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Abstract. The Pythagorean expectation is a formula designed by Bill James in the 1980s for estimating the number of games
that a baseball team is expected to win. The formula has since been applied in basketball, hockey, football, and soccer. When
used to assess National Basketball Association (NBA) teams, the optimal Pythagorean exponent is generally believed to be
between 14 and 17. In this study, we empirically investigated the accuracy of the formula in the NBA by using data from
the 1993-1994 to 2013-2014 seasons. This study confirmed the results of previous studies, which found that the Pythagorean
exponent is slightly higher than 14 in the fit scenario, in which the strengths and winning percentage of a team are calculated
using data from the same period. However, to predict future winning percentages according to the current evaluations of team
strengths, the optimal Pythagorean exponent in the prediction scenario decreases substantially from 14. The shrinkage factor
varies from 0.5 early in the season to nearly 1 toward the end of the season. Two main reasons exist for the decrease: the
current evaluated strengths correlate with the current winning percentage more strongly than they do with the future winning
percentage, and the scales of strengths evaluated in the early or middle part of a season tend to exceed those evaluated at
the end of the season because of the evening out of randomness or the law of averages. The prediction accuracy decreases
with time over a season. Four measurements of strength were investigated and the ratio of total points scored to total points
allowed was the most useful predictor. Point difference exhibited nearly the same accuracy, whereas the ratio of games won
to games lost was somewhat less accurate. An explanation of Dean Oliver’s choice of 16.5 as the Pythagorean exponent is
offered.
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1. Introduction

The Pythagorean exponent, designed by James
(1980) and updated by Cochran (2008) for use in
baseball, was a major development in the predic-
tion of sports event outcomes. The formula was
later modified for basketball (Oliver, 2004), football
(Schatz, 2003), soccer (Hamilton, 2011) and hockey
(Dayaratna and Miller, 2013; Cochran and Black-
stock, 2009), and mathematically justified (Miller,
2007). The Pythagorean formula emphasizes that the
ratio of a team’s total points scored (TPS) to total
points allowed (TPA) may reflect the overall strength
of a team more accurately than does the ratio of
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total games won to total games lost. The Pythagorean
formula yields the following expected winning per-
centage (EWP):

EWP = TPSβ

TPSβ + TPAβ
, (1)

where β is the Pythagorean exponent. Equivalently,

log
EWP

1 − EWP
= β log

TPS

TPA
.

Cochran and Balckstock (2009) explored further
extensions of (1), including allowing for differ-
ent values of the exponents in the three positions
of the formula. The EWP is the percentage of
games that a team should win. When the number
of actual wins of a team exceeds the expected num-
ber of wins determined according to the Pythagorean
formula, the team is considered to be overachieving,
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perhaps because of luck, and its future performance is
expected to revert to its Pythagorean formula-derived
number of expected wins (James, 1982; Schatz,
2003).

The Pythagorean formula, a focus of sports-related
academic research, is also popular among the gen-
eral public. For example, ESPN, among other major
sports news agencies, regularly posts Pythagorean-
calculated EWPs on its website (espn.go.com/nba/
stats/rpi). The popularity of the formula stems
from its simplicity and relative accuracy. Although
marginal improvements in accuracy may be achieved
by incorporating, for example, home advantages or
strength of schedules, the simple version of the for-
mula given in (1) continues to be the most widely
used. This formula has not changed because it is
a simpler and more accurate strength measurement
than is the current winning percentage.

