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An improvement to the baseball statistic
“Pythagorean Wins”

Jay Heumann∗

Abstract. This paper will introduce a new version of the commonly used “Pythagorean wins” statistic, which improves on
the traditional method by means of a mathematical adjustment. The new statistic is called “pairwise” Pythagorean wins, and
it is demonstrated, over a 30-year data set, to have a smaller overall root mean square error than the original Pythagorean
formula.
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1. Introduction

For decades, baseball statisticians have accepted
and made use of the idea, first introduced by Bill
James, that a team’s ratio of runs scored to runs
allowed, used in the proper formula, is a better
predictor of a team’s future performance than its win-
loss record. The idea as originally formulated (and
explained in (Pythagorean Theorem of Baseball n.d.),
among many other places) is roughly as follows: to
generate a prediction of a team’s winning percentage,
all we have to know is the number of runs the team has
scored (call that R) and allowed (call that r). Then the
predicted winning percentage can be computed using
the formula

P := R2

R2 + r2

This formula is usually called the Pythagorean for-
mula; the output P is called the Pythagorean winning
percentage; and often P is multiplied by the num-
ber of games a team has played to obtain a number
analogous to wins, called Pythagorean wins.

A team’s Pythagorean winning percentage is sup-
posed to represent the “true” probability that the team
will win a random game it plays. As a consequence,
Pythagorean wins are treated as the expected value
of the number of wins a team should have. Indeed,
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Pythagorean win-loss totals are often referred to as
“Expected W-L” for this exact reason. (Pythagorean
Theorem of Baseball n.d.) expressly claims that
“a team’s actual W-L record will approach the
Pythagorean Expected W-L record over time, not the
other way around”. This clearly follows from assum-
ing that Pythagorean wins are in fact the expected
values of teams’ win totals. Years of use have shown
that this basic concept is a very useful notion to ana-
lyze teams’ performances.

In the literature on this statistic—including
(Pythagorean Theorem of Baseball n.d.) itself, and
discussed more fully in (Davenport & Woolner
1999)—it is often pointed out that the original
Pythagorean formula admits room for improvement.
The most common claim is that, as a statistic, it is an
inaccurate predictor, frequently subject to error, and
it can be made more accurate by changing the expo-
nent in the formula from 2 to a different number. If the
exponent is kept constant, the “best” one is alleged to
be 1.83; in (Davenport & Woolner 1999), any number
between 1.8 and 1.9 is considered about the same as
any other, and sources such as (Major League Base-
ball n.d.) use the exponent 1.83. In addition, there are
other purported fixes that utilize a variable exponent
(we will not discuss those here).

The purpose of this paper is to point out an entirely
different way to improve the Pythagorean wins statis-
tic, one that applies to (at least) all versions of this
formula that have a fixed exponent. It is not, at its
heart, a statistical change, but instead a mathematical
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change. As it is usually computed, it is mathemati-
cally impossible for the Pythagorean wins statistic
to represent what it claims to represent: namely, the
expected value of teams’ win-loss records. It is quite
simple to show the mathematics behind this assertion;
however, it would appear from the current state of the
literature that this has never been remarked upon.

It is generally well-known among sports statisti-
cians that the Pythagorean formula is not meant to
be an exact expectation, but instead an approxima-
tion of an expectation, and one might think, in light
of the fact that this is already known, that the above
observation is redundant. However, the “correctness”
of the Pythagorean formula does at times seem to be
entrenched in the literature in a way that seems bizarre
for a formula known not to be entirely correct. There
have been efforts to expand the formula to sports
other than baseball—for only a few examples, see
(Cochran & Blackstock 2009) and (Hamilton 2011).
Another effort to enshrine the formula in the litera-
ture can be found in (Miller 2007), where the author
attempts to mathematically prove the correctness of
the Pythagorean formula given certain assumptions.
(This paper does not attempt to contradict Miller’s
theorem; in fact, the ideas in that paper are easily
reconcilable with the ideas in this one.)

Using a revised formula that is more in line with the
mathematical notion of an expectation should have
less overall error than the original Pythagorean for-
mula. This paper offers such a formula, called the
pairwise Pythagorean formula for reasons that will
be made clear below. It is extremely similar to the
traditional Pythagorean formula but does not fail the
basic expectation property that the traditional for-
mula does. This fact alone does not guarantee greater
overall accuracy than the original—that claim can
only be evaluated using data. We will do exactly
this below; over a sample of 60 seasons, switching
to a pairwise method does in fact show less error
(measured by root mean square) than the original
formula.

