from the
lasso regression were those used in the Bayesian
model. For the neural network, predictors whose
pairwise correlation coefficient exceeded 0.75 were
identified, and the predictor with the largest mean
absolute correlation relative to all other predictors
was removed. This process was carried out using the
findCorrelation function from the caret package. The
other modeling approaches utilized all available pre-
dictors. After training each model on the 2011–14
data, data from the 2015 season was used as a test
data set. Table 2 gives the average root mean squared
error across the 50 random assignments of “Team”

Table 2

Forecasting success rates for each modeling paradigm (2015
season)

Model Mean RMSE (SD) Overall Prediction

Lasso 17.00 (0.08) 75.0%
Random forest 17.00 (0.11) 72.9%
K-nearest neighbors 17.73 (0.10) 70.7%
Neural network 17.37 (0.18) 69.7%
Bayesian linear model 17.02 (0.12) 72.2%
Gradient boosting 17.02 (0.15) 71.7%

RMSE=Root mean squared error, SD = standard deviation

and “Opponent,” as well as the overall prediction rate
according to the first random assignment.

An analysis of variance with Tukey’s post-hoc
comparisons found that lasso regression, the random
forest, the Bayesian linear model, and the XGBoost
model were superior to the other three methods,
but were not significantly different from each other
(p ≈ 1 for all three comparisons). Figure 2 displays
boxplots of the results from the random assignments,
both by RMSE and RMSE rank. The lasso had the
least variability among the competing methods in
terms of RMSE, but it was only the top ranked method
in 5 of the 50 repetitions, while random forests and
XGBoost were first 16 and 15 times, respectively.
However, the lasso was also able to correctly identify
the largest percentage of outcomes in the test data set
when using a simple decision rule.

4. Conclusion

The results of this study are promising. Beginning
with a large set of variables that included offen-

Fig. 2. Competing model root mean squared error (RMSE) and RMSE rank from 50 random assignments of “Team” and “Opponent”
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sive and defensive characteristics, relative strength,
and talent metrics, we were able to identify a subset
that contained information to predict the outcome of
NCAA football games. We did a survey of linear, non-
parametric and Bayesian methods, and found that
lasso regression, random forests, a Bayesian linear
model with team-specific precisions, and stochastic
gradient boosting via XGBoost were the most effica-
cious models in terms of root mean squared error, and
were able to successful predict over 70% of outcomes
from the 2015 season (bowl games included) using
a model built on data from the 2011–2014 seasons.
Though these methods were statistically inseparable,
due to it having the lowest variability among RMSE
values and top binary outcome predictive value (as
well as the interpretability of model coefficients),
the authors lean towards recommending the lasso as
the method of choice; however, arguments could be
made for the other modeling paradigms as well. As
with any study, there are a number of limitations.

First, this manuscript does not present an exhaus-
tive search of advanced statistical methods, nor do
we propose any new unique methodology. In particu-
lar, state space models (Glickman and Stern, 1998 &
Lopez, Matthews, and Baumer, 2017, among others)
based on the Bradley-Terry model of paired compar-
isons (Bradley and Terry, 1952) would be expected to
perform similarly to some of the approaches in this
paper. We also did not do an exhaustive search of the
vast array of tuning parameters available to some of
the machine learning techniques (gradient boosting in
particular). Further, we chose to model the point dif-
ference as the outcome rather than the binary win/loss
result; had we chosen to use a general linear model
framework we may have observed different results.
Nonetheless, the authors hope that these results lead
researchers to further develop and publish in the field
of predictive analytics for college football – an area
in which most approaches are proprietary given the
prospect for financial or reputation gain.

