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Abstract. Measuring the indirect effects on team performance from teammate interactions, or team synergy, has proven to
be an elusive concept in sports analytics. In order to shed further light on this topic, we apply advanced statistical techniques
designed to capture player complementarities, or “network” relationships, between teammates on Major League Baseball
teams. Using wins-above-replacement metrics (WAR) over the 1998-2016 seasons and spatial factor models embodying
the strength of teammates’ on-the-field interactions, we show that roughly 40 percent of the unexplained variation in team
performance by WAR can be explained by team synergy. By building a set of novel individual player metrics which control
for a player’s effect on his teammates, we are then able to develop some “rules-of-thumb” for team synergy that can be used
to guide roster construction.
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1. Introduction

A whole that is greater than the sum of its parts:
This aphorism is often used in sports to rationalize
how a team made up of seemingly inferior play-
ers manages to outperform a superstar-laden team
that looks unbeatable on paper. The movie Mira-
cle features a scene in which U.S. men’s Olympic
hockey team head coach Herb Brooks, facing skepti-
cism about his chosen roster, tells his assistant coach,
“I’m not looking for the best players, Craig. I’m
looking for the right ones.” (Guggenheim, 2004).
At its heart, this statement captures the dilemma
faced by every professional sports executive in con-
structing a team roster. What defines the “right fit”
of players, however, can often be very subjective.
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Here, we provide a formal definition based on the
complementarity of player skill sets in the produc-
tion of team wins via the interconnectedness of
Major League Baseball (MLB) teammates’ on-the-
field interactions.

Evaluating the degree to which a variety of inputs
– in our case, different position players on a sports
team – are complementary or substitutable in pro-
duction (e.g. of team wins) is a topic that economists
have wrestled with for just under a century (Hicks
(1932) and Robinson (1933)). We appeal to this
tradition and apply advanced statistical techniques
designed to capture “network” relationships in order
to measure the degree of team synergy through
nonlinear effects in the on-the-field performance
interactions of teammates that are characteristic of
player complementarities. Finding a large degree
of complementarities across players on the same
MLB team provides scope for the hypothesis that
these synergies play a fundamental role in team suc-
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cess in baseball. Similarly, finding individual players
whose presence routinely complements their team-
mates allows for the identification of its sources.

The basis for our analysis is the correlations across
teammates in their wins-above-replacement (WAR)
metrics and their relationship to team wins. WAR
calculations, like those made by FanGraphs and
Baseball-Reference, provide a comprehensive mea-
sure of individual player performance. While these
measures often differ in some key assumptions, cen-
tral to each is the belief that a player’s actions should
be judged regardless of the game situations in which
they occur. By making context-neutral evaluations,
WAR has the advantage of judging players solely
on the aspects of team outcomes over which they
have direct control (Cameron, 2017). A consequence
of this assumption is that while WAR measures a
player’s performance by how many wins a player is
expected to contribute to his team above replacement
level, it will not necessarily correspond to the actual
contribution he made to team wins.

This discrepancy betweenWAR and team wins has
been at the center of critiques of its value as a statisti-
cal tool for player evaluation. An oft-cited example is
whether a player performed relatively well or poorly
in so-called “high-leverage” situations (James, 2017).
WARmay arguably lead to misleading judgments of
a player’s ex-post value to his team in such confound-
ing circumstances where a mismatch between team
wins and aggregate team WAR can result. In fact,
other researchers have used this mismatch to con-
struct measures of “clutchness” which aim to back
out the context-relevant portion of team wins (Sul-
livan, 2015). Similarly, aggregate team WAR may
also fail to reflect a player’s full contribution to his
team depending on the manner in which his interac-
tions with teammates aids in the production of team
wins. In this paper, we find that the mismatch between
team wins and teamWAR serves as a valuable empir-
ical regularity for understanding the nature of team
synergies in baseball.

We begin our analysis by using the WAR metrics
produced by FanGraphs and Baseball-Reference to
construct player productivity residuals for the 1998-
2016 seasons. These residuals reflect the difference
between the expected and actual number of team wins
that can be attributed to each player in a given season.
When aggregated across teammates, they measure the
difference between a team’s actual win count and its
expected wins based solely on individual player per-
formances. If WAR was a comprehensive measure
of each players’ contribution to team wins and play-

ers were perfectly substitutable along this dimension,
the residuals for each team would sum to zero. How-
ever, this is not the case, with roughly 20 percent of
the variation in wins across teams left unexplained
according to our productivity residuals.

From this unexplained variation in the win-loss
ledger of MLB teams, we then isolate the element
of team wins arising from teammate interactions
as opposed to potential mismeasurement in WAR
stemming from other contextual factors. To measure
the strength of teammate interactions, we take into
account several dimensions of teammates’ on-the-
field relationships, weighting more heavily pairings:
1) that play more often (taking into account both past
and present playing time), and 2) that are character-
ized by the network relationships that exist between
hitters in a team’s lineup and defensive positions.
For instance, the correlations of the residuals of hit-
ters who bat in adjacent positions at the top of the
lineup are given more weight than the residual cor-
relations of hitters who bat at the top vs. the bottom
of the lineup. Similarly, the pitcher-catcher defen-
sive relationship is given more weight than any other
defensive pairing on the field in terms of measuring
residual correlations across teammates.

Measuring teammate interactions in this way lends
itself to the use of a spatial factor model to decompose
our player productivity residuals into two separate
unobserved components capturing elements of player
complementarities. The first component identifies
what we call character players, or players who pos-
itively influence their teammates regardless of the
team that they play for; while the second compo-
nent accounts for the role that a team’s management
has on team performance to isolate what we call
team players. This second component also makes
it possible to capture a team’s historical ability
to consistently turn individual player talents into
extraordinary team outcomes, allowing for a relative
ranking of MLB teams that can be used to measure
organizations on the dimension of what we refer to
as organizational culture.

Our methodology also has a natural connection
to network statistics that allows us to construct
refinements of WAR which isolate a player’s own
contribution to team wins irrespective of his team-
mates, WAR−, and his contribution adjusted for
his effect on his teammates, WAR+. Using WAR−,
we demonstrate that roughly 40% of the unex-
plained variation in team wins by WAR is explained
by player complementarities. We refer to this total
network effect of a team’s players as tcWAR, or
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team complementarity WAR, and provide examples
of over- and under-achieving teams in recent seasons.
Similarly, usingWAR+, we show thatWAR tends to
overvalue the contribution of low impact players and
undervalue the contributions of high impact players to
team performance. A player’s net impact on his team-
mates, i.e. WAR+ −WAR, is then what we refer to
as hispcWAR, or player complementarity WAR. Our
analysis of pcWAR confirms the conventional wis-
dom that star players tend to make their teammates
better.

Our tcWAR estimates indicate that it is fairly rare
for a team to over-achieve in terms of team synergy;
and, furthermore, those teams that do demonstrate
very little persistence on this dimension. In this
respect, we find that synergy may be accurately
described as “catching lightning in a bottle,” and is
an aspect of team performance that must be closely
monitored and constantly managed. We then identify
organizations that have exceeded and fallen short of
expectations on this dimension. In addition, we show
that the highly mean-reverting properties of team syn-
ergy are something that can be exploited by teams to
improve upon pre-season team win projections. For
example, using out-of-sample projections of tcWAR
we demonstrate that it would have been possible to
improve upon PECOTA pre-season projections for
the 2008-2016 seasons by a statistically significant
margin of roughly 1 win on average.

The effect that player complementarities have on
team synergy is shown to be much more persistent,
with pcWAR lending itself more easily to prediction
than tcWAR. However, we document that this per-
sistence is highly nonlinearly related to past player
performance, with persistence increasing in the talent
level of the player (e.g. “Star” players exhibit nearly
five times the persistence as “Scrub” players and
about 1.5 times as much as “Role” players as defined
by the player’s previous seasonWAR). This suggests
that player complementarity expectations based on
past performance may be an appropriate guide for
teams to judge their own players. We then identify
players in our sample who have exceeded or fallen
short of expectations on this dimension. Finally, we
break down our pcWARmetric into separate compo-
nents due solely to characteristics of the player versus
other contextual factors related to their team, the for-
mer of which could be used as well to guide teams
looking to alter their synergy profile through trades
or free agency.

To provide further convenient “rules-of-thumb” for
general managers in order to maximize team synergy

in roster construction, we next construct age-position
profiles for pcWAR conditional on the dynamics dis-
cussed above and player and team characteristics.
For example, we show that the conventional wis-
dom that older players make for good teammates has
support empirically, but the rate of development of
team synergy-related skills varies by position. Our
profiles also allow for the estimation of a player’s
Intangibles, defined by whether or not their pcWAR
exceeds or falls short of their profile. Using this mea-
sure, we quantify the “David Ross Effect,” so-named
after the back-up catcher who we show outperformed
his complementarity profile for much of his career.

The identification of players such as David Ross
represents a potential source of competitive advan-
tage for MLB teams. Using player salary data, we
show that MLB teams have in the past inconsistently
valued the team synergy-related skills that we cap-
ture in our pcWAR metric. Only during a player’s
free agency years does his compensation positively
reflect on average his contribution to team synergy
after controlling for various other individual factors
such as hisWAR, age, and experience. Furthermore,
MLB teams have placed too low of a value on the
Intangibles element of pcWAR than the value of a
win in MLB would suggest is appropriate. One pos-
sible explanation for this would be an inability to
identify and measure this element of team synergy, a
feature which our analysis overcomes.

The remainder of this paper proceeds as follows:
Section 2 provides a brief summary of the rele-
vant literature. Section 3 describes our methodology
for measuring team synergy. Section 4 then details
our refinements of WAR, and section 5 presents
rules-of-thumb for roster construction. Section 6 then
concludes and offers some possible extensions of our
methodology.

2. Literature review

Accurately measuring the effects of teammate
interactions broadly considered has in the past been
referred to as the “holy grail” of performance analyt-
ics (Schrage, 2014). Unsurprisingly, then, a number
of other researchers have already made attempts to
define and measure the importance of various types of
player interactions as they relate to team performance
in MLB. Their efforts have often focused on identify-
ing the particular traits that denote good “clubhouse
culture,” and how this translates into success on the
field. Levine (2015) suggests that the presence of a
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charismatic leader on a roster could have an outsized
effect on the performance of his teammates. Sim-
ilarly, Phillips (2014) uses a regression model and
estimates that compositional effects can account for
up to four wins in a regular season based on ros-
ter characteristics like wage parity and demographic
variation. Carleton (2013) focuses on two particu-
lar players, Brandon Inge and Jonny Gomes, who
have been suggested as “good chemistry” players by
teammates. He attempts to isolate whether their roster
presence affected their teammates’ productivity rela-
tive to their expectation for a variety of performance
measures. Others have even suggested physiologi-
cal underpinnings to the performance relationships
exhibited in the interactions of teammates (Sync-
Strength, 2016).