The organization of this paper is as follows. In
Section 2, we discuss the mathematics behind the
change in the formula. In Section 3, we introduce the
pairwise Pythagorean formula. In Section 4, we use
the new formula, with two different fixed exponents,
to generate new “expected” win totals for a sample
of teams throughout history (grouped by league and
season)—first with one specific case to demonstrate
the formula’s use, then summary results from all 60
seasons in the data set. In Section 5, we conclude by
briefly discussing a possible future synthesis of the

pairwise method introduced here with other previ-
ous attempts to improve the Pythagorean formula; the
two are not mutually exclusive! Finally, the Appendix
contains team-by-team data for five specific seasons
within the total data set, including comparisons with
the traditional Pythagorean formulae.

Before continuing, let us fix some notation. The
variable R will always represent runs scored; the vari-
able r will represent runs allowed. The variable P

will represent the percentage that is the output of a
traditional Pythagorean formula. Variables i, j, and
k will always be indices—for example, Ri will mean
the total runs scored by team i. The variable a will
always refer to the exponent used in the Pythagorean
formula; in this paper, we will only consider versions
of the formula where all percentages are computed
using the same exponent. We will define more nota-
tion below as needed, but all of the above are used
frequently throughout, and always in the same way.
Finally, throughout this paper, all random variables
are discrete.

2. Basic properties of expectations

Before going into the specifics of the Pythagorean
wins statistic, we first present some of the basic prop-
erties of an expectation. We will then see below that
the Pythagorean formula does not adhere to these
properties.

The definition of an expectation for a (discrete)
random variable X is

E(X) :=
∑

y

yPr(X = y)

where the sum is over all values y that X may take.
One of the properties that follows from this definition
if that if X and Y are any two random variables, then

E(X + Y ) = E(X) + E(Y )

and it also follows immediately from this that the
expectation of any finite sum of random variables
must necessarily be the sum of their expectations.

The Pythagorean wins statistic is assumed to be
an expectation by the very nature of the formula. It
makes the assumption that the percentage produced
by the formula is the probability that a team will win
any one game it plays. (This is obviously just a sim-
plification for estimation purposes.) Once we assume
this, the next step is treating each game as a random
variable. Then, by the above property, the expectation
of total wins over an entire season is the sum of the



J. Heumann / An improvement to the baseball statistic “Pythagorean Wins” 51

expectations of each game—which, since each game
can only end in a win (1) or loss (0), are all equal to the
constant percentage produced by the formula. This is
why we multiply the percentage by the total num-
ber of games to produce the number of Pythagorean
wins.

One key observation, and one very relevant to the
discussion of the Pythagorean formula, is that the
random variables being summed need not be inde-
pendent for the above property to hold. For example,
if we have three random variables X, Y , Z whose sum
is a fixed constant C, then we must have

E(X) + E(Y ) + E(Z)

= E(X + Y + Z) = E(C) = C

where obviously the last equality holds because every
constant is equal to its own expectation.

The Pythagorean formula fails to adhere to this
property. In particular, it fails when we consider the
Pythagorean win totals of all teams in a given league.
The expectation of the sum of their win totals must
be a constant (the number of total games played in
the entire league); but the sum of the Pythagorean
win totals need not be equal to that same constant. A
“toy” example is shown below.

2.1. An example using pythagorean wins

Suppose we have three teams, which for simplicity
we will just call 1, 2, and 3. They play a round-robin
of one game apiece against each other team, so each
team plays 2 games total. Suppose that the results are
as follows: Team 1 beats Team 2 by a score of 1-0;
Team 1 beats Team 3 by a score of 2-1; and Team 3
beats Team 2 by a score of 3-1. That means we have:

R1 = 3, r1 = 1

R2 = 1, r2 = 4

R3 = 4, r3 = 3

We can use these numbers to compute the Pythag-
orean winning percentage of each team:

P1 = 32

32 + 12 = 9

10

P2 = 12

12 + 42 = 1

17

P3 = 42

42 + 32 = 16

25

Since each game results in one win and one loss for
each team playing, the average winning percentage is
supposed to be one-half, or .500. That means that we
should expect the three fractions above to add up to
3/2. However, the actual sum is 1359

850 .
If we want to consider Pythagorean wins instead

of percentages, all we would do is multiply each of
those fractions by 2 before adding them. Since we are
multiplying by the same constant, this is the same as
if we multiplied the final answer by 2, which clearly
shows that the total number of Pythagorean wins for
the three teams is equal to 1359

425 . Since this fraction
is greater than 3, the Pythagorean wins statistic has
claimed that the three teams “should have won” more
games than were actually played between all of them.