Table 3

Variables in college football dataset

Name Description (all averages are season-specific)

Team Points Average number of points scored
Team Passes Average number of passes thrown
Team Passing Yards Average number of passing yards
Team YPPA Average number of yards per passing attempt
Team Rush Attempts Average number of rushing attempts
Team Rush Yards Average number of rush yards
Team YPRA Average number of yards per rushing attempt
Team Total Plays Average number of offensive plays
Team Total Yards Average number of total yards gained on offense
Team YPP Average number of yards gained per play
Team TO Average number of turnovers (giveaways)
Team Penalty Yards Average number of penalty yards accumulated by the team
Team TOP Average offensive time of possession (in seconds)
Opponent Points Average number of points allowed by the team’s defense
Opponent Passes Average number of passes faced by the team’s defense
Opponent Passing Yards Average number of passing yards allowed by the team’s defense
Opponent YPPA Average number of yards per passing attempt allowed by the team’s defense
Opponent Rush Attempts Average number of rushing attempts allowed by the team’s defense
Opponent Rush Yards Average number of rushing yards allowed by the team’s defense
Opponent YPRA Average number of rushing yards per attempt allowed by the team’s defense
Opponent Total Plays Average number of offensive plays faced by the team’s defense
Opponent Total Yards Average number of total yards allowed by the team’s defense
Opponent YPP Average number of yards per play allowed by the team’s defense
Opponent TO Average number of turnovers forced (takeaways) by the team’s defense
Opponent Penalty Yards Average number of penalty yards accrued by team’s opponents
Opponent Time of Possession Average time of possession allowed by the team’s defense
Victory Average win percentage for the team
Points Differential Average point differential for the team
TO Difference Average turnover differential (takeaways-giveaways) for the team
Opponent Offensive Points Average points scored by the current opponent
Opponent Offensive Passes Average number of passes by the current opponent’s offense
Opponent Offensive Pass Yards Average number of passing yards gained by the current opponent’s offense
Opponent Offense YPPA Average yards per pass attempt gained by the current opponent’s offense

(Continued)
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Table 3

(Continued)

Name Description (all averages are season-specific)

Opponent Offense Rush Attempts Average number of rush attempts by the current opponent’s offense
Opponent Offense Rush Yards Average number of rush yards gained by the current opponent’s offense
Opponent Offense YPRA Average number of rush yards per play gained by the current opponent’s offense
Opponent Offense Total Plays Average number of total plays by the current opponent’s offense
Opponent Offense Total Yards Average number of total yards gained by the current opponent’s offense
Opponent Offense YPP Average number of yards per play gained by the current opponent’s offense
Opponent Offense TO Average number of turnovers committed by the current opponent
Opponent Offense Penalty Yards Average number of penalty yards accrued by current opponent
Opponent Offense TOP Average time of possession by the current opponent’s offense
Opponent Defense Points Average number of points given up by the defense of the current opponent
Opponent Defense Passes Average number of passes faced by the defense of the current opponent
Opponent Defense Pass Yards Average number of passes yards allowed by the defense of the current opponent
Opponent Defense YPPA Average yards per pass attempt given up by the defense of the current opponent
Opponent Defense Rush Attempts Average number of rush attempts faced by the defense of the current opponent
Opponent Defense Rush Yards Average number of rush yards given up by the defense of the current opponent
Opponent Defense YPRA Average number of rush yards per attempt given up by the defense of the current opponent
Opponent Defense Total Plays Average number of total plays faced by the defense of the current opponent
Opponent Defense Total Yards Average number of yards allowed by the defense of the current opponent
Opponent Defense YPP Average number of yards per play allowed by the defense of the current opponent
Opponent Defense TO Average number of turnovers forced (takeaways) by the defense of the current opponent
Opponent Defense Penalty Yards Average number of penalty yards accrued by opponents of the current opponent
Opponent Victory Win percentage of the current opponent
Opponent Point Differential Average point differential of the current opponent
Opponent TO Diff Difference in the average turnovers forced (takeaways) and committed (giveaways) by the current

opponent
Offense Points Diff Difference in the average points scored by the team and average points allowed by the current