In contrast, economists have generally focused
more on the particular mechanisms that may generate
productivity spillovers between teammates, framing
the problem as one of players serving as complemen-
tary inputs in the production of team wins. The degree
of complementarity across players varies substan-
tially across the major professional sports leagues.
On one extreme, basketball is a sport where “star”
players often have the ability to substitute for their
less talented teammates. To this point, only two of the
top ten players as measured by Hollinger’s individual
PER metric for the 2016-17 NBA season played for
teams that did not make the playoffs. On the other
extreme, football presents itself as the quintessential
team sport, as it requires more players coordinating
their efforts on the field of play.1 Baseball, on the
other hand, seems to fall somewhere in the middle,
with some observers noting its largely individual-
ized nature and others highlighting the importance
of offensive and defensive interactions. For instance,
Gould and Winter (2009) find that the performance of
batters increases with that of other batters on a team.
Arcidiacono et al. (2017) suggest that this may be
the case because pitchers tend to throw fewer balls
to avoid a walk based on the hitting ability of sub-
sequent batters. On the defensive side of the ball,
Willis (2017) provides the example of a strong field-

1For example, as good as Tom Brady was for the 2017 Super
Bowl winning Patriots, arguably the defining play in that year’s
Super Bowl came while he was not even on the field, and instead
when the only quarterback with a higher rating that year was. Matt
Ryan, the quarterback for the losing team in that year’s Super Bowl,
had a QB rating of 117.1 compared to Tom Brady’s year-end QB
rating of 112.2. Arguably, one of the most pivotal plays in one
of the most historic comeback wins in football history came when
Matt Ryan was sacked by the Patriot’s defense and lost the football
on a critical third down play in the fourth quarter.

ing shortstop that may produce greater value to his
team if its pitching staff tends to induce ground balls
from opposing batters.2

The primary difficulty that others have faced when
trying to quantify the importance of these interac-
tions in MLB has been their focus on identifying
a priori the individual factors that drive it. Our
methodology is instead designed to look for corre-
lated “mistakes” in the relationship between team
wins and the wins-above-replacement (WAR) met-
rics of teammates which can tell us something about
the complementarities inherent to roster construc-
tion. The strength of using WAR for this purpose
is its comprehensive nature: It compresses all of the
things that a player can do to help his team win at
the plate, in the field, or on the mound into one num-
ber. We concede, however, that WAR statistics are
not perfect.3 For example, there are two predominant
WARmethodologies (fWAR and bWAR) that can in
some extreme cases lead to quite different valuations
of a player’s worth. Both FanGraphs (fWAR) and
Baseball-Reference (bWAR), however, have taken
steps to standardize their particular calculations of
WAR such that the definition of a “replacement level”
player is the same across both methods (Cameron,
2013). As Miller (2016) notes, the remaining dif-
ferences in methodology lie in the more subjective
choices necessary to make the type of comprehensive
valuations to which wins-above-replacement aspires,
such as whether a pitcher’s quality should be reduced
to the outcomes (i.e. runs) for which he is ostensi-
bly responsible or if it should take into consideration
how luck and fielding quality may influence these
outcomes.

Rather than focus on the details of these differences
in methodology, most criticisms of WAR instead
center around the general wins-above-replacement
paradigm of translating expected runs into wins in
a way that ignores how context may affect team out-
comes – for example, a bases-loaded single counts
the same as one with two outs and no runners on
base. Such critiques hew closely to common con-
ventions regarding “clutchness,” or whether or not
certain players are more capable than others in high
leverage situations. Sullivan (2015) notes that while
little evidence exists for within-season variation of

2Similar frameworks have also been used outside of sports; for
instance, in capturing how spatial input-output relationships gener-
ate productivity co-movement across sectors of the U.S. economy
(Conley and Dupor, 2003).

3FanGraphs (2016b) provides a summary of potential short-
comings.
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“clutch” performances being driven by particularly
capable teams or players, timing can still be an impor-
tant factor in explaining how teams may outperform
their expectations based on metrics likeWAR. In this
spirit, it is worth emphasizing then that our particular
use of WAR is intricately linked to a similar notion
that individual players’ performances cannot be mea-
sured in isolation, and instead often depend critically
on the performance of the players around them. This
stands in contrast to the other vein of criticism that
WAR contains some glaring omission of an activity
a player engages in to contribute to a team’s suc-
cess. While our analysis would surely be influenced
by shortcomings like the latter, its ultimate goal is
in uncovering shortcomings like the former. We are
not interested, however, in the context of how indi-
vidual play impacts team performance, but instead
the correlated nature of performances arising from
on-the-field teammate interactions.

3. Measuring team synergy

In this section, we provide a formal definition for
team synergy in MLB and outline our methodology
for measuring it. Our first step along this path is
to construct player productivity residuals capturing
the difference between the expected number of team
wins arising from a player’s performance relative to
how many games that player’s team actually won.4

To measure a player’s performance, we make use
of wins-above-replacement, or WAR, an advanced
sabermetric that captures how many total wins a
player contributes to his team above a replacement
level player at the same position (Baseball-Reference
(2013) and FanGraphs (2016c)). With these measures
in hand, we then move to modeling performance
interactions between teammates, or player comple-
mentarities, and the effect that they have on team
performance. Finally, in order to account for the
discrepancies among different WAR calculations
mentioned before, we conduct our analysis sepa-
rately using the WAR metrics produced by both
FanGraphs, fWAR, and Baseball-Reference, bWAR.
Both sources calculateWAR using the same replace-
ment level (Cameron, 2013). This feature allows us
to treat the results from the respective versions of our
model analogously, as any differences between the

4Details on the data and their sources can be found in the
Appendix.

two will only arise from the various ways that each
calculation assigns WAR above replacement level.

3.1. Player complementarity

To demonstrate what we mean by team synergy,
consider the hypothetical relationships on a base-
ball team displayed in Fig. 1. For each panel, we
display—through several contour lines—the mix of
player talents across two particular positions on a
baseball team holding the number of team wins fixed
(where darker lines moving towards the northeast
signify increases in team performance).5 On any con-
tour line, the slope at a particular point denotes the
increase (decrease) in WAR required at one position
to displace a loss (increase) in WAR at the other
position in order to hold overall team performance
constant. The degree to which players are substi-
tutable or complementary determines the curvature
of these contour lines.

We propose that the stronger complementarities
are among players the greater the scope that exists for
team performances to be differentiated on the dimen-
sion of synergy. In the top left panel, we display what
this relationship might look like for a designated hit-
ter (DH) and a starting pitcher (SP) on the same team.
Given that these two types of players will never find
themselves on the field at the same time, and also
engage in extreme types of activities, it’s natural to
imagine that their performances are perfectly sub-
stitutable, consistent with the linear contour lines in
this panel. In other words, for a team to achieve +2
wins (medium gray line) across their DH and SP posi-
tions they could obtain any combination of +2 WARs
among the two positions. One possibility could be
getting a strong +2 WAR designated hitter and a
replacement level pitcher, or alternatively a strong +2
WAR starting pitcher and a replacement level desig-
nated hitter, or maybe a more evenly split +1 WAR at
both positions. This sort of neutral interaction among
players mirrors the implicit assumption underlying
the construction of WAR values for teammates and
how they map in the aggregate into a team’s WAR.

Now, consider the relationship between the 3rd and
4th place hitters in a team’s lineup, as displayed in the
top right panel of the figure. For the 3rd and 4th hit-
ters in a lineup, it is much more natural to assume that

5The isoquants used in this figure all are particular instances
of the constant elasticity of substitution (CES) production func-
tion. Consequently, implicit in this figure is the assumption that
the appropriate normalization constant was used to reflect the
particular elasticity of substitution under study.
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Fig. 1. Hypothetical complementarity of select player relationships by position or placement in the batting order in terms of wins-above-
replacement (WAR). DH refers to designated hitter, SP references starting pitcher, 2B is shorthand for second baseman, and SS denotes the
shortstop position.

their performances are intricately linked when deter-
mining team performance. As good as the 3rd hitter
might be (e.g. batting .300 and consistently getting
on base), without a 4th hitter to either drive him in
to score runs or protect the 3rd hitter from getting
intentionally walked in pivotal hitting situations (e.g.
runners on base with two outs), the team’s perfor-
mance is likely to suffer. The complementary nature
of these two players’ performances in dictating over-
all team performance is captured by the strong kinks
in the contours displayed in this panel. For that same
team to achieve +2 wins at the most cost-effective
point, it will be important to have exactly a +1 WAR
3rd and +1 WAR 4th hitter. In this case, having a
stronger (i.e. +2 WAR) 3rd hitter is only valuable
in so much that the team has a capable 4th hitter to
complement him. These sorts of complementarities
are very certainly lost in the construction of WAR at
the individual level and, thus, also by aggregating to
the team level.

Of course, the 3rd and 4th hitter might be an
extreme case as well. In the bottom panel, we instead
display what might be the appropriate degree of
complementarity between the second basemen (2B)

and shortstop (SS). Here, one could imagine that
some amount of substitution exists between these two
defensive positions: a shortstop with incredible range
might be able to cover up for a slow-footed second
baseman in fielding ground balls up the middle. Alter-
natively, it would be natural to imagine that the two
positions also have a degree of complementarity in
that both of these players are also necessary for a
team to successfully turn a double play. Furthermore,
depending on where these two positions bat in the
lineup, further offensive interdependencies may also
come into play. Keeping with the notion of a team
trying to accrue +2 wins across the two positions,
this example is a balance of the previous two. While
a +1 WAR second basemen and +1 WAR shortstop
will yield +2 wins, a spectrum exists of the possible
combinations of WARs across the second basemen
and shortstop that would still yield +2 wins for the
team. Note this spectrum is not as interchangeable
as the hypothetical relationship between the starting
pitcher and designated hitter, but some substitutabil-
ity does exist unlike the hypothetical 3rd and 4th
hitter relationship. Importantly, however, even the
more moderate degree of interdependency displayed
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in this panel would not be captured in the construction
of WAR.