Remark 1. This was a simplified example to illustrate
the math, but does it carry over into real-life compu-
tations for large samples? The data in the Appendix
confirm very clearly that it does. In three out of five
cases, the Pythagorean formula claims that the teams
“should have won” more games than were played,
and in the other two, it claims that they “should have
won” fewer. It never actually recovers the exact total
number of games played.

2.2. The mathematics behind the example

The example illustrates the following mathemat-
ical dilemma: suppose we are given any amount of
ordered pairs

(R1, r1), (R2, r2), . . . (RN, rN )

and we are told that they are related in the following
way:

R1 + R2 + . . . + RN = r1 + r2 + . . . + rN

This is clearly the case if these ordered pairs rep-
resent the runs scored and runs allowed totals of
baseball teams playing in the same league, because
whenever one team scores a run it must be allowed
by someone else, though it may be uncertain which
other team allowed the run.

The problem, clearly shown in the example, is that
when we fix an exponent a /= 0 and take a sum of the
form
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N∑
j=1

Ra
j

Ra
j + ra

j

we have no idea, a priori, what that sum will be—but
for the Pythagorean wins statistic to make sense, it
should be N/2.

We of course have no assurance that this will ever
be the case, and this is why the Pythagorean wins
statistic runs afoul of the basic expectation property.
The equal relationship between total runs scored and
total runs allowed cannot be used to prove anything
about what the sum must be equal to, because the
individual denominators can vary so much.

3. The improvement

3.1. A special case

There is one time, however, when there is no prob-
lem at all, and we actually can prove that the sum
equals N/2, as we hope it does. That is when there
are exactly two teams, that only play each other, and
four pieces of data: R1, r1, R2, and r2. In this case,
it is obviously true that R1 + R2 = r1 + r2, and the
reason it is so obvious is because in this case, we can
say something even stronger: namely, that R1 = r2
and R2 = r1. This is clear because when there are
only two teams, one team must allow all the runs that
the other team has scored, and vice versa.

With this stronger assumption, we can now show
that for any exponent a,

Ra
1

Ra
1 + ra

1
+ Ra

2

Ra
2 + ra

2

= Ra
1

Ra
1 + ra

1
+ ra

1

ra
1 + Ra

1

= 1(= 2/2)

Since the sum is 1, this clearly implies that in
this exceptional case, the sum of the two teams’
Pythagoreanwintotalswillequal thenumberofgames
played between the two teams.

3.2. The pairwise formula

The special case above suggests a simple improve-
ment to the formula: all we have to do is split
our runs-scored data so that we are considering
Pythagorean wins on a team-by-team basis, and not a

cumulative basis over all teams. To be more specific:
instead of using a list of ordered pairs of the form
(Rj, rj), where Rj is the total runs scored by team j

and rj is the total runs allowed, we would instead use
an entire matrix

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 R12 R13 · · · R1N

R21 0 R23 · · · R2N

R31 R32 0 · · · R3N

...
...

...
. . .

...

RN1 RN2 RN3 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where each entry Rij is the number of runs scored
by team i against team j. This matrix includes the
cumulative data: for any team k,

Rk =
N∑

j=0

Rkj

rk =
N∑

i=0

Rik

In other words, the sum of any row is the total
number of runs scored by a team, and the sum of
any column is the total number of runs allowed by a
team. (This is not an original idea; matrices of this
form have already been computed for most, if not
all, baseball seasons in history. For example, the sea-
sons in (Major League Baseball n.d.) contain such
matrices, which is how the data in Section 4 and the
Appendix were computed.)

The traditional Pythagorean wins formula is, for
any team k, to take the percentage⎛

⎝ N∑
j=0

Rkj

⎞
⎠

2

⎛
⎝ N∑

j=0

Rkj

⎞
⎠

2

+
(

N∑
i=0

Rik

)2

and multiply that by the total number of games played
against all teams. Presenting the formula in this way
shows that this formula features taking sums first,
then raising those sums to a power.