opponent’s defense
Defense Points Diff Difference in the average points scored by the current opponent and the average points allowed by

the team’s defense
Offense YPPA Diff Difference in the average yards per pass attempt by the team’s offense and the average yards per

pass attempt allowed by the current opponent’s defense
Defense YPPA Diff Difference in the average yards per pass attempt allowed by the team’s defense and the average

yards per pass attempt by the current opponent’s offense
Offense YPRA Diff Difference in the average yards per rush attempt by the team’s offense and the average yards per

rush attempt allowed by the current opponent’s defense
Defense YPRA Diff Difference in the average yards per rush attempt allowed by the team’s defense and the average

yards per rush attempt by the current opponent’s offense
Offense Pass Yards Diff Difference in the average total passing yards gained by the team’s offense and the average passing

yards allowed by the current opponent’s defense
Defense Pass Yards Diff Difference in the average total passing yards allowed by the team’s defense and the average

passing yards gained by the current opponent’s offense
Offense Rush Yards Diff Difference in the average total rushing yards gained by the team’s offense and the average rushing

yards allowed by the current opponent’s defense
Defense Rush Yards Diff Difference in the average total rushing yards allowed by the team’s defense and the average

rushing yards gained by the current opponent’s offense
TO Diff Diff Difference in the average turnover differential between the team and current opponent
Victory Diff Difference in win percentage between the team and current opponent
Offense Total Plays Diff Difference in average total plays by the team’s offense and the average total plays faced by the

defense of the current opponent
Defense Total Plays Diff Difference in the average total plays faced by the team’s defense and the average total plays by

the offense of the current opponent
Offense Total Yards Diff Difference in average total yards gained by the team’s offense and the average total yards allowed

by the defense of the current opponent
Defense Total Yards Diff Difference in the average total yards gained by the team’s defense and the average total yards

allowed by the offense of the current opponent
Home Indicator Whether or not the team was home (1 = yes, 0 = no)
Away Indicator Whether or not the team was away (1 = yes, 0 = no)

(Continued)
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Table 3

(Continued)

Name Description (all averages are season-specific)

Recruit Lag 1 The average 247 composite ranking from the team’s prior recruiting class
Recruit Lag 2 The average 247 composite ranking from the team’s recruiting class 2 seasons ago
Recruit Lag 3 The average 247 composite ranking from the team’s recruiting class 3 seasons ago
Recruit Lag 4 The average 247 composite ranking from the team’s recruiting class 4 seasons ago
Recruit Average 2 The average of the 247 composite ranking from the team’s 2 previous recruiting classes
Recruit Average 3 The average of the 247 composite ranking from the team’s 3 previous recruiting classes
Recruit Average 4 The average of the 247 composite ranking from the team’s 4 previous recruiting classes

Acknowledgments

The authors wish to thank Mr. Shen and the two
anonymous reviewers for their constructive feedback
and suggestions that resulted in a more comprehen-
sive, sound paper.

References

247Sports Staff., 2012. 247Sports Rating Explanation.
[online] Available at: http://247sports.com/Article/
247Rating-Explanation-81574 [Accessed 14 Dec. 2019]

Altman, N.S. 1992. An introduction to kernel and nearest-neighbor
nonparametric regression, The American Statistician 46(3),
175-185.

Bachman, R., 2012. ESPN Strikes Deal for College Football
Playoff. [online] Available at: https://www.wsj.com/
articles/SB10001424127887324851704578133223970790
516 [Accessed 14 Dec. 2019]

Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., Mount, D. and
Li, S., 2013. FNN: Fast nearest neighbor search algorithms
and applications, R package version 1(1).

Bradley, R.A. and Terry, M.E., 1952. Rank analysis of incom-
plete block designs: I. The method of paired comparisons,
Biometrika 39(3/4), 324-345.

Breiman, L., 2001. Random forests, Machine learning, 45(1), pp.
5-32.