A major difficulty in applying the formula is
determining the Pythagorean exponent, which varies
considerably between sports. Even in the same
sport, different leagues or eras can require varying
Pythagorean exponents. James (1980) calculated the
Pythagorean exponent to be 2 for Major League
Baseball (MLB), which is why it is called the
Pythagorean exponent. The optimal value was later
calculated to be 1.82-1.86 (James, 1982; Davenport
and Woolner, 1999; Miller, 2007; Cochran, 2008;
Tung, 2010). For hockey, Cochran and Blackstock
(2009) estimated the Pythagorean exponent to be
1.927, whereas Dayaratna and Miller (2013) esti-
mated it to be slightly higher than 2. Their extensive
statistical tests showed that the Pythagorean for-
mula is just as applicable to hockey as it is to
baseball. For the National Basketball Association
(NBA), Oliver (2004) analyzed data from the 1990s
and calculated the exponent to be 13-14, whereas
basketball-reference.com uses 14. Since 2007, ESPN
has agreed with Oliver’s assessment of the optimal
Pythagorean exponent for the NBA as being 16.5,
arguing that a higher Pythagorean exponent more
accurately reflects the teams at the top and bottom
of the standings and loses little accuracy for the
other teams. However, Kubatko (2013) performed
a detailed decade-by-decade study, beginning from
the 1940s, and concluded that “[a]n exponent of 16.5
does not produce the lowest RMSE in any decade,”
and that “[u]nless there is a major change in the way
the game is played, using a Pythagorean model with
an exponent of 14 is just fine for the modern era, in
particular because the structure is already ingrained
in the minds of most analysts.” Rosenfeld et al. (2010)

used data from 14 more recent seasons and found the
optimal value to be 14.05. They also calculated the
optimal Pythagorean exponent for predicting over-
time winners to be 9.22. Further discussion of the
exponent can be found in reports by Oliver (1991,
1996), Kubatko et al. (2007), and Rosenfeld et al.
(2010).

This paper discusses determining the optimal
Pythagorean exponent for the NBA by statistically
analyzing data from 21 seasons (1993-1994 to 2013-
2014). Every Pythagorean exponent reported in the
literature is computed for a scenario called “fit”, in
which team strengths are calculated according to data
from the same period, typically of one or several
seasons, from which data is used to calculate the
win-loss ratio of the team. However, this paper pri-
marily discusses a scenario called “prediction”, in
which strengths are calculated according to the per-
formance of the team from the beginning of a season
and are compared against the future win-loss ratio of
the games remaining in the season. The main aim of
this study was to determine an optimal Pythagorean
exponent according to current strengths for predicting
future winning percentages. For ease of presentation,
“training period” is used to refer to when strengths
are evaluated, and “test period” is used to refer to
when the winning percentages or win-loss ratios are
calculated. In the fit scenario, the two periods occur
simultaneously.

For the sake of comparison, three additional mea-
surements were selected to evaluate team strengths,
each on the same level of simplicity as the ratio of TPS
to TPA. Each measurement was calculated accord-
ing to training period data. Larger strengths indicate
stronger teams. Logarithms are used to ensure that
the zero values of the strengths indicate average
teams, rendering comparisons easier to perform and
the values easier to use in the least-squares fit. All
logarithms used in this paper are natural logarithms
and all averages refer to arithmetic averages. The four
measurements of strength are as follows:

Point ratio (PtR): The logarithm of the ratio of a
team’s TPS to its TPA, abbreviated as PtR:

PtR = log(TPS/TPA).

Point difference (PtD): A team’s mean points
scored per game (MPS) minus the mean points
allowed per game (MPA) divided by 100, abbreviated
as PtD:

PtD = (MPS − MPA)/100.
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Ratio of offensive/defensive ratings (ODR): The
logarithm of the ratio of a team’s mean offensive rat-
ing per game (MORtg) to the mean defensive rating
per game (MDRtg), abbreviated as ODR:

ODR = log(MORtg/MDRtg).

Specifically, the mean offensive (defensive) rating
per game is the average of the individual offensive
(defensive) ratings of each game, and the offensive
(defensive) rating of a game is the points scored
(allowed) times 100 and divided by the number of
possessions of the game.

Win-loss ratio (WLR): The logarithm of a team’s
win-loss ratio, abbreviated as WLR:

WLR = log(GW/GL),

where GW (GL) is the number of games won (lost).
To prevent WLR from taking the value of infinity or
negative infinity, when GW (GL), respectively, is 0,
this value is increased to 0.5, and GL (GW) is reduced
by 0.5 to keep the number of games played identical
to the sum of GW and GL.