The proposed improvement would do essentially
the opposite: for each team k, it would take each
percentage

pkj := R2
kj

R2
kj + R2

jk

,
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multiply that by the number of games team k played
against team j, and then add up all those numbers
for all other teams j to get the projected win total for
team k. As a formula, if we set Gkj to be the number
of games team k played against team j, the pairwise
Pythagorean projection of team k’s win total is

wk :=
N∑

j=0
j /= k

pkjGkj

In other words, instead of the sum over all teams
being done first, this method takes individual teams’
Pythagorean win totals againstother individual teams,
and does the sum over all teams last. That explains the
“pairwise” part of the name of the formula.

As shown earlier, since Rjk is exactly the number
of runs allowed by team k against team j, and since
Gkj = Gjk, it is necessarily the case that two teams’
pairwise Pythagorean win projections against each
other will add up to the total number of games played
between the two teams:

pjkGjk + pkjGkj = Gkj(pjk + pkj)

= Gkj · 1 = Gkj

It then follows that the total number of pairwise
Pythagorean wins for all teams will sum to the total
number of games played between all teams. This is
the property that the original formula was lacking.

Remark 2. As pointed out earlier, a key property of an
expectation is that the sum of individual components
is supposed to equal the total expectation. Earlier we
showed that the Pythagorean formula fails this cri-
terion for entire leagues as a whole when broken up
by team; but this section implies that it also fails the
same criterion for individual teams when broken up
by opponent. (For examples, see every computation
in the Appendix.) Viewed in this light, the pairwise
formula simply replaces the “total” with the sums of
the individual components.

Remark 3. We have just proved the fact that the
sum of all teams’ pairwise Pythagorean win totals
in a single league must equal the total number of
games played. This is equivalent to stating that if we
look at the differences between pairwise Pythagorean
wins and actual wins over all teams in a league,
those differences must sum to 0. The examples in
the Appendix show the sums of differences for five
leagues. When we showed earlier that the traditional
Pythagorean formula does not necessarily keep the

sum of Pythagorean wins equal to the total number
of games played, we were also showing—as is con-
firmed in the Appendix—that the sum of differences
is not necessarily 0, while here we have shown that it
is for the pairwise method.

4. The pairwise formula in action

4.1. Pairwise computation: An example

Before delving into the entire data set, it may be
illuminating to look at an example of the pairwise
computations compared to the traditional formula in
a specific case. In this section we will consider one
specific team from the Appendix: the 1978 California
Angels.

The Angels’ real record was 87-75. A look at the
Appendix shows that the traditional formula with
exponent 2 projected them to win approximately 84
games, meaning they finished about 3 games above
their projection. When this happens, it implies the
a = 2 formula will automatically be more accurate
than the traditional a = 1.83 formula in this case
(proving this assertion is a calculus exercise that
we will omit), so for this example we will only
examine the pairwise formula with a = 2. Another
look at the Appendix shows that this formula pro-
jected the Angels to win approximately 85.4 games, a
higher total than the traditional formula and, because
the Angels outperformed both projections, a more
accurate prediction. But why exactly is the pairwise
formula more accurate for this team?

The answer can be found in the following break-
down of the Angels’ row and column of the 1978 AL
run matrix (which can be found in (Major League
Baseball n.d.)). For each opponent, the table shows
their actual win-loss record, runs scored and runs
allowed, their Pythagorean winning percentage (to

Opponent W-L R r P w

BAL 6-4 33 33 0.5 5
BOS 2-9 35 59 0.2603 2.8634
CLE 6-4 48 32 0.6923 6.9231
DET 4-7 32 51 0.2825 3.1073
MIL 5-5 45 43 0.5227 5.2272
NYY 5-5 39 42 0.4630 4.6301
TOR 7-3 42 35 0.5902 5.9016
CHW 8-7 75 85 0.4377 6.5661
KCR 9-6 70 61 0.5684 8.5257
MIN 12-3 72 51 0.6659 9.9884
OAK 9-6 57 31 0.7717 11.5760
SEA 9-6 81 59 0.6534 9.8003
TEX 5-10 62 84 0.3527 5.2899
Total 87-75 691 666 – –
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4 decimal places), and their Pythagorean win total
(to 4 decimal places), all against that opponent.

The last two entries are left out because computing
using the total run data and adding up the pairwise
win totals are not equal (so we do not choose only one
of them to fill the table in). Of interest to us in this case
is why the pairwise projection is more accurate, and
to help see this, let us focus on two particular lines
of the table: the Chicago White Sox and the Oakland
Athletics.