3.2. WAR and team wins

Instead of building a structural model of how indi-
vidual players contribute to the different outcomes
through the course of a game and then how these out-
comes translate into the likelihood of a team winning
a game, we take a more aggregate (reduced form)
approach. Specifically, we search for systematic cor-
relations in the misspecifications of WAR across
teammates by incorporating into our analysis how
a team actually performed. If these misspecifications
are systematic both across teams and individual play-
ers as teammate relationships change, our statistical
model will attribute them to the player complemen-
tarities that must exist between teammates along the
lines of what is described in Fig. 1.

We show here that this tends to manifest itself in
the fact that simply summing the WAR values for a
team across its players does not perfectly replicate
its wins above those expected of a team comprised
entirely of replacement-level players. To get a sense
of exactly how important player interactions may be
to team performance, we regressed the number of
wins for each team on the sum total of its players’
WAR. Specifically, we ran linear regressions of the
form

Wnt = α+ βWARnt + εnt, (1)

where Wnt is the number of wins of team n in
season t and WARnt is the sum total of wins-above-
replacement statistics for all players on team n in
season t based on either FanGraphs or Baseball-
Reference’s calculations.6

The εnt in these regressions are what we call
team productivity residuals. We refer to them as such
because in many ways they represent the baseball
equivalent of the famous “Solow residual” used in
economics to measure the productivity of firms.7 An
MLB team with a positive εnt was a team who out-
performed, or won more games than what could be
attributed to the sum of its individual player perfor-
mances (or in economic terms, a firm that produced
more output than the usage of its individual inputs
would suggest). Alternatively, a team with a negative

6Keller (2014b,a) conducted a similar analysis in his examina-
tion of WAR.

7See Solow (1957) for details on the Solow residual.

Table 1

Team Wins Regressions: 1998-2016

FanGraphs Baseball-Reference
(1) (2) (1) (2)

Team Wins Team Wins Team Wins Team Wins

Team WAR 0.996 0.941
(0.017) (0.029)

Team WAR− 1.030 0.933
(0.014) (0.024)

Constant 47.691 48.150 49.569 51.404
(0.649) (0.538) (1.071) (0.890)

R2 0.799 0.887 0.804 0.876
Pseudo R2 0.789 0.873 0.793 0.867

Observations 570 570 570 570

Bootstrapped bias-corrected and accelerated standard errors
clustered on team shown in parentheses based on 500 replica-
tions. Pseudo R2 is calculated as the average from a 57-fold
cross-validation with recursive estimates of WAR− included in
specifications (2).

residual would be a team who despite perhaps hav-
ing a number of strong individual performances (as
measured byWAR) under-performed as it pertains to
wins.

The results from these regressions using data from
the 1998-2016 seasons, shown in Table 1, provide
several insights. First, it is clear that the estimates of
β are close to 1.8 This is intuitive given how both
WAR metrics are constructed, but also allows us to
confidently use the idea that increasing a team’sWAR
should have a one-to-one relationship with their num-
ber of wins.9 Furthermore, the estimate for α in our
regressions is just less than 50. This estimate, too, has
a natural interpretation of being the number of wins
one would expect a team full of replacement level
players to accrue. At about 50, clearly a team with
only replacement level players is far from an aver-
age, or 0.500 winning percentage, team. With that
being said, it is consistent with the construction of
these measures.

The team productivity residuals, ε̂nt , are our esti-
mates of the element of team performance that is
unexplained by the sum of its players’ individual per-
formances, and the variation that we may potentially
attribute to a team’s synergy. Based on the R2 val-
ues of these regression, this amounts to about 20%
of the variation in team wins in our sample. Fig-
ure 2 further demonstrates just how important this

8Both the fWAR and bWAR estimates are within two standard
deviations of 1.

9See FanGraphs (2016c) and Baseball-Reference (2013) for
more information on the construction of fWAR and bWAR.
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Fig. 2. Kernel densities of team productivity residuals for various
measures of wins-above-replacement (Fangraphs (fWAR) - panel
A, Baseball-Reference (bWAR) - panel B) and ourWAR− metrics.

element is by plotting a kernel density function of ε̂nt
from both regressions (solid lines). With a standard
deviation of about 5 wins and a range equal to approx-
imately 30-40 wins, it is evident that a considerable
portion of the variability in team performance can-
not be explained by WAR. This unexplained variation
can be pivotal considering that a standard deviation
increase in a 0.500 winning percentage team’s pro-
ductivity residual would likely make the difference
in becoming a playoff team. Our contention is that at
least part of this variation is the result of attempting to
construct an individualized measure of performance
while abstracting from the complex set of interdepen-
dencies amongst teammates.

To see why, consider the following interdepen-
dencies captured in our regression. In constructing a
roster, teams face a problem of maximizing wins,W ,
subject to a payroll constraint and MLB regulations
like the luxury tax. Suppose this production function,
w, takes the form

W = w[d(f, p), l(b)], (2)

where w takes as its inputs a team’s defensive and
offensive production.10 Defensive production is cap-
tured byd(f, p), a function that describes how fielding
(f ) and pitching (p) resources determine defensive
value; and offensive production is captured by l(b),
which specifies how batters (b) determine offensive
value given a lineup configuration. If the team’s
defensive ability depends upon the specific mix of
fielding and pitching inputs, or if teams maximize the
returns to their batter’s output based on their order
in the lineup, then team synergy will be evident in
the degree of substitution/complementarity between
inputs.

We do not observe the functional form w takes
for each team, but we do have the extensive work of
sabermetricians to appeal to on this matter. In fact,
the construction of WAR resembles this production
function in many ways, as it incorporates fielding,
pitching, and hitting metrics separately by convert-
ing them to run-equivalent values for each player
which are then translated to team win values by using
an historical run differential-win relationship. If the
technology for turning player talents into team wins
is linear with respect to the sum of its players’ indi-
vidual WAR, i.e. if player performances are perfect
substitutes, then the relationship below across the
players (i) on a team in a given season should hold
and the residuals of our regression should be zero in
the absence of other contextual factors contributing
to the deviation of team wins and team WAR.

W =
∑
i

WARint + α (3)

However, if complementarities exist between team-
mates causing this relationship to be nonlinear, then
our regressions will be misspecified.

When we replace WAR in our regressions with
our measure that adjusts for the strength of team-
mate interactions, WAR−, this is exactly what we
see. In this case, the higherR2 values of these regres-
sions suggest that accounting for player performance
interactions reduces the unexplained variation in team

10Other constraints teams face besides payroll, and ones
embodied within w(·), are how many players can bat, field, or
pitch at one time. The particular rules of how the game is played
(e.g. nine unique players make up a batting lineup) might also
contribute to the nonlinearities present in the game of baseball.
Work by Swartz (2016) has explored if evidence of these effects
are present in the market for free agents and has found only limited
evidence of such effects.
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wins by roughly 40%. This remains the case even
after we account for sampling variability and estima-
tion uncertainty by examining the Pseudo R2 values
from a k-fold cross-validation of these regressions.11

The result of this adjustment on our team productiv-
ity residuals can be seen in Fig. 2. The kernel density
of team productivity residuals using ourWAR− mea-
sures (dashed lines) is much more concentrated than
before with a standard deviation of about 4 wins and a
range of about 25 wins.12 Taken together, these results
suggest that complementarities between individual
players, or what we call team synergy, do indeed
have scope for explaining some of the unexplained
variation in team performance by WAR.

3.3. Team wins and teammate interactions

Next, we focus on our methodology for decompos-
ing team productivity residuals into player-specific
productivity residuals. The basis for this decomposi-
tion is the following identity,

ε̂nt =
∑
i

εint

=
∑
i

Ŵint −
∑
i

WARint, (4)

where Ŵint is a measure of the contribution of player i
to team wins such that

∑
i Ŵint = Wnt − α̂. In order

to construct player productivity residuals, we must
then carefully define a player’s expected contribu-
tion to his team’s wins. Since WAR is context-free,
we construct an expected contribution that is also
context-free and dependent solely on playing time
to determine each player’s share of team outcomes.
It is meant to reflect a baseline contribution to team
wins from each player accounting for playing time
at each defensive or lineup position. The relevant
thought experiment here is what you would expect
to receive in terms of team wins from a replacement
level player in those positions given the same amount
of playing time.

To arrive at this value, first we construct two
weights designed to capture how a player’s placement
in the batting lineup (lit) and his defensive position
(dit) affect his expected contribution to team wins,

11Our method of accounting for estimation uncertainty is dis-
cussed in more detail in later sections. To summarize, we use
recursive estimates of WAR− in the regressions as opposed to
full-sample estimates.

12Bootstrapped bias-corrected 95% confidence intervals for the
ratio of the standard deviations of the WAR− and WAR kernel
densities are also presented in Fig. 2.

Table 2

Defensive and Lineup Position Weights

FanGraphs Baseball- Tango et al. (2007)
Reference

Defensive d d Lineup l

Position Position

Catcher 0.214 0.200 1 0.212
First Base 0.036 0.046 2 0.187
Second Base 0.143 0.150 3 0.162
Third Base 0.143 0.142 4 0.136
Shortstop 0.179 0.183 5 0.111
Left Field 0.071 0.067 6 0.086
Center Field 0.143 0.146 7 0.061
Right Field 0.071 0.067 8 0.035
Pitcher/DH 1/0 1/0 9 0.010

All weights are separately normalized to sum to one across field-
ers/pitchers and hitters.

lit =
9∑
j=1

bjSijt (5)

dit =
9∑
j=1

pjgijt, (6)

where Sijt denotes the number of times player i
appeared in the jth slot of the lineup and gijt denotes
the number of times player i appeared at each of the
eight non-pitching defensive positions or pitcher/DH
as a share of his total appearances.13 The adjust-
ment weights, bj and pj , then describe the relative
importance weight given to their respective vari-
ables. Lineup weights are defined following Tango
et al. (2007), while defensive position weights are
defined following FanGraphs’ positional adjustment
methodology (FanGraphs, 2016a) for fWAR and
Baseball-Reference’s positional adjustment method-
ology for bWAR (Baseball-Reference, 2017). We
then normalize each weighting scheme to sum to 1,
with the resulting values reported in Table 2.

In essence, with li and di we are skill-weighting
the amount of time played at defensive positions
and in the lineup in our calculations of the expected
contribution to team wins. We use the Fangraphs or
Baseball-Reference positional weights for this pur-
pose, because they reflect a value judgement of the
relative skill required to play each position holding
fixed offensive skill. Similarly, we use the the Tango
et al. (2007) lineup weights because they put a pre-
mium on time spent at the lineup positions that turn
over more regularly throughout the course of a game.

13Pitching appearances by position players and plate appear-
ances by pitchers are excluded from this calculation.
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In this sense, they reflect the relative likelihood of get-
ting additional plate appearances in a season, rather
than any notion of proximity toward other players in
the lineup.