The response variable is the logarithm of the win-
loss ratio of a team in the test period. In the fit
scenario, the response is identical to WLR because
the training and test periods are identical. The
Pythagorean exponent in the literature pertains to
PtR. PtD is the average point difference per game,
which is multiplied by a factor of 0.01 to align it
with PtR, primarily because the points of a team in
an NBA game are typically ranked on a scale of 100.
Consequently, the Pythagorean exponents for PtR and
PtD are easily comparable. PtR and ODR may appear
similar but differ greatly. PtR can be expressed equiv-
alently as the logarithm of the total offensive rating of
a team against the total offensive rating of its oppo-
nent (Kubatko et al. 2007) in the training period,
whereas the offensive rating of a team during a spe-
cific period of time is the TPS times 100, divided by
total possessions during that period.

The conventional approach of ordinary least-
squares described in the literature (Oliver, 2004;
Rosenfeld et al. 2010; Kubatko, 2013) was adopted
to determine the Pythagorean exponents. The results
produced using this method allow for direct com-
parisons with the results in the literature. For
team-season i, let yi = log(pi/(1 − pi)) be the
response and xi be a strength measurement. Here,
pi is the winning percentage in the test period. The
linear model without intercept is

yi = βxi + εi,

where εi is the error with mean 0 and assumed to
be uncorrelated with xi. The least-squares estimation
provides an explicit solution for the linear fit with
zero intercept. When

∑
i(yi − βxi)2 is minimized, the

least-squares estimate of the Pythagorean exponent is

b =
∑

i xiyi∑
i x

2
i

, (2)

where the summation is over the relevant team-
seasons. For a given xi, the predicted yi is then bxi,
and, consequently, the predicted winning percentage
pi is exp(bxi)/(1 + exp(bxi)). For PtR as a strength
measurement, the predicted pi is identical to the EWP
with Pythagorean exponent b, because

exp(b log(TPS/TPA))

1 + exp(b log(TPS/TPA))
= (TPS/TPA)b

1 + (TPS/TPA)b

= TPSb

TPSb + TPAb
.

The conventional Pythagorean exponent refers
only to the exponent for PtR in the fit scenario, but
the term “Pythagorean exponent” is adopted for the
estimates in (2) for all strength measurements in both
the fit and prediction scenarios.

The main findings of this study were as follows:
1. To predict the future winning percentage for

the remaining games in a season, the Pythagorean
exponent should be shrunk to obtain a more accurate
prediction.

2. The shrinkage was substantial in the early parts
of a season, but gradually subsided toward the end of
the season.

3. Prediction became generally less accurate
toward the end of a season.

4. For the fit scenario, the Pythagorean exponent
was calculated using the 21 most recent seasons of
data to be 14.01, confirming reports in the literature,
and PtR, PtD and ODR were more accurate strength
measurements than WLR.

Findings 1-3 are explained by the law of large
numbers; in other words, the variance of the sample
average decreases when sample size increases.

The data used in this study were downloaded
from www.basketball-reference.com, which offers
the offensive ratings of a team and its opponent for
every game. Thus, in this study, estimating the pos-
sessions for each game was unnecessary.

The sizes of the Pythagorean exponents affect the
prediction of winning percentage, which, for eas-
ier understanding, can be translated into number of
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Table 1

Predicted numbers of games won with different Pythagorean expo-
nents and PtR

Pythagorean exponents
PtR 10 12 14 16

0 41.0 41.0 41.0 41.0
0.0235 45.8 46.7 47.7 48.6
0.0470 50.5 52.3 54.0 55.7
0.0705 54.9 57.4 59.7 61.9
0.0940 59.0 61.9 64.7 67.1

Table 2

Summary of the strength measurements with all 21 seasons
combined

PtR PtD ODR WLR (Response)

Mean 0.000 0.000 –0.000 –0.006
Standard deviation 0.047 0.046 0.047 0.687

games won over a season of 82 games. Consider using
PtR as the strength measurement. The following table
lists the prediction of games won out of a total of 82
games for PtR at 0, 0.0235, 0.0470, 0.705 and 0.0940
and the Pythagorean exponents at 10, 12, 14, 16.