The Angels played 15 games each against both
of these teams—30 games total. We can see from
the table that the Angels finished 17-13 combined
against these two teams. It is also easy to read off from
the table that the Angels projected to win (approx-
imately) 6.5661 games against the White Sox and
11.5760 games against the A’s, for a pairwise total of
18.1421 pairwise Pythagorean wins. This suggests
that against these two teams only, the Angels were
1.1421 games below their projection.

What happens when, instead of projecting and then
adding first, we combine run totals first? The Angels
scored a total of 75 + 57 = 132 runs against these
two teams, and allowed 85 + 31 = 116. Therefore
they would be projected to win

30 · 1322

1322 + 1162 = 16.9275

games against these two teams.
Although it appears the traditional Pythagorean

formula is far more accurate, this is a red herring.
(Remember, overall, the pairwise formula is going
to be more accurate over all teams. This is why it is
a red herring.) The important fact is that the tradi-
tional formula projects the Angels to be more than
a game below where the pairwise formula projects
them. Why is this?

The reason can be explained as follows: the Angels
showed more dominance in games that were lower-
scoring. Against the A’s, their ratio of runs scored
to runs allowed is very high—almost 2. Against
the White Sox, that ratio is slightly less than 1.
However, the number of runs scored overall is dif-
ferent. In the 15 games in which the Angels were
not as dominant—against the White Sox—160 total
runs were scored. But against the A’s, only 88 total
runs were scored! It is now clear why the tradi-
tional Pythagorean winning percentage is relatively
low—we have “softened” the effect of the games
against the A’s, in a way claiming that they should
matter less because fewer total runs were scored in
those games.

To see this clearly, let us imagine that instead of
57-31, the runs scored and allowed totals against the
A’s were 114-62. The ratio is the same; the pairwise
Pythagorean projections would not be affected by
this. But the traditional projection clearly will be; now
the modified win projection will be

30 · 1892

1892 + 1472 = 18.6923

Notice that now, when the totals of runs scored are
160 and 176 instead of 160 and 88, the traditional
formula is closer to, though still not equal to, the
pairwise formula.

This leads to the following question: which of these
should we consider as being more “correct”? Is it
more correct to say that we should in fact tilt our pro-
jection towards the results in which more total runs
were scored? Perhaps we might argue that the distri-
bution of 88 runs can be more subject to “luck” than
the distribution of 160 runs, and therefore it should
matter less.

However, standing against this argument is the fact
that both sets of run totals were amassed in sets of
15 games, the same amount of time. Therefore we
might argue instead that there is something about
the games between the two different pairs of teams
that makes the distribution of runs—and therefore
wins—different, and we should only be combining
the data at the latest stage possible. If we believe this
argument, this is a feature of the pairwise Pythagorean
formula that is advantageous over the traditional for-
mula. The evidence that the pairwise formula seems
to have a tendency to be more accurate overall (see
below) lends support to this line of argument as well.

4.2. Pairwise computation: Results

The previous sections attempted to make a theoret-
ical argument that the pairwise formula should have
less error than the traditional formula. However, we
also have the ability to test the formula with real data.
So how does the pairwise method compare to the con-
ventional method at generating predicted win totals?
This section will provide evidence towards answering
this question.

The table below shows summary data for every
Major League season from 1960–1990, excluding
1981 (which had fewer games than other seasons due
to a player strike). Next to each league is listed the
number of teams in that league, followed by four dif-
ferent numbers. Each of these is the root mean square
of the deviations between the teams’ actual wins and
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their projected wins using one of four formulae. The
leftmost column is the root mean square for the tradi-
tional Pythagorean formula with exponent 2; next is
the root mean square for the traditional Pythagorean
formula with exponent 1.83; next is the root mean
square for the pairwise Pythagorean formula with
exponent 2; and finally, the rightmost column is the

root mean square for the pairwise Pythagorean for-
mula with exponent 1.83. The last line contains the
total number of teams and all four root mean squares
when the teams are considered as a single data set.
All figures are rounded to three decimal places.