With these weights in hand for each season, we then
proceed to the construction of Ŵint for each player
based on his position and his share of playing time,

Ŵint = ηitτit (Wnt − α̂) (7)

ηit =
⎧⎨
⎩

0.57/0.59 if i is a position player

0.43/0.41 if i is a pitcher

τit =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lit∗ PAit
3∗162 +dit∗DOutsit27∗162∑K

k
(lkt∗ PAkt

3∗162 +dkt∗DOutskt27∗162 )
if i is a position

player

dit
POutsit
27∗162∑K

k
dkt∗ POutskt27∗162

if i is a pitcher,

where we refer to the product ηitτit as a player’s
appearance weight in each season. FanGraphs and
Baseball-Reference construct their WAR measures
such that players contribute 1,000 WAR per 2,430
games league-wide (162 games for 30 teams), where,
by construction, the offensive WAR contributions
of pitchers sums to zero. The η in the above equa-
tion correspond to the proportion of league-wide
fWAR/bWAR apportioned to position players and
pitchers, respectively. This split is based on the
assumption that because position players appear on
both sides of the ball their contribution should be
larger (FanGraphs, 2016a) as well as the relative split
of salaries for free agent pitchers vs. hitters (Baseball-
Reference, 2017). We maintain this assumption here,
as it is also in keeping with the fact that we do not
use offensive fWAR or bWAR data for pitchers in
our analysis. To obtain τ, we use the sum of plate
appearances (PA) and defensive outs (DOuts) for
position players differentially weighted by the lineup
and defensive position weights reported in Table 2.
For pitchers, we use outs recorded (POuts) as we
found it to be the most reliable measure for captur-
ing the differences in pitching contributions across
starters and a variety of relievers (middle relievers,
closers, etc.).14 Finally, we scale these inputs on
a per-game basis, dividing plate appearances by a
three appearance per-game scalar (3*162) and defen-
sive and pitching outs by a 27 outs per-game scalar
(27*162).

When aggregated across players on a given team
in a given season, our player productivity residuals

14Alternatively, one could use batters faced instead here.

measure the difference between a team’s actual win
count and what it would be expected to be based on
the sum total of individual player performances as
measured by WAR. Stacking these residuals into a
player-season by team (IT ×N) matrix ε̂, we model
the interactions between player residuals as a panel
spatial autoregression (SAR),

ε̂ = ρAε̂+ υ, (8)

where A is an IT × IT network matrix identifying
teammates in a given season. Typically, such a matrix
is symmetric with 0’s on the diagonal and 1’s off the
diagonal “connecting” teammates. However, in order
to capture potential interdependencies in teammate
relationships which correspond to their positions in
the field and lineup, we replace the 1’s with weights
αijt . For a pairing between player i and j playing
for team n in season t, these connection weights are
defined as follows:

αijt =
t∑

ni=nj
(κit + κjt)

κit =

⎧⎪⎨
⎪⎩
lit ∗ PAit

3∗162 + dit ∗ DOutsit
27∗162 if i is a position

player

dit ∗ POutsit
27∗162 if i is a pitcher.

This formalization of the network structure of
our model captures several hypothesized features of
teammate connections. First, the more one or both
players in a pairing play, the more likely they will
have played together and the stronger their on-field
connection will be. Second, the implicit orderings of
our lineup and defensive position weights shown in
Table 2 capture specific on-field dynamics. If both
players in a pairing tend to bat higher in the lineup,
they will be more likely to affect each other’s perfor-
mance based on the greater number of game situations
they are expected to be a part of over the course of
a season. Similarly, defensive pairings that include a
catcher will be given relatively more weight, and if the
other player is, for example, a middle infielder, this
pairing will receive greater weight, all else equal, than
one with a left fielder. Then, because pitchers receive
a defensive weight equal to one, pitcher-catcher rela-
tionships will receive more weight than other position
pairings, all else equal. Finally, to allow for added
weight to be given to repeated “connections” across
seasons in explaining player performance interac-
tions, we sum over this value for each previous season
in which the players were teammates.
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Next, we assume that a factor structure exists for
the panel SAR residuals, υ, such that player produc-
tivity residuals are summarized by a player-season
specific component, or factors F , as well as a team-
specific component, or factor loadings
. TheF trace
out a player’s career arc, potentially across several
teams, and reflect whether that player finds himself
among over- or under-performing teammates in each
season. Identification of this latent variable is, there-
fore, predicated on roster turnover. Because of this,
it will be more difficult in general for us to estab-
lish such a player vs. team breakdown the less roster
turnover exists on a team over time. The 
, on the
other hand, reflect an organization’s average histori-
cal tendency to over- or under-perform relative to the
collection of its players.

Solving for ε̂ yields our spatial factor model with
spatial weight matrix � = (I − ρA)−1,

ε̂ = �F
, (9)

where F is an IT × 2 matrix of our player-season
factors and 
 is an 2 ×N matrix of their team-
specific factor loadings. To estimate this model, we
use a two-step estimation procedure described in the
Appendix. In the first step, an estimate ofρ is obtained
by maximum likelihood conditional on a scale nor-
malization on A. Given ρ, the factor model is then
estimated by spatial principal components analysis
(SPCA) to extract the latent player-season and team-
specific components up to a scale normalization on

 (Demsar et al. (2012)). In the next section, we pro-
vide further motivation for what we aim to capture in
these factors in terms of team synergy.

4. The network effects of player
complementarity

To measure the interdependence of teammates’
performances, we borrow heavily from the social
and economic network analysis literature (Jackson,
2008). Our spatial factor model fits the definition of
a network. The players on a team in a given season
make up the “nodes” of the network, with the strength
of the connections between teammates summarized
by our network matrix, factors, and their loadings. In
other words, our model is simply a statistical frame-
work for measuring the importance of correlations
across team and teammate performances. In this sec-
tion, we refine WAR in order to take into account
these correlations; and, at the same time, construct

new metrics that can be used to evaluate players’
contributions to team synergy.

4.1. Sources of team synergy

Our methodology for measuring team synergy
boils down to nothing more than a decomposition
of the spatial correlation matrix of teammates’ pro-
ductivity residuals into an exact linear combination of
latent factors. To see this, consider that we can decom-
pose our player productivity residuals into two parts:
1) a part that is unique to each player that we attribute
to measurement error in team productivity residuals,
and 2) a part that can be explained by each player’s
interactions, or spill-overs, with his teammates that
we attribute to team synergy, where the scalarsw cor-
respond to the entries of our spatial weight matrix
�,

ε̂int = wiifitλn︸ ︷︷ ︸
“Measurement Error"

+
∑
i:j /= i

wijfjtλn

︸ ︷︷ ︸
“Team Synergy"

. (10)

It is important to note here the role played by the
measurement error term. In the absence of systematic
spatial correlations in the player productivity residu-
als of teammates, this term will dominate our results.
In this sense, it is an “out” for the model that allows it
to explain the variation in player productivity residu-
als solely as a function of individual circumstances.15

Based on our findings in Table 1, roughly 60% of
the variance of the residual component between team
wins and team WAR fits this description. The remain-
ing 40% is what we then capture in the team synergy
component.

We associate positive spill-overs with “good team
synergy” and negative spill-overs with “bad team syn-
ergy.” We do not take a stance on what drives these
spill-overs between teammates; and, in all likelihood,
our latent factors probably capture a combination of
many of the determinants of team synergy that others
have already explored. However, by not restricting
them ex-ante, they likely also embody elements of
team synergy that could not be measured previously.
The extent to which we do provide context for our
factors is only to appeal to the work of other social

15If the factor structure did not explain a majority of the varia-
tion in the panel SAR residuals, then the measurement error would
also include a component coming from the spatial weight matrix.
In our application, the two factors explain almost all of the variation
in these SAR residuals, so this formulation is appropriate.
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scientists who have singled out certain psychological
traits, such as “character” and being a “team player,”
as being attributes of individuals in groups that excel
in working together.

By allowing for two factors and restricting their
loadings such thatF = [ch, tp] and
 = [l, λ], where
l is a unit vector across teams, we can restrict our
factor model to embody similar features.

ε̂int = wii (chitln + tpitλn)

+
∑
i:j /= i

wij
(
chjtln + tpjtλn

)
(11)

We think of the factor ch as capturing a player’s innate
character, as through this factor players demonstrate
spill-overs to their teammates which do not depend
on the identity of their team. In contrast, we think
of the factor tp as capturing a player’s contribution
that is more closely linked to the “match quality”
of his current team (via λ), which we term as the
team player factor.

Teams with large |λ| are then said to exhibit
good organizational culture, as they either reinforce
positive spill-overs (tp < 0 & λ > 0) or minimize
negative spill-overs (tp > 0 & λ < 0) between team-
mates. Notice, however, that in our framework these
factor loadings are fixed across time. As such, their
estimation accounts for the vast majority of the uncer-
tainty associated with our spatial factor model. For
example, when a new season’s data is added to the
model, the inference of λ applied to the previous sea-
sons’ factor values for all current and former players
on each team must be updated as a result. Looking at
how estimates of λ evolve over time can then give a
sense of changes in the model’s interpretation of an
organization’s culture.

Figure 3 plots rankings from zero to 100 for all
30 MLB teams across the 1998-2016 seasons based
on our estimated values of |λ| using both fWAR and
bWAR data. To capture variation over time in these
rankings the figure contains box and whisker plots
for each organization summarizing the distribution
of rankings obtained by estimating our spatial factor
model “recursively” by adding one season at a time
to the 1998 data. The dots in the figure correspond
to the median ranking for each organization, while
the bars give a sense of the interquartile range and
broader sample variation over time. Certain organiza-
tions stand out along this dimension. For instance, the
St. Louis Cardinals, Arizona Diamondbacks, and San
Francisco Giants are in the top three of both rankings;
while others do not fair nearly as well. Several orga-

nizations near the middle to bottom of the rankings,
however, also exhibit a very large amount of variabil-
ity over time, suggesting that for these organizations
substantial changes in culture occurred during this
time period.

4.2. Team performance

If WAR measurements are indeed influenced by
teammate interactions, then the regressions underly-
ing our team productivity residuals are misspecified.
Namely, WAR may be under- or over-counting the
importance of individual contributions to team wins
by ignoring the interactions between teammates. To
adjust for this possible source of bias, we construct
an alternative measure calledWAR− which subtracts
from the WAR of each player the portion of his
productivity residual that can be explained by his
teammates’ residuals. In network statistics, this is
often referred to as the “in-degree” for a node.