If a team has zero PtR, meaning that its total points
scored is exactly same as its total points allowed, the
prediction of winning games is 41, half of 82, what-
ever the Pythagorean exponents are. If a team has
excellent PtR, such as 0.094, then the prediction of
number of games won based on different Pythagorean
exponents can be different by as many as 8 games,
which is quite substantial.

2. Fit scenario exponents

One goal of this study was to confirm the results
of Oliver (2004), Rosenfeld et al. (2010), Kubatko
(2013) and others by using data from the 1993-1994
to 2013-2014 NBA seasons. For exploratory pur-
poses, the summary statistics of the four strength
measurements and the response with all 21 seasons
combined were collected (WLR was identical to the
response). The combined data comprises n = 615
observations, each of which represents one team-
season and contains values of the four strengths and
one response. Two seasons comprised 27 teams, 9
seasons comprised 29 teams, and 10 seasons com-
prised 30 teams. Data for the same team in different
seasons are treated as separate observations.

The means of these strength measurements, com-
pared according to their scales of standard deviation,
were near 0. In all training or test periods in this study,
the relevant means were all nonsignificant.

Table 3

Correlation matrix of the strength measurements with all 21
seasons combined

PtR PtD ODR WLR (Response)

PtR 1.000 0.999 1.000 0.971
PtD 0.999 1.000 0.999 0.971
ODR 1.000 0.999 1.000 0.970
WLR (Response) 0.971 0.971 0.970 1.000
Winning percentage 0.971 0.972 0.971 0.998

Table 4

Pythagorean exponents and least squares fit with all 21 seasons
combined

PtR PtD ODR WLR

Pythagorean 14.01 14.38 14.02 1
exponents

Standard error 0.140 0.142 0.141 0
95% confidence [13.73, [14.10, [13.74, [1,1]

interval 14.28] 14.66] 14.30]
R-squared 0.941 0.943 0.942 1
Mean squared 0.0013 0.0013 0.0013 0

error

All correlations in this paper refer to the Pear-
son correlation coefficients. These correlations were
close to 1. Table 4 shows the least squares fit of the
response using each of the four strength measure-
ments.

The Pythagorean exponent for PtR, 14.01, was
considerably close to the Pythagorean exponent in
the literature, 14.05 (Rosenfeld et al., 2010). PtD
and ODR produced close Pythagorean exponents.
Because WLR was identical to the response, its
Pythagorean exponent was 1. The second and third
rows indicate the standard error and confidence
intervals for the respective Pythagorean exponent
estimates. The fourth row shows the R-squared of the
fits. Because estimating the winning percentage by
using the Pythagorean formula is of the most interest,
the fifth row indicates the mean squared error for esti-
mating the winning percentage, which was calculated
as follows:

1

n

∑
i

(
pi − 1

1 + exp(−bxi)

)2
. (3)

For example, the mean squared error of PtR was
0.0013, suggesting that the standard error for esti-
mating the winning percentage was 0.036 (the square
root of 0.0013). The error for the fit using WLR was
0, because WLR was identical to the response in the
fit scenario.

The variation of the Pythagorean exponents for
each season is plotted in Fig. 1.
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Fig. 1. The Pythagorean exponents over the seasons.

Fig. 2. Mean squared error for estimating winning percentage.

Table 5

Summary of the season-by-season Pythagorean exponents across
21 seasons

PtR PtD ODR WLR

Mean 13.99 14.39 14.00 1
Median 13.85 14.26 13.98 1
Minimum 12.86 12.97 12.77 1
Maximum 15.52 16.08 15.50 1
Standard deviation 0.718 0.774 0.740 0

In the fit scenario, the Pythagorean exponent for
each individual season was calculated using data from
only that season. Season 1 denotes the 1993-1994
season and season 21 denotes the 2013-2014 season.
PtR, PtD and ODR had considerably close exponents.
The exponent of WLR was always 1.