A few potentially useful observations about the
table:

League Teams Pyth. a = 2 Pyth. a = 1.83 p.Pyth. a = 2 p.Pyth. a = 1.83

1960 AL 8 3.682 4.079 3.540 4.092
1960 NL 8 3.408 3.774 3.366 3.679
1961 AL 10 2.765 3.573 2.748 3.532
1961 NL 8 5.520 5.942 5.171 5.580
1962 AL 10 3.238 3.376 3.771 3.980
1962 NL 10 4.884 5.458 4.954 5.677
1963 AL 10 4.097 3.642 3.507 3.342
1963 NL 10 4.737 4.131 4.934 4.367
1964 AL 10 3.189 3.109 3.115 3.224
1964 NL 10 3.788 3.860 4.121 4.178
1965 AL 10 3.330 3.687 3.698 4.099
1965 NL 10 3.626 3.435 3.260 3.132
1966 AL 10 4.748 4.400 4.643 4.408
1966 NL 10 4.157 3.898 3.623 3.636
1967 AL 10 5.371 4.962 4.836 4.479
1967 NL 10 2.746 2.384 2.994 2.760
1968 AL 10 3.227 2.945 2.752 2.576
1968 NL 10 4.047 3.665 3.466 3.223
1969 AL 12 3.208 2.681 2.744 2.482
1969 NL 12 4.618 4.740 4.032 4.316
1970 AL 12 3.304 3.804 3.570 4.067
1970 NL 12 6.119 5.924 5.973 5.832
1971 AL 12 3.183 3.088 3.313 3.281
1971 NL 12 3.967 3.612 3.998 3.800
1972 AL 12 5.525 5.058 5.639 5.327
1972 NL 12 5.643 5.113 5.463 5.060
1973 AL 12 4.927 4.393 4.361 4.007
1973 NL 12 3.477 3.319 3.588 3.521
1974 AL 12 5.035 4.739 4.610 4.417
1974 NL 12 4.564 3.593 3.002 2.603
1975 AL 12 3.772 3.489 3.617 3.529
1975 NL 12 5.779 5.159 5.481 5.048
1976 AL 12 3.655 3.220 3.549 3.366
1976 NL 12 4.104 3.573 3.399 3.045
1977 AL 14 3.961 4.171 3.816 4.165
1977 NL 12 4.109 4.026 3.839 3.826
1978 AL 14 3.992 3.818 3.536 3.431
1978 NL 12 5.515 5.314 4.942 4.862
1979 AL 14 3.338 3.431 3.326 3.699
1979 NL 12 3.812 4.103 2.825 3.188
1980 AL 14 4.624 4.530 4.226 4.356
1980 NL 12 3.971 4.146 4.191 4.341
1982 AL 14 2.875 2.744 3.042 3.024
1982 NL 12 4.182 4.305 4.162 4.254
1983 AL 14 3.228 3.283 3.116 3.260
1983 NL 12 3.623 3.531 3.571 3.515
1984 AL 14 2.933 3.129 3.277 3.462
1984 NL 12 6.167 6.022 5.816 5.727
1985 AL 14 4.161 4.077 3.955 3.973
1985 NL 12 3.591 3.962 4.202 4.591
1986 AL 14 2.780 2.944 2.852 3.028
1986 NL 12 5.017 5.129 5.232 5.337
1987 AL 14 3.636 3.600 3.336 3.457



56 J. Heumann / An improvement to the baseball statistic “Pythagorean Wins”

League Teams Pyth. a = 2 Pyth. a = 1.83 p.Pyth. a = 2 p.Pyth. a = 1.83

1987 NL 12 3.756 3.847 3.886 3.988
1988 AL 14 3.019 2.805 2.692 2.668
1988 NL 12 2.421 2.571 2.086 2.451
1989 AL 14 3.046 3.175 3.133 3.369
1989 NL 12 4.024 4.100 3.819 3.847
1990 AL 14 3.778 3.773 3.686 3.749
1990 NL 12 4.371 3.851 4.209 3.812
Total 704 4.105 4.004 3.938 3.951

• When all teams are considered together and we
look at the overall root mean square, both pair-
wise methods have lower root mean square error
than either traditional method, with the root
mean square for exponent 2 being slightly lower
than for exponent 1.83.

• The 1969 season marks the beginning of divi-
sional play, where each team did not play all
opponents the same number of times. If we split
our data by pre- and post-divisional play, we find
the following:

Years Teams Pyth. Pyth. p.Pyth. p.Pyth.
a = 2 a = 1.83 a = 2 a = 1.83

1960–1968 174 3.993 3.969 3.873 3.952
1969+ 530 4.142 4.015 3.958 3.950
Total 704 4.105 4.004 3.938 3.951

So in the first 10 years of the data set, the
pairwise Pythagorean formula with exponent
2 has less overall error than the other three
methods. However, once divisional play begins,
the traditional methods show more error while
there is now little to choose from between
the two pairwise methods, except that they
show less error than the traditional methods
do. In both parts of the data set, however,
the pattern of both pairwise methods showing
less error than either traditional method still
holds.