WAR−
int = WARint −

∑
j:j /= i

wijfjtλn

︸ ︷︷ ︸
“In−degree"

(12)

Recall that Fig. 2 demonstrated the relative impor-
tance of adjusting WAR in this way for explaining
deviations of team productivity residuals from zero.
We can get a sense of the impact that this adjustment
has on the productivity residual for any individual
team by examining the aggregation of the differences
between WAR and WAR− over teammates in each
season. This is often referred to as the network’s
“total-degree.” We call it “team complementarity
wins-above-replacement,” or tcWAR, and scale it by
−β̂ from the regressions in Table 1 so that we can
relate it directly to Fig. 2.

tcWARnt = −β
∑
i

∑
j:j /= i

wijfjtλn

︸ ︷︷ ︸
“Total−degree"

(13)

Figure 4 scatters a team’s productivity residual in
each season against its tcWAR. The figure is con-
structed so that the x-axis coordinate (tcWAR) is
equal to the number of team wins (y-axis coordinate)
explained by team synergy. Some of the best and
worst teams on both ends of the synergy spectrum
are noted in the figure for both fWAR and bWAR
results. While not identical, the teams that are singled
out by both metrics on the basis of tcWAR overlap
to a large degree. For instance, the 2012 Orioles,
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Fig. 3. Ranking of MLB organizations on the basis of our Organizational Culture metric for competing measures of wins-above-replacement
(Fangraphs (fWAR) - panel A, Baseball-Reference (bWAR) - panel B). Organizations are ranked on a relative scale from 0 to 100, with 100
equal to the best organization over the 1998-2016 seasons. Dots denote the median ranking over this sample period for each organization,
with box and whiskers summarizing sample variation.

2008 Angels, 2007 Diamondbacks, 2006 Athletics,
and 1998 Padres all show up as teams with large
positive tcWAR values and the 1998 Mariners, 1999

Royals, and 2015 Reds all show up as teams with large
negative tcWAR values. While the size of the team
productivity residuals tends to vary across fWAR
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and bWAR, the number of team wins that each met-
ric attributes to team synergy remains fairly similar.
For example, of the 2012 Orioles’ nearly 15 team
wins above fWAR’s expectation, tcWAR attributes
roughly 4 of these to good team synergy. In con-
trast, of the 2012 Orioles’ nearly 8 team wins above
bWAR’s expectation, tcWAR attributes roughly the
same number to team synergy.

Examining our tcWAR estimates on an
organization-by-organization basis reveals that
it is fairly rare for a team to over-achieve in terms of
team synergy (tcWAR > 0); and, furthermore, those
teams that do demonstrate very little persistence on
this dimension. To confirm this, we regressed the
current season’s tcWAR on the previous season’s
value for the full panel of 30 MLB teams over the
1998-2016 seasons. These regressions for fWAR
and bWAR data produced remarkably low estimates
of first-order autocorrelation in team synergy;
and, hence, exhibited very strong mean-reverting
properties.16 In this respect, our results are consistent
with the notion that team synergy may be accurately
described as “catching lightning in a bottle.” It is,
therefore, likely to be an aspect of team performance
that must be closely monitored and constantly
managed by organizations.

To identify organizations that have exceeded and
fallen short of expectations on this dimension, we
took the residuals from these regressions and summed
them over time for each organization into a metric that
we call “team synergy wins-above-expected.” Fig-
ure 5 presents the results of this exercise, ranking
organizations from over- to under-achievers during
our sample period. As with our Organizational Cul-
ture rankings, here, too, there exists some variability
across fWAR and bWAR in interpreting team syn-
ergy. In some instances, the differences can be quite
pronounced; as they are for the San Franciso Giants
who top the bWAR rankings with nearly 10 wins
above expected, but fall in the middle of the pack in
thefWAR rankings with about 1 win above expected.
A few organizations, however, stand out in both rank-
ings, such as the Oakland A’s, Chicago White Sox,
New York Yankees, Los Angeles Dodgers, and St.
Louis Cardinals.

The apparent lack of persistence in team syn-
ergy raises the question of what value tcWAR holds
for a team or analyst. Therefore, to demonstrate its
value we next show that the highly mean-reverting
properties of team synergy are something that can

16Estimates are available from the authors upon request.

be exploited to improve upon PECOTA’s pre-season
team win projections. First, though, we consider
the possibility that the information on team synergy
found in tcWAR is already captured in PECOTA’s
player-based projections. Table 3 contains the coef-
ficients obtained by regressing PECOTA projections
for the 2008-2016 seasons on the previous season’s
projection, recursive estimates of the previous sea-
son’s tcWAR computed using only data through the
previous season, and the combined previous season’s
value ofWAR for the current season’s roster. Interest-
ingly, we find that at least part of what we measure in
tcWAR does seem to be reflected in the PECOTA pro-
jections on either anfWARorbWARbasis according
to these regressions. This would seem to set a high
bar then for tcWAR to provide any value-added over
PECOTA. We show, however, that a very simple fore-
casting model incorporating the previous season’s
team wins, the PECOTA projection, and a projected
value of tcWAR based on the first-order autoregres-
sion described above can do just that.

To see why this is the case, Table 3 also con-
tains the results for these regressions using the
full sample of data. Even after accounting for the
PECOTA projection, the regressions calculated on
either an fWAR or bWAR basis still load signifi-
cantly onto tcWAR, suggesting there is information
in our metric that is not captured by the PECOTA
forecast. Using out-of-sample one-step ahead projec-
tions from this regression, we find that it would have
been possible to improve upon PECOTA pre-season
projections by a statistically significant margin of
roughly 1 win based on a Diebold and Mariano
(1995) test of equal mean absolute error across mod-
els. While the magnitude of this improvement may
seem small, for our purposes it is sufficient to demon-
strate that tcWAR contains information that is not
already summarized in PECOTA. We leave it to future
work to determine whether or not this result can be
improved upon, perhaps through a reconfiguration of
PECOTA’s projection system to also account for the
player complementarity effects that we discuss next.

4.3. Player evaluation

We can also refineWAR as a measure of player per-
formance by taking into account how much a player
affects his teammates’ performances. Here, we add
toWAR− the contribution of each player to all of his
teammates’ productivity residuals, or what is referred
to in network statistics as the “out-degree” of a node.
We call this measure WAR+.
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Fig. 4. Scatter plot of our team complementarity WAR (tcWAR) metric against our team productivity residuals for all MLB teams over
the 1998-2016 seasons. Outlying team-season values referred to in the text are labeled for competing measures of wins-above-replacement
(Fangraphs (fWAR) - panel A, Baseball-Reference (bWAR) - panel B).
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Fig. 5. Cumulative team complementarity wins-above-expected for each MLB organization over the 1998-2016 seasons based on residuals
from a regression of current season tcWAR on its previous season’s value. Panels of the figure display results for competing measures of
wins-above-replacement (Fangraphs (fWAR) - panel A, Baseball-Reference (bWAR) - panel B).
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Table 3

Team Win Projection Regressions: 2008-2016

FanGraphs Baseball-Reference
(1) (2) (1) (2)

PECOTAt Team Winst PECOTAt Team Winst
PECOTAt−1 0.537 0.560

(0.071) (0.069)
Team WARt−1 0.246 0.207

(0.050) (0.041)
tcWARt−1 0.260 0.374

(0.123) (0.114)
Team Winst−1 0.363 0.315

(0.076) (0.073)
PECOTAt 0.306 0.288

(0.113) (0.117)
Projected tcWARt 16.653 13.554

(2.245) (1.619)
Constant 29.140 54.450 28.772 53.024

(4.360) (5.528) (4.391) (5.818)

R2 0.587 0.371 0.576 0.419

MAE(PECOTA)–MAE(Model) 1.251 1.487
(0.426) (0.505)

Observations 240 270 240 270

Bootstrapped bias-corrected and accelerated standard errors clustered on team shown in parentheses based
on 500 replications. Recursive estimates of tcWAR are used in specifications (1) and recursive one-step
ahead projections in specifications (2). The mean absolute error (MAE) gain over PECOTA is based on a
Diebold-Mariano test of equal MAE using 240 out-of-sample predictions of team wins.

WAR+
int = WAR−

int +
∑
i:i /= j

wjifitλn

︸ ︷︷ ︸
“Out−degree"

(14)

Figure 6 scatters WAR− and WAR+ versus WAR
on an fWAR and bWAR basis. Interestingly,WAR−
and WAR on an individual player-season basis are
very highly correlated, with the plotted points clus-
tered fairly closely around the 45 degree line. Thus,
it is the aggregation of somewhat small differences
at the player level that leads to the drastic reduction
in the unexplained variance of team performance in
Table 1 and Fig. 2. For WAR+, on the other hand,
the differences are much more pronounced. In partic-
ular, our analysis suggests that WAR overestimates
the relative performance of low impact (WAR < 1),
and underestimates the relative performance of high
impact (WAR > 4) players on team performance.17

The difference between WAR+ and WAR can be
used to evaluate players on the basis of their contri-
bution to team performance through their impact on

17One way in which this result could manifest itself is if
low/high WAR players tend to accrue a disproportionate share
of their WAR during non-pivotal/pivotal game situations.

their teammates. In network statistics, this is what is
called the “net-degree” for each node.

pcWARint =
∑
i:i /= j

wjifitλn −
∑
j:j /= i

wijfjtλn

︸ ︷︷ ︸
“Net−degree"

(15)

In keeping with our terminology above, we instead
refer to it as “player complementarity wins-above-
replacement,” or pcWAR. In Fig. 7, we plot the
pcWAR for all player-season combinations in our
dataset relative to a player’s WAR on an fWAR and
bWARbasis. Notice that summing a player’spcWAR
and WAR reproduces our WAR+ metric, such that
adding the x-axis and y-axis coordinates for each
player-season in this figure provides a sense of his
true value to his team.

The conventional wisdom that good players make
their teammates better is confirmed by our analysis
of pcWAR, as Fig. 7 demonstrates a strong positive
correlation exists between pcWAR and WAR for all
player-season combinations in our sample. The ver-
tical lines in the figure correspond to thresholds for
WAR used by FanGraphs to distinguish Good from
Star players (WAR = 4) and Scrub from Role players
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Fig. 6. Scatter plot of competing measures of wins-above-replacement (Fangraphs (fWAR) - panel A, Baseball-Reference (bWAR - panel
B) against our WAR− and WAR+ metrics for MLB players spanning the 1998-2016 seasons. Solid lines in each graph correspond with
45 degree lines, while the vertical lines denote threshold values from Fangraphs for Scrub/Role (WAR = 1) and Good/Star (fWAR = 4)
players.
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Fig. 7. Scatter plot of competing measures of wins-above-
replacement (Fangraphs (fWAR) - panel A, Baseball-Reference
(bWAR) - panel B) against our player complementarity WAR
(pcWAR) metric for MLB players spanning the 1998-2016 sea-
sons. Vertical lines denote threshold values from Fangraphs for
Scrub/Role (WAR = 1) and Good/Star (WAR = 4) players.