Figure 2 shows the mean squared errors for esti-
mating winning percentage by season.

PtR, PtD and ODR were about equally accurate in
approximating the winning percentage by using the
Pythagorean formula.

Table 5 summarizes season-by-season Pythago-
rean exponents.

For each strength measurement, the average of the
season-by-season Pythagorean exponents was near
the Pythagorean exponent calculated with all 21 sea-
sons combined (first row of Table 4).

3. Prediction scenario exponents

This section considers the prediction scenario and
examines predicting future winning percentages for
the remaining games in a season by analyzing current
evaluated strengths. Because team performance can
vary substantially across seasons, only data from the
current season were used. The current time t within
a season was defined as the proportion of the season
that had been played. The training period was from 0
to t and the test period was from t to 1. The current
time t ranged from 0.2 to 0.9 to avoid the shortage of
data at the beginnings and ends of seasons. For sim-
plicity of presentation, all 21 seasons are combined
in the empirical results in this section.

The correlation between current strength measure-
ments and future winning percentage is plotted in Fig.
3a.

Compared with those presented in the fit scenario
(final row of Table 3), the correlations in the predic-
tion scenario were much lower, with the highest near
0.8 and the lowest near 0.5. The lower correlation was
expected to generate smaller Pythagorean exponents.
The manner in which the correlations between the
four strength measurements with future winning per-
centages decreased toward the end of the season was
particularly interesting and may not be completely
explained by the shortage of test data. To investigate
the reason for the decrease in correlation, the teams
were divided into three tiers: top, middle, and bottom,
each approximately equal in size. The top tier teams
were those with the highest current winning percent-
ages and the bottom tier teams were those with lowest
current winning percentages.

Figures 3b and 3c show the correlation of PtR
and WLR with future winning percentage for each
tier. The figures indicate that the correlation gener-
ally decreased as a season progressed, which agrees
with Fig. 3a. Unexpectedly, however, the correlation
decreased the most for the top tier. One possible rea-
son for this is that top tier teams that cannot change
playoff positions can afford to rest their starters for the
upcoming playoffs. Thus, the performance of these
teams toward the end of a season becomes harder to
predict.

Next, ordinary least-squares fit was performed
to determine the response against each of the four
strength measurements throughout the season. The
graph in Fig. 4a illustrates a crucial finding regarding
the Pythagorean exponents for prediction.

In Fig. 4b, the relative Pythagorean exponents
at time t are the Pythagorean exponents at time t
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a b

c

Fig. 3. a) Correlation of the strengths with future winning percentage, b) Correlation of log-points ratio with future winning percentage, c)
Correlation of log-win-loss ratio with future winning percentage.

a b

Fig. 4. a) Pythagorean exponents for prediction, b) Relative Pythagorean exponents for prediction.

divided by those at time 0.2. This figure highlights
the variation of Pythagorean exponents along with
time relative to the benchmark at time 0.2. Over-
all, the exponents were considerably smaller than
those in the fit scenario (Fig. 4a and Table 5). The
exponents of WLR (in blue) ranged between 0.49
and 0.93 and increased in a nearly linear fashion
(Table 8) as opposed to the constant of 1 in the
fit scenario. In the prediction scenario, using 1 as
the Pythagorean exponent for WLR was identical to
using the current winning percentage to predict future
winning percentage for the remainder of the season.
However, the shrinkage (Fig. 4b and Table 8) demon-
strated that using the current winning percentage to

predict the future winning percentage may not be
ideal. Additionally, Pythagorean exponents appeared
to generally increase over time in a season. Further
explanation is presented in the next section.

Table 6 summarizes the Pythagorean exponents
over time in a season.