• Out of the sample of 60 seasons, there were 22
seasons in which both pairwise methods showed
less error than either traditional method. To con-
trast, there were only 12 seasons in which both
traditional methods showed less error than either
pairwise method. (Out of the other 26 seasons,
one of the pairwise methods showed the least
error in 15 of those.)

In the Appendix, five of these 60 seasons are bro-
ken down team-by-team to give the reader a sense of
how the formulae compare for individual teams, and

also to numerically demonstrate some of the asser-
tions made in the previous sections.

5. Conclusion

The above has been meant to introduce and show
the potential advantages of using a pairwise method
to project wins based on run totals as opposed to the
traditional cumulative method. Not only is it a math-
ematical improvement, since the traditional method
cannot output a mathematical expectation for a reason
that does not apply to the pairwise method, but it also
seems (at least over our 30-year sample) to reduce
the error in the results. However, the treatment it has
received in this paper is by no means comprehensive.
Many questions remain to be answered.

One such question is: if we were to use a pairwise
Pythagorean formula with a fixed exponent, what
exponent is most accurate? In this paper we compare
the fixed exponents 2 and 1.83, and our sample seems
to show that there is very little difference between the
two. However, clearly there is no reason to believe
the best exponent must be one of these. Since we
are changing our method of projection, it may be the
case that an entirely different exponent is best to use.
It may in fact even be larger than 2; there is simply not
enough data yet to conclude anything in this regard.
This is a question that, with enough data analysis, can
easily be settled in the future.

Another remaining question concerns the varia-
tions on the Pythagorean formula that do not use
fixed exponents. There are some methods in which
the exponent is a function of the other variables, and
not constant over all teams—even all teams in the
same league. In this paper we have not considered
any of those, but this is another topic that is ripe for
future analysis. Are they subject to the same math-
ematical flaw as fixed-exponent formulae? We have
not answered that question here, but regardless of the
answer, such formulae can also be mixed with the
pairwise method introduced here. The formula
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wk =
N∑

j=0
j /= k

pkjGkj

can be combined with any formula for computing
the winning percentages pkj . The pairwise method
is meant to be a mathematical adjustment, as high-
lighted in this paper, and could be so for an
extremely wide variety of formulae (namely any in
which pkj + pjk = 1 for all indices j and k), but
it is obviously still unclear whether switching to a
pairwise method always reduces the error in any
formula.

Those questions are beyond the scope of this
paper, whose purpose was simply to highlight that
Pythagorean wins cannot be a true expectation and
introduce the pairwise method as a way of improving
that. Now that it has been introduced, there is a great
deal of future research that can possibly be done to
analyze it.

A. Pythagorean projection data

Below are data from five different seasons (one
league apiece) in baseball history. All five seasons

predate interleague play (meaning that every team
played all of its regular-season games against some
other team listed). Above we gave summary data for
60 seasons; here we have chosen five of those seasons
and given more complete data.

For each team, five different data points are given.
The first is the team’s actual win-loss record. The
last four are differences between actual wins and
projected wins, where each column uses a differ-
ent method of projection. We first consider actual
wins minus projected wins using the Pythagorean for-
mula with exponent 2; then the Pythagorean formula
with exponent 1.83; then the pairwise Pythagorean
formula with exponent 2; and finally the pairwise
Pythagorean formula with exponent 1.83.

In each case the differentials are shown rounded off
to four decimal places. This sometimes creates a situ-
ation where the sum of the differentials of the pairwise
Pythagorean projections in a single season appears to
be very close to, but not exactly equal to, zero. This
is caused by rounding error—we proved above that
the sum must actually be 0. Rounding error is not the
cause of the fact that the sums of the differentials of
the traditional Pythagorean projections are nonzero.

All tables were computed using data from (Major
League Baseball n.d.).