(WAR = 1). Star players tend to add anywhere from
about 0 to 1.5 wins to their team through their indi-
rect impact on the performance of their teammates,
whereas Scrub players tend to add from about 0 to 0.5
losses to their team. In between, there exists consid-
erable variation with players contributing from -0.5
to 0.5 wins.

The impact of Star players on their teammates
likely comes through so strongly in our analysis
because they are among the most talented; and, there-
fore, have skill sets that are just naturally likely to be
more complementary to others on the team in a vari-
ety of ways. We show below, however, that even still
there exists a considerable amount of diversity across
these players in how much this is the case. Part of the
reason for this likely reflects the team-related aspects
of complementarity, i.e. the player is just a bad fit

for the team as a whole, but part also boils down to
the player’s ability (or willingness) to adapt to his
teammates.

Figure 8 ranks all active players through the 2016
season on the basis of their career average pcWAR
values.18 The left-hand panel of the figure shows
the top 25% of players on this dimension, while the
right-hand panel shows the bottom 25%. Many of
the top players in the game dominate our leader-
board, with Mike Trout the undisputed champion in
this regard, averaging over one-half win of additional
value over the course of his career. While our esti-
mates for pcWAR may seem small at first glance in
terms of win value, they are of a non-trivial economic
value. With a team win valued at roughly $6 million
in MLB, the value of team synergy alone for some of
the game’s best players is just as high according to
our pcWAR metric as what WAR would assign to a
typical role player on the team (Cameron, 2014). In
fact, even a player whose WAR was 0 and pcWAR
was as low as 0.1 would still be worth paying the
MLB minimum salary.

The figure also breaks down pcWAR into sepa-
rate components due solely to characteristics of the
player (e.g. the contributions from the “character”
factor of our model) versus other contextual factors
related to the team (e.g. the contributions from the
“team player” factor of our model). The former com-
ponent of pcWAR is potentially of value for teams
looking to alter their synergy profile through trades
or free agency, as it strips out any previous organi-
zational effects. For example, a common criticism
of general managers of the consideration of lead-
ership qualities in the evaluation of another team’s
player is that it is difficult to ascertain how much of a
player’s past performance is the result of his previous
team environment versus some innate ability (Olney,
2018). Our method allows for a disentangling of such
effects.

At the player level, team synergy is also much
more persistent, with pcWAR lending itself more
easily to prediction than tcWAR. This can be seen
in Table 4 in the coefficients of the regressions of the
current season’s pcWAR on the talent level of the
player (e.g. Star, Role, Scrub) based on his previous
season’s WAR and its interaction with the previous
season’s pcWAR value. The persistence of a player’s
complementarity effects is increasing in past perfor-

18To avoid populating our rankings with players with minimal
playing experience, we additionally require that they fall in the top
half of the sample in terms of their average appearance weight.
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Fig. 8. Ranking of active MLB players through the 2016 season on their career average pcWAR values broken down into contributions from
player- and team-specific components and constructed from competing measures of wins-above-replacement (Fangraphs (fWAR) - panel
A, Baseball-Reference (bWAR - panel B). Left-hand side of each panel displays the top 25% of rankings, while the right-hand side shows
the bottom 25% of rankings.
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mance, with Star players exhibiting nearly five times
the persistence as Scrub players and about 1.5 times
as much as Role players. This suggests that player
complementarity expectations based on past perfor-
mance may be an appropriate guide for teams to judge
their own players.

Just as we did with teams, we can use these
regressions to define “player complementarity wins-
above-expected” by taking their residuals and
summing them over a player’s career. Figure 9 plots
the resulting measure against each player’s average of
his previous seasons’WAR values. The vertical lines
in the figure correspond to the FanGraphs thresh-
olds, while the horizontal lines are used to highlight
the extremes of the distribution. Each dot in the fig-
ure then represents a player’s career complementarity
wins-above-expected, with notable examples high-
lighted in order to identify players in our sample who
have exceeded or fallen short of expectations on this
dimension.

The good players make their teammates better
paradigm is also highly evident in this figure, but
the proximity (or lack thereof) between certain play-
ers also draws out some interesting comparisons.
For instance, the early career of Clayton Kershaw
and late career of Randy Johnson look very similar
on this dimension whether they are measured on an
fWAR or bWAR basis. In contrast, Derek Jeter rep-
resents an extreme outlier in this analysis for a Star
player with a career complementarity wins-above-
expected that is both negative and from four to six
wins less than Adrian Beltre, the career leader during
our sample period. There are also a handful of Role
players according to WAR with career complemen-
tarity wins-above-expected on par with the top 10
Star players in our sample (e.g. Mariano Rivera, Car-
los Beltran, and Jim Thome), and a handful of Star
players that show negative career complementarity
wins-above-expected (e.g. Jose Abreu, Albert Belle,
and Derek Jeter) on an fWAR or bWAR basis.

5. Complementarity and roster construction

Our aim in this section is to develop some addi-
tional convenient “rules-of-thumb” for MLB general
managers to follow when considering team syn-
ergy in roster construction. We first explore the
drivers of player complementarity by constructing
age-position profiles for pcWAR conditional on
player and team characteristics. These profiles then
allow us to rank players on the dimension of their
unobserved Intangibles. Because salary negotiation

plays such an important role in roster construction,
this leads naturally then to a discussion of the value
of the observed and unobserved aspects of player
complementarity.

5.1. Age-position profiles and intangibles

We construct our conditional average age-position
profiles for player complementarity by extending
the pcWAR dynamic regressions discussed above
according to,

pcWARit

= 
1(1 ≤ WARt−1 < 4) + 
2(WARt−1 ≥ 4)+
ρ1 (pcWARit−1 ∗ (WARt−1 < 1)) +
ρ2 (pcWARit−1 ∗ (1 ≤ WARt−1 < 4)) +
ρ3 (pcWARit−1 ∗ (WARt−1 ≥ 4)) +
∑
p

γppospit +
∑
p

θp(pospit ∗ ageit)+

∑
p

ψp(pospit ∗ age2
it) +

∑
p

τp(pospit ∗ age3
it)+

∑
p

ωp(pospit ∗ age4
it) +

∑
k

δkXkit

+
∑
h

φhZhit + ξit, (16)

where pos is an indicator variable for a player’s pri-
mary defensive position, including the designated
hitter and a “utility” category for players who tend
to play multiple defensive positions, age is a player’s
age, X is a vector of player characteristics including
WAR and controls for MLB and team games played,
and Z is a vector of league, team, and manager indi-
cator variables. The estimated coefficients of these
regressions are summarized in Table 4.

Figure 10 plots our conditional average age-
position pcWAR profiles with 95% confidence
intervals on an fWAR and bWAR basis. The con-
ventional wisdom that older players make for better
teammates is certainly consistent with these profiles,
as they tend to slope upward with age on average
across almost all positions. However, we want to
caution anyone from taking the results from this
regression as “causal” estimates of age on team syn-
ergy, as the estimated coefficient is most likely also
confounding a selection effect. In other words, hav-
ing good team synergy may make it more likely for
a player to remain in the game for longer.
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Table 4

pcWAR Regressions

FanGraphs Baseball-Reference
(1) (2) (1) (2)

pcWARt pcWARt pcWARt pcWARt

pcWARt−1 ∗ (WARt−1 < 1) 0.128 0.044 0.104 0.045
(0.015) (0.008) (0.013) (0.007)

pcWARt−1 ∗ (1 ≤ WARt−1 < 4) 0.375 0.168 0.302 0.161
(0.022) (0.013) (0.024) (0.013)

pcWARt−1 ∗ (WARt−1 ≥ 4) 0.576 0.244 0.521 0.211
(0.041) (0.019) (0.046) (0.020)

WARt−1 < 1 –0.043 –0.043
(0.001) (0.002)

1 ≤ WARt−1 < 4 –0.020 –0.037 –0.029 –0.046
(0.002) (0.002) (0.003) (0.002)

WARt−1 ≥ 4 –0.039 –0.117 –0.049 –0.133
(0.014) (0.008) (0.018) (0.009)

WARt 0.094 0.108
(0.001)) (0.001)

MLB Experiencet -5.67e-5 -7.16e-5
(4.13e-6) (4.11e-6)

Team Experiencet -5.79e-5 -7.18e-5
(5.98e-6) (7.26e-6)

League Fixed Effects X X
Team Fixed Effects X X
Manager Fixed Effects X X
Age-Position Interactions X X

R2 0.214 0.795 0.147 0.815

Players 4,112 4,112 4,112 4,112
Observations 20,735 20,735 20,735 20,735

Bootstrapped bias-corrected and accelerated standard errors clustered on player shown in parentheses based
on 500 replications. Age-Position interactions include up to quartic terms in age. WARt−1 < 1 coefficient
is absorbed in the position indicators to prevent multicollinearity in specifications (2).

Some additional interesting patterns also emerge
from this analysis. For instance, the slopes of these
profiles tend to vary by position. Second basemen
and catchers tend to have profiles that are less steep
than other infielders; relief pitchers tend to have
steeper profiles than starting pitchers; and the pro-
files of designated hitters and utility players tend to
be among the steepest that we estimate. The level of
the profiles also varies depending on whether or not
they were constructed on an fWAR or bWAR basis,
with complementarity effects generally more positive
across all positions and ages when measured on the
former.

By conditioning these regressions on so many
observable dimensions, we can also isolate the player
Intangibles of team synergy. In other words, we can
measure the individual contributions to team wins

through player complementarities that are not asso-
ciated with any covariates in the above regressions.
We use the residuals, ξit , from these regressions to
rank active players through the 2016 season on their
career average Intangibles. Positive residuals capture
players whose contributions to team synergy exceed
their conditional age-position profile, whereas nega-
tive residuals correspond to players who fall short of
their profile.