Figures 5a-5c indicate the variation of prediction
accuracy, as measured using the mean squared error
(3). Future winning percentage pi was calculated in
the test period (t, 1] and the strength measurement
xi was calculated in the training period [0, t]. Predic-
tion accuracy decreased toward the end of the season,
a counter-intuitive phenomenon for which the next
section posits explanations.
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Table 6

Summary statistics of the Pythagorean exponents over time in a
season

PtR PtD ODR WLR

Mean 11.96 12.40 11.95 0.772
Median 12.26 12.71 12.25 0.800
Minimum 8.780 9.203 8.750 0.488
Maximum 13.83 14.27 13.84 0.932
Standard deviation 1.575 1.570 1.580 0.132

Figures 5b and 5c present the mean squared error
of predictions according to PtR and WLR for each
tier. Our approach produced less accurate predictions
for the middle tier, possibly because games involving
teams in this tier are more competitive.

4. The shrinkage and an explanation

To illustrate the shrinkage phenomenon in the pre-
diction scenario, we defined a shrinkage factor as
follows. For a given strength measurement at a spe-
cific time in a season,

shrinkage factor = value of the Pythagorean exponent at a time in season in the prediction scenario

value of the Pythagorean exponent at the end of a season in the fit scenario
,

where the denominator is given in the first row of
Table 4 for the four strength measurements. A major
finding of this paper is that the shrinkage factors were
smaller than 1. The shrinkage factors and the accuracy
in predicting the future winning percentages at some
typical times in season are presented in Tables 7 and
8. For brevity, we present only the relevant results for
PtR and WLR.

The standard error values are of the estimated
Pythagorean exponents. The mean squared error val-
ues were calculated using (3) with the estimated
Pythagorean exponents, and the MSE.14, MSE.16.5
and MSE.1 values were the mean squared errors
calculated using exponents of 14, 16.5 and 1,
respectively. The estimated Pythagorean exponents
produced more accurate predictions in all scenarios,
as expected. The improvement is substantial early in
the season but gradually subsides toward the end of
the season as the shrinkage factor increases toward 1.
For PtR, which is based on the ratio of points scored
to points allowed, the conventional choice of 14 was
optimal in the fit scenario but had to be shrank further
for the purpose of prediction. For WLR, which was
based on the current win-loss ratio, the seemingly
natural choice of 1, the equivalent of predicting the
future winning percentage by using the current win-

ning percentage, was less accurate than the shrunk
Pythagorean exponent, particularly early in the sea-
son. Furthermore, the prediction accuracy decreased
toward the end of a season (Fig. 5).

The variations of the shrinkage factors of the
Pythagorean exponents over time in season for all
four strength measurements are plotted in Fig. 6.

What causes the shrinkage? The following expla-
nation is presented in a general context of predictive
regression modeling. Let (y1i, x1i), i = 1, ..., T, be
the historical data of responses and covariates, and
(y2i, x2i), i = 1, ..., T, be the future data of responses
and covariates, obeying the model

yji = γxji + εji, i = 1, ..., T ; j = 1, 2,

where the errors εji are assumed to be independent
with mean zero. The regression coefficient based on
the historical data is

∑
i y1ix1i∑

i x
2
1i

=
∑

i(x1iγ + ε1i)x1i∑
i x

2
1i

≈ γ.

The regression coefficient based on the future
responses and the historical covariates is

∑
i y2ix1i∑

i x
2
1i

=
∑

i(x2iγ + ε2i)x1i∑
i x

2
1i

≈
∑

i x2ix1i∑
i x

2
1i

γ.

The shrinkage of the regression coefficient
occurred when

∑
i x2ix1i/

∑
i x

2
1i was less than 1.

This was the case when the correlation between x1i

and x2i was less than 1 and the average squares of
x1i and that of x2i were similar. Because x1i and x2i

were respectively derived from the historical data and
future data, their correlation was often less than 1,
sometimes substantially so. The average squares of
strength measurements in the historical data and those
in the future data were often close to each other.