1960 National League

Team W-L Pyth. a = 2 Pyth. a = 1.83 p.Pyth. a = 2 p.Pyth. a = 1.83

CHC 60-94 –1.6465 –2.9209 –1.5393 –2.8042
CIN 67-87 –3.9971 –4.5056 –3.9896 –4.4639
LAD 82-72 –3.4414 –2.7289 –3.0884 –2.4455
MLN 88-66 3.6622 4.2826 3.8993 4.4559
PHI 59-95 –0.1929 –1.6586 0.5133 –0.8995
PIT 95-59 1.8195 3.1589 1.8329 3.0980
SFG 79-75 –2.7267 –2.3258 –3.3521 –2.9195
STL 86-68 6.1786 6.4183 5.7239 5.9788
Total 616-616 –0.3443 –0.28 0 0

1961 American League

Team W-L Pyth. a = 2 Pyth. a = 1.83 p.Pyth. a = 2 p.Pyth. a = 1.83

BAL 95-67 1.0379 2.1231 1.4284 2.3037
BOS 76-86 1.6986 1.1315 1.2834 0.7984
CHW 86-76 0.7655 1.1248 0.6976 1.0103
CLE 78-83 –0.8783 –1.0161 –0.7281 –0.8434
DET 101-61 2.0131 3.4974 1.9674 3.3877
KCA 61-100 –1.0056 –2.5284 –0.3820 –1.7752
LAA 70-91 –6.2882 –6.6457 –5.7184 –6.1147
MIN 70-90 –2.3676 –3.0129 –2.2437 –2.8501
NYY 109-53 4.3242 6.2339 5.1806 6.9709
WSA 61-100 –1.4832 –2.9693 –1.4852 –2.8876
Total 807-807 –2.1836 –2.0617 0 0
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1962 National League

Team W-L Pyth. a = 2 Pyth. a = 1.83 p.Pyth. a = 2 p.Pyth. a = 1.83

CHC 59-103 –0.7282 –2.4621 –2.3515 –3.8253
CIN 98-64 4.3320 5.3933 3.6260 4.6084
HOU 64-96 –0.8592 –2.1190 –2.3515 –3.8253
LAD 102-63 4.0910 5.3738 6.0673 6.9562
MLN 86-76 –2.5320 –1.8951 –1.1693 –0.6884
NYM 40-120 –7.6087 –10.0859 –8.9865 –11.2791
PHI 81-80 6.4305 5.9280 5.3386 4.9331
PIT 93-68 2.8651 3.6772 4.2656 4.8898
SFG 103-62 0.9972 2.6000 2.0944 3.5050
STL 84-78 –9.3201 –8.2871 –7.3836 –6.5957
Total 810-810 –2.3325 –1.8770 0 0

1968 National League

Team W-L Pyth. a = 2 Pyth. a = 1.83 p.Pyth. a = 2 p.Pyth. a = 1.83

ATL 81-81 5.3282 4.8764 4.0596 3.7480
CHC 84-78 2.8675 2.8788 2.89 2.9022
CIN 83-79 –0.0202 0.1514 0.3976 0.5314
HOU 72-90 2.4504 1.4885 0.4927 –0.2061
LAD 76-86 1.4433 0.8976 0.7888 0.3233
NYM 73-89 –3.6698 –4.0372 –4.4306 –4.7220
PHI 76-86 5.0337 4.1886 5.1407 4.3150
PIT 80-82 –8.3944 –7.7689 –6.2947 –5.8566
SFG 88-74 –3.0146 –2.1710 –2.9328 –2.1322
STL 97-65 –0.8579 0.5383 –0.1112 1.0970
Total 810-810 1.1662 1.0425 0 0

1978 American League

Team W-L Pyth. a = 2 Pyth. a = 1.83 p.Pyth. a = 2 p.Pyth. a = 1.83

BAL 90-71 6.2614 6.5364 6.6958 6.7591
BOS 99-64 2.0482 3.3337 2.2984 3.4279
CLE 69-90 –3.9508 –4.5052 –2.7771 –3.3852
DET 86-76 –2.2146 –1.6042 –1.3944 –0.9821
MIL 93-69 –4.9768 –3.5630 –5.4255 –4.2730
NYY 100-63 –0.1841 1.3546 –0.4226 1.0049
TOR 59-102 –0.0731 –1.8175 –0.5278 –2.0461
CAL 87-75 3.0165 3.2699 1.6008 1.9337
CHW 71-90 1.8835 0.9273 0.4877 –0.1539
KCR 92-70 –1.7437 –0.6762 –1.1374 –0.2445
MIN 73-89 –6.5537 –6.6766 –5.8328 –5.9806
OAK 69-93 8.6016 6.9178 6.7575 5.5221
SEA 56-104 –0.2391 –2.1522 0.7152 –1.061
TEX 87-75 –1.3263 –0.7066 –1.0377 –0.5214
Total 1131-1131 0.5580 0.6382 0 0
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