Figure 11 displays our Intangibles rankings, where
the left-hand panel shows the top 25% of players on
this dimension and the right-hand panel shows the
bottom 25%.19 Our top players are now very different

19As in Fig. 8, to avoid populating our rankings with players
with minimal playing experience, we additionally require that they
fall in the top half of the sample in terms of their average appearance
weight.
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Fig. 9. Scatter plot of individual players’ career complementarity wins-above-expected against the average of his previous season’s wins-
above-replacement over the 1998-2016 seasons for competing measures (Fangraphs (fWAR) - panel A, Baseball-Reference (bWAR) - panel
B). Vertical lines denote threshold values from Fangraphs for Scrub/Role (WAR = 1) and Good/Star (WAR = 4) players, with outlying
player values referred to in the text labeled in each panel.
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Fig. 10. Age-position player complementarity profiles based on our pcWARmetric as constructed from competing measures of wins-above-
replacement (Fangraphs (fWAR) - panel A, Baseball-Reference (bWAR) - panel B). Bootstrapped bias-corrected and accelerated 95%
confidence intervals clustered on player observations are shown in gray, with solid lines corresponding to average marginal effects over ages
from 20-40 for each position.

than who they were for pcWAR, with the exception
of Joey Votto who shows up in the top four of both
rankings. Kevin Keirmaier is the undisputed active
leader on this dimension of team synergy, with an

average contribution of a little more than 0.1 wins
coming from his Intangibles.

At this point, a word of caution is warranted. Many
of the players who we find have negative Intangibles
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Fig. 11. Ranking of active MLB players through the 2016 season on their career average Intangibles values constructed from competing
measures of wins-above-replacement (Fangraphs (fWAR) - panel A, Baseball-Reference (bWAR - panel B). Left-hand side of each panel
displays the top 25% of rankings, while the right-hand side shows the bottom 25% of rankings.
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are the same type of player that any MLB franchise
would be happy to build their team around. In other
words, depending on a player’s position, his age, and
current manager, etc., he could still have a strong
positive influence on his teammates even despite a
negative Intangibles measure. A more appropriate
interpretation of the rankings in Fig. 11 is then that
they provide an indication of those players who have
a knack for exceeding expectations on the dimen-
sion of team synergy. We call this the “David Ross
Effect.”

The esteem with which the 2016 World Champion
Chicago Cubs held their teammate David Ross and
his contribution to their success has by now become
well known. The ability of a team to identify players
like him is, therefore, a potential source of compet-
itive advantage that is made possible by our player
complementarity metrics. What makes David Ross
uniquely suited to our analysis is that, as a back-up
catcher, hisWAR defines him as a role player; but, as
a teammate, he is routinely characterized as someone
who makes everyone around him better. We are able
to provide evidence to support these claims with our
metrics.

Figure 12 plots the pcWAR and Intangibles val-
ues for David Ross through the 2016 season against
his WAR values. More than one labeled instance of
a season occurs whenever he was traded. For most of
his career, and across several different teams, David
Ross exhibited the sort of beneficial relationship with
his teammates that his reputation attests to, evidenced
by his mostly positive pcWAR values. Furthermore,
his Intangibles reveal a player who tended to out-
perform his age-position profile even at low levels of
WAR and with limited playing time.

Players such as David Ross are true “diamonds-
in-the-rough” according to our analysis, with their
full impact on team performance likely to fly under
the radar according to traditional performance met-
rics. Given how rare that we find that this type of
player is in our analysis, one might expect that MLB
teams would be willing to pay a premium for their ser-
vices. For example, others have already documented
the importance of wins-above-replacement in pric-
ing player services in MLB.20 For this reason, we
might expect ourpcWARmetric to also be priced into
player compensation. Whether or not this extends to
a player’s Intangibles, which are much more difficult
to observe than age, position, and the other variables
that we condition on, is unclear.

20See Cameron (2014) and Paine (2015).

5.2. Putting a price on complementarity

To see how MLB teams have historically valued
player complementarity, we run player-level regres-
sions of log annual salary adjusted for inflation (using
the U.S. Consumer Price Index) as our dependent
variable on a player’s career WAR and pcWAR

through the previous season.21 This regression takes
the following form,

log(salaryit)

=
∑
c

γc(FAcit

t−1∑
n=1

WARin) +
∑
c

βc(FAcit

t−1∑
n=1

pcWARin)+

∑
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θcFAcit +
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θc(FAcit ∗ teamExpit−1) +
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ρppospit+

∑
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φp(pospit ∗ ageit) +
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λp(pospit ∗mlbExpit−1)+

∑
p

τp(pospit ∗mlbExp2
it−1) + αi + εit , (17)

where pos is an indicator variable for a players’ pri-
mary defensive position, including the designated
hitter and a “utility” category for players who tend
to play multiple defensive positions; age is a player’s
age on January 1st of the year in which season t
occurs; teamExp indicates the number of seasons the
player has appeared in with his current team prior to
the current season; mlbExp is the number of MLB
games in which the player has appeared through the
previous season; FA is an indicator variable which
takes on one of three values denoting whether a
player is in the pre-arbitration (0–2 years of service),
arbitration-eligible (3–5 years), or free agent-eligible
(6+ years) stage of his career; and αi is a player fixed
effect.

The use of a player fixed effect focuses our
analysis on the variation “within” player salary
histories. For this reason, we restrict our sample of
players to only those with careers that began at some
point during the 1998-2016 seasons. As we will soon
explain, the inclusion of the FA indicator variable
serves to capture important differences in how player
salaries are determined throughout a career based on
the labor market structure of MLB and changes in
the bargaining power of players according to service
time.22 We interact this variable with teamExp to

21The functional form of these regressions is similar in spirit
to the wage determination model presented in Mincer (1974).

22A year of service is defined as 172 days during a season on
an MLB roster. Because we don’t observe this number directly, we
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Fig. 12. Scatter plot of pcWAR values against competing measures of wins-above-replacement (Fangraphs (fWAR) - panel A, Baseball-
Reference (bWAR - panel B) for David Ross in each season of his career. More than one value appears for seasons where David Ross was
traded to another team in-season.

approximate these thresholds by simply counting the number of
seasons in which each player appears in our sample. This means
it is possible that some arbitration-eligible players are counted as
pre-arbitration or as free agent-eligible. However, our regression

results are qualitatively similar when we use game appearances as
a proxy for whether a player completed a year of service in this
calculation.
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then capture the impacts of trades and other reasons
for team changes on service time and player salaries.
The inclusion of pos and its interaction with age and
experience then serves to capture any nonlinear vari-
ation in how players’ career earnings trajectories vary
across defensive positions.

We are primarily interested in obtaining esti-
mates for γ and β, the coefficients on career WAR
and pcWAR, respectively. Interacting these vari-
ables with our service time-status indicator allows
us to estimate how these skills may be differentially
priced over a player’s career. As the first column of
Table 5 shows, cumulativeWAR is indeed priced dif-
ferentially throughout a player’s career. During the
pre-arbitration stage of a player’s career, a one win-
above-replacement increase in career WAR through
the previous season leads, on average, to a statistically
significant earnings increase in the current season of
10-12 percent. For a player in the arbitration-eligible
portion of his career, this increases slightly to 14
percent. Finally, players with six or more years of
MLB service time see an average increase in earn-
ings of 4-5 percent for each additional unit of career
wins-above-replacement.

To understand the pricing pattern demonstrated
in this result, it is useful to consider the bargain-
ing position of the player. The pre-arbitration period
corresponds to a player’s first three years of service
time, measured by days spent on the 25-man roster
of any MLB team. Unless released or traded, players
are bound to the team that drafted them during this
period. The vast majority of these players earn either
a minimum salary determined by collective bargain-
ing between MLB and the MLB Players Association
or a somewhat higher salary on a season-by-season
basis that is at the discretion of the team. Perfor-
mance and salary are, therefore, likely to be only
somewhat correlated during this time. Furthermore,
even if a player were to sign a long-term contract
during this time, they lack the bargaining power they
would have if their services were being priced by the
entire league, an economic situation referred to as
monopsony.

If a player still has not signed a long-term contract
after three years of service, they become eligi-
ble for salary arbitration, whereby the player and
team submit proposed salaries to an independent
third party that makes a binding determination on
the player’s salary, largely on the basis of similar
player performances.23 Though players still have lim-
ited bargaining power during this period, the slight
increase in the return to cumulative WAR that we

observe is consistent with their improved bargaining
position afforded by the arbitration process. When
a player has not signed a long-term contract after
accruing six or more years of MLB service time, he
becomes eligible to sign with any team as a free agent.

Once a player enters free agency, it is much more
common for him to sign a multi-year contract. Multi-
year contracts add a further complication to our
regression, since their pricing reflects a weighted
combination of both past and expected future per-
formances. This could largely explain the smaller
coefficient that we find on cumulative fWAR dur-
ing free agency. However, the competitive landscape
of free agency may also force teams to consider a
broader range of factors as they submit contract offers
to players. In fact, our estimated regression coeffi-
cients on cumulative pcWAR suggest that a player’s
complementary skills are perhaps one of the addi-
tional things considered.

The specifications marked (1) in Table 5 show
that cumulative pcWAR is also priced differentially
throughout a player’s career. The effect on earn-
ings of a one win-above replacement increase in
career pcWAR is large, negative, and statistically
significant (with the exception of pre-arbitration play-
ers on a bWAR basis) in the pre-arbitration and
arbitration-eligible periods. This suggests that the
lack of competitive pressure in these years allows
teams to avoid compensating players for their com-
plementary skills. However, this effect reverses once
a player becomes eligible for free agency, as the same
increase in pcWAR now leads to a small salary gain
that is only statistically significant on anfWAR basis.