Chen, T., He, T., Benesty, M., Khotilovich, V. and Tang, Y., 2015.
Xgboost: Extreme gradient boosting, R package version 0.4-2,
1-4.

Delen, D., Cogdell, D. and Kasap, N., 2012. A comparative
analysis of data mining methods in predicting NCAA bowl
outcomes, International Journal of Forecasting 28(2), 543-
552.

Friedman, J.H., 2001. Greedy function approximation: a gradient
boosting machine, Annals of statistics pp. 1189-1232.

Fair, R.C. and Oster, J.F., 2007. College football rankings and
market efficiency, Journal of Sports Economics 8(1), 3-18.

Friedman, J., Hastie, T. and Tibshirani, R., 2010. Regularization
paths for generalized linear models via coordinate descent,
Journal of statistical software 33(1), 1.

Gaul, G.M., 2015. Billion-dollar ball: A journey through the big-
money culture of college football. Penguin.

Glickman, M.E. and Stern, H.S., 1998. A state-space model for
National Football League scores, Journal of the American
Statistical Association 93(441), 25-35.

Günther, F. and Fritsch, S., 2010. neuralnet: Training of neural
networks, The R journal 2(1), 30-38.

Hoerl, A.E. and Kennard, R.W., 1970. Ridge regression: Biased
estimation for nonorthogonal problems, Technometrics 12(1),
55-67.

James, G., Witten, D., Hastie, T. and Tibshirani, R., 2013. An intro-
duction to statistical learning (Vol. 112, p. 18). New York:
springer.

Kuhn, M., 2008. Building predictive models in R using the caret
package, Journal of statistical software 28(5), 1-26.

Leung, C.K. and Joseph, K.W., 2014. Sports data mining: predict-
ing results for the college football games, Procedia Computer
Science 35, 710-719.

Liaw, A. and Wiener, M., 2002. Classification and regression by
randomForest, R news 2(3), 18-22.

Lopez, M.J., Matthews, G.J. and Baumer, B.S., 2018. How often
does the best team win? A unified approach to understanding
randomness in North American sport, The Annals of Applied
Statistics 12(4), 2483-2516.

Lunn, D.J., Thomas, A., Best, N. and Spiegelhalter, D., 2000.
WinBUGS-a Bayesian modelling framework: concepts,
structure, and extensibility, Statistics and computing 10(4),
325-337.

Moskowitz, T. and Wertheim, L.J., 2012. Scorecasting: The hidden
influences behind how sports are played and games are won.
Three Rivers Press (CA).

Team, R.C., 2016. A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria, version 3.3. 0. URL Available: https://www.R-
project.org/ (Accessed October 2017).

South, C., Elmore, R., Clarage, A., Sickorez, R. and Cao, J., 2019.
A Starting Point for Navigating the World of Daily Fantasy
Basketball, The American Statistician 73(2), 179-185.

Stefani, R.T., 1977. Football and basketball predictions using least
squares, IEEE Transactions on systems, man, and cybernetics
7(2), 117-21.

Stefani, R.T., 1980. Improved least squares football, basketball,
and soccer predictions, IEEE Transactions on systems, man,
and cybernetics 10(2), 116-123.

Tibshirani, R., 1996. Regression shrinkage and selection via the
lasso, Journal of the Royal Statistical Society: Series B
(Methodological) 58(1), 267-288.

Zou, H. and Hastie, T., 2005. Regularization and variable selection
via the elastic net, Journal of the royal statistical society:
series B (statistical methodology) 67(2), 301-320.

http://247sports.com/Article/247Rating-Explanation-81574
http://247sports.com/Article/247Rating-Explanation-81574
https://www.wsj.com/articles/SB10001424127887324851704578133223970790516
https://www.wsj.com/articles/SB10001424127887324851704578133223970790516
https://www.wsj.com/articles/SB10001424127887324851704578133223970790516
https://www.R-project.org/