It may seem counterintuitive that the marginal
return to a unit increase in cumulative pcWAR is
roughly on par or higher than that for a unit increase
in cumulativeWAR during free agency. However, as
a relatively scarce resource (its standard deviation is
nearly 15 times smaller than cumulative fWAR or
bWAR), it makes sense that cumulative pcWAR is
priced as such on the margin. That said, it could also
just as easily be the case that what we find reflects
a team’s pricing of some of pcWAR’s underlying
correlates. For instance, if MLB teams follow the con-
ventional wisdom that high-performing players will

23While three years is the general cut-off for salary arbitration,
players that are in the top 22% of service time among those with
more than two but less than three years of service become eligible
for arbitration a year early. This “Super Two” cutoff is designed
to prevent teams from delaying a player’s call up from the minor
leagues by a few weeks to avoid salary arbitration (FanGraphs,
2017).
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Table 5

Player Salary Regressions

FanGraphs Baseball-Reference
(1) (2) (1) (2)

log(Salary) log(Salary) log(Salary) log(Salary)

FA0∗Career WAR 0.10*** 0.09*** 0.12*** 0.10***
(0.02) (0.01) (0.02) (0.01)

FA1∗Career WAR 0.14*** 0.13*** 0.14*** 0.13***
(0.01) (0.01) (0.01) (0.01)

FA2∗Career WAR 0.04*** 0.02** 0.05*** 0.02***
(0.01) (0.01) (0.01) (0.01)

FA0∗Career pcWAR -0.20 -0.31**
(0.16) (0.14)

FA1∗Career pcWAR -0.50*** -0.54***
(0.06) (0.05)

FA2∗Career pcWAR 0.12** 0.01
(0.06) (0.05)

FA1∗Career (pcWAR− ξ) -0.46*** -0.44***
(0.07) (0.07)

FA2∗Career (pcWAR− ξ) 0.47*** 0.31***
(0.07) (0.06)

FA1∗Career ξ -0.31*** -0.38***
(0.09) (0.08)

FA2∗Career ξ -0.35*** -0.37***
(0.08) (0.07)

Contract Status Indicator (FA) X X X X
FA-Team Experience Interactions X X X X
Position Indicator X X X X
Age-Position Interactions X X X X
Position-MLB Experience Interactions X X X X
Position-MLB Experience2 Interactions X X X X
Player Fixed Effects X X X X

R2 0.86 0.86 0.86 0.86

Players 4,117 4,117 4,117 4,117
Observations 18,114 18,114 18,114 18,114

*** p<0.01, ** p<0.05, * p<0.1
Select variable estimates reported. Specifications include a contract status indicator (FA) and its interaction
with years with current team along with a position indicator and its interactions with age, games of MLB
experience, and experience squared in addition to player fixed effects. FA0 interactions with pcWAR−
ξ and ξ are absorbed to prevent multicollinearity in specifications (2). Bootstrapped bias-corrected and
accelerated standard errors clustered on player shown in parentheses based on 500 replications.

have the biggest synergy effects, they may simply pay
more for individuals who they expect will rank highly
in the future on metrics such as fWAR and bWAR.
The coefficient on cumulative pcWAR would then
reflect this fact.

To investigate this possibility, we run an alter-
native earnings regression that instead considers
separately our Intangibles measure (i.e. ξ) and the
observed component of pcWAR (i.e. pcWAR−
ξ). These results, marked as specifications (2) in

Table 5, show that the two individual components
of cumulative pcWAR are indeed priced differently
in free agency (i.e. their coefficients have opposite
signs) and in a similar fashion across fWAR and
bWAR. A player with positive career Intangibles
would be undervalued relative to his contribution
to the team; and, conversely a player with negative
career Intangibles would be overvalued. In contrast,
the observed component of cumulative pcWAR for
either player would still be appropriately valued. This
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result suggests an important application for our met-
rics. Though teams appear to value their players’
complementary skills, they clearly “misprice” their
Intangibles. This is most likely because they are not
easily observed and, therefore, difficult to evaluate in
an efficient enough manner in which to price them.

6. Conclusion

In this paper, we outlined a methodology for
quantifying how a player may influence his team’s
performance outside of his direct contribution mea-
sured by advanced individual performance metrics
like wins-above-replacement. We introduced in the
process WAR−, WAR+, tcWAR, and pcWAR as
new advanced metrics that quantify a team’s synergy,
or the indirect effects of players on their teammates
and team performance, while providing an intuitive
analog to FanGraph’s and Baseball-Reference’s well-
documented fWAR and bWAR metrics. With these
new metrics, we then outlined the importance of
accounting for player interactions in explaining team
performance differentials unexplained by WAR.

With tcWAR, we further demonstrated that team
synergy is difficult to preserve, making it an aspect
of team performance that must be closely moni-
tored and constantly managed. We also examined
the organizational aspects of team synergy, ranking
organizations on their ability to reinforce positive or
minimize negative interactions between teammates,
as well as preserve team synergy over time. Fur-
thermore, we showed how tcWAR’s mean-reverting
properties could be used to improve upon PECOTA
pre-season projections of team wins.

At the player level, we found more persistence
in the aspects of player complementarity that con-
tribute to team synergy, particularly for star players,
and we documented how pcWAR could be used
to guide team decision-making for its own players
and in trades and free agency by separating out the
player-specific and team-related elements of synergy.
We also developed convenient “rules-of-thumb” for
general managers to follow when considering team
synergy in roster construction, demonstrating that
star and older players tend to make for good team-
mates and that the rate of development of players’
complementary skills varies by position.

By conditioning on a large set of observable team
and player characteristics, we were also able to iso-
late a player’s Intangibles, defined by whether or not
their pcWAR value exceeds or falls short of these

characteristics. This allowed us to quantify what we
call the “David Ross Effect,” so named after the
back-up catcher who consistently outperformed his
observable characteristics for much of his career. Fur-
thermore, we demonstrated that MLB teams have in
the past placed too low of a value on the Intangibles
aspect of team synergy than the value of a win would
suggest is appropriate.

These results paint a clear picture of the role of
team synergy in MLB. Despite having a large influ-
ence on team outcomes, our analysis suggests that
most of the predictable component of this factor year-
to-year is concentrated in the star players that are
already heavily sought after in the free agent market.
Alternatively, the players whose intangibles are likely
to be underpriced are also those whose intangibles
are also less likely to be persistent from year-to-year.
Given these facts, it’s understandable why general
managers in MLB are reluctant to place too much
of an emphasis on the indirect aspects of player per-
formance (Olney, 2018). That said, our analysis also
casts doubt on a simple strategy of stockpiling star
players as being an effective way to maintain a team’s
production in favor of a more nuanced view of team
performance.

Our efforts largely leveraged the playing time of
individual players to explain teammate interactions
and their impact on team performance. As a con-
sequence, what is still left to understand is how
to separately isolate the effect of players on their
teammates and team performance through their off-
the-field interactions that often get characterized as
“chemistry.” Insofar as the latter are also reflected
in a team winning more games than its collective
individual performances would suggest, then they
may also be captured by our methodology. While
we recognize that our focus on the complementar-
ity of player skill sets may not be how others view
chemistry, it is, however, consistent with the conven-
tional wisdom that chemistry is anything that makes
teams better than they otherwise would be as purely
substitutable individuals. In future work, we plan to
continue to push the envelope with these methods in
order to better capture these other aspects of team
synergy as well.
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7. Appendix

7.1. Data

Our data comprise 26,170 player-season observa-
tions consisting of 5,199 players over the 1998-2016
seasons. Nearly all players who participated in an
MLB game during the 1998-2016 seasons appear in
our analysis. The only exceptions are players who
appeared in a game but failed to record an at-bat or
an out. WAR data come from the online databases
at fangraphs.com and baseball-reference.com, and
lineup information was constructed using the game-
by-game data maintained at chadwick-bureau.com.
PECOTA projections were taken from baseball-
prospectus.com. All additional player, team, and
performance information come from the databases
maintained by Sean Lahman at seanlahman.com.
While the Lahman database allows us to observe
performance data by team for players that change
teams within a season, FanGraphs only publishes
fWAR at the season level of observation. In these
cases, we divide a player’s season fWAR propor-
tionally by his appearances for his respective teams,
following the appearance weighting described in
the main text. Thus, our dataset includes multiple
observations within seasons for such players corre-
sponding to each team on which they appear. This
is not a problem for Baseball-Reference’s bWAR
data.

The regression analysis presented in sections 4.1
and 4.3 uses several additional covariates that we con-
struct from FanGraphs and the Lahman database. Our
position indicators correspond to the position that
the Lahman database indicates as the primary posi-
tion for each player. Age is simply defined as the
difference between the season year and the player’s
birth year. Team and league indicators are pulled
directly from the Lahman database, while we gen-
erate running totals for a players’ appearances in
MLB and with their current team to control for
experience and team tenure. Finally, manager indica-
tors correspond to each team’s manager on opening
day, thus ignoring managerial changes during the
season.

7.2. Estimating the spatial factor model

In matrix form, a spatial factor model can be writ-
ten as

Y = �F
+�ε (18)

where Y is an IT ×N matrix of outcomes, � is an
IT × IT matrix of spatiotemporal weights, F is an
IT ×K matrix of common factors, 
 is an K ×N

matrix of factor loadings, and ε is an IT ×Nmatrix of
idiosyncratic determinants of Y . This equation can be
viewed as the reduced form of a panel spatial autore-
gression, or SAR. To see this, consider the following
representation of a panel SAR

Y = ρAY + υ (19)

where Y is a IT ×N matrix of outcomes,A is a IT ×
IT network matrix, ρ is a scalar parameter, and υ
is an IT × IT matrix of residuals. Re-arranging the
elements of equation 19, it can be rewritten

Y = (I − ρA)−1υ.

Defining� ≡ (I − ρA)−1 and assuming the approxi-
mate common factor structureυ = F
+ ε, Equation
19 is shown to be equivalent to Equation 18.

Estimation then proceeds in two stages. In the
first stage, we obtain an estimate of ρ by maximum
likelihood after imposing that the rows of the net-
work matrix A sum to 1 and restricting its value to
fall between -1 and 1. Combined, these normaliza-
tions satisfy the sufficient condition for � to ensure
that (I − ρA) be strictly diagonally dominant, i.e.
|1 − ρAii| ≥ ∑

j /= i

∣∣−ρAij∣∣ . Given our estimate of
ρ, we then proceed with spatial principal components
analysis in the second stage assuming two common
factors and appropriate scale and sign normalizations
on
. For the latter, we scale the factor loadings such
that 

′ = I; while for the former, we restrict the
non-unit vector rows of 
 to sum to zero.

Factor loading restrictions are handled in esti-
mation by the expectation-maximization (EM)
algorithm developed in Dempster et al. (1977),
Shumway and Stoffer (1982), and Watson and Engle
(1983) extended to include factor loading restrictions
by Reis and Watson (2010). To get a sense of how
the EM algorithm operates in our case, consider the
following: If the factors were known, then the fac-
tor loadings could be consistently estimated by a
weighted least squares (WLS) regression of the form


̂ = (F ′�′�F )−1(F ′�′Y ). (20)

Similarly, if the factor loadings were known, the fac-
tors are consistently estimated by

F̂ = (�−1Y
′)(

′)−1. (21)

Given an initial estimate of 
 or F and a scale nor-
malization, the EM algorithm iterates between these
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two WLS regressions until the sum of squared errors
for Equation 18 is minimized, imposing the factor
loading restrictions at each iteration.

While the approximate factor structure we assume
here is necessary for the EM algorithm to run, we
can still use it to obtain the exact factor structure of
our model by setting a convergence criterion which

brings the sum of squared errors arbitrarily close to
zero for a given number of common factors. This
is achieved quite easily with our two factor model
using a criterion which stops the algorithm when suc-
cessive differences in the sum of squared errors are
less than 1e−6.