To understand why the shrinkage factors were
smaller early in the season and tended to increase
over time, consider the following ideal case for the
purpose of illustration. For team-season i, assume the
team wins every game with probability qi, which is
constant for all games in the season. Let zit be the
winning percentage for the nit games played dur-
ing [0, t] and yit be the winning percentage for the
mit games played during (t, 1]. Subsequently, zit has
mean qi and variance qi(1 − qi)/nit and yit has mean
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Table 7

The shrinkage and mean squared errors of prediction for PtR

Time in season 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pythagorean 8.7804 10.049 10.733 11.804 12.926 13.559 13.763 13.319
Standard error 0.3490 0.3608 0.3750 0.4004 0.4398 0.4904 0.5866 0.7854
Shrinkage factor 0.6267 0.7173 0.7661 0.8426 0.9227 0.9679 0.9824 0.9507
Mean squared error 0.0123 0.0114 0.0114 0.0116 0.0127 0.0151 0.0207 0.0341
MSE.14 0.0159 0.0134 0.0127 0.0123 0.0129 0.0152 0.0208 0.0344
MSE.16.5 0.0192 0.0161 0.0150 0.0139 0.0141 0.0162 0.0219 0.0359

Table 8

The shrinkage and mean squared errors of prediction for WLR

Time in season 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pythagorean 0.4887 0.6163 0.6789 0.7676 0.8444 0.8927 0.9261 0.8945
Standard error 0.0220 0.0242 0.0253 0.0275 0.0308 0.0348 0.0408 0.0545
Shrinkage factor 0.4887 0.6163 0.6789 0.7676 0.8444 0.8927 0.9261 0.8945
Mean squared error 0.0138 0.0125 0.0121 0.0122 0.0136 0.0161 0.0212 0.0347
MSE.1 0.0211 0.0161 0.0144 0.0134 0.0142 0.0165 0.0215 0.0352

a b

c

Fig. 5. a) Mean squared error of prediction, b) Mean squared error of prediction based on points ratio, c) Mean squared error of prediction
based on win-loss ratio.

qi and variance qi(1 − qi)/mit . Moreover, zit and yit

are independent. Then,
∑

i zityit∑
i z

2
it

≈
∑

i E(zityit)∑
i E(z2

it)
=

∑
i E(zit)E(yit)∑

i E(z2
it)

=
∑

i q
2
i∑

i(q
2
i + qi(1 − qi)/nit)

,

which increases over time t because nit increases
over time t. The main reason for the increase of

the Pythagorean exponents over time is the decrease
of the denominator, the sum of squares of the
strength measurements in the historical data over
time because more games are played as time pro-
gresses. Conversely, the numerator in the expression
of the Pythagorean exponents does not have obvi-
ous directional variation because of the independence
of the randomness in the historical and future data.
Analogous to the decrease of the sum of squares of
strength measurements in the historical data, the sum
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Fig. 6. The shrinkage factor of the Pythagorean exponents.

Fig. 7. Relative mean squared strengths over times in season.

of squares of the responses in the future data increases
over time because fewer games remain to be played
in the future as time progresses toward the end of a
season.

The empirical evidence of the decrease of the four
squared strength measurements over time in a season
is shown in Fig. 7. Each curve illustrates the change in
the ratio of the average of the squares of the strengths
of all team seasons at time t to that at time 0.2. Empir-
ical evidence of the increase of the squared response
is shown in Fig. 8. The variation of the cross product
of the strength measurements with the response over
time is shown in Fig. 9, which is less directional than
those of the squared strength measurements and the
squared responses.

Prediction error increased with time, as shown in
Fig. 5 and Tables 7 and 8, because of the magni-
fied randomness of the responses, which caused the
increase illustrated in Fig. 8.

The Pythagorean exponents depend on the quantity
of historical data used for prediction. The shrinkage
phenomenon is fundamental to prediction analysis
but may often be ignored by practitioners. In a
related predictive context, the theory behind this phe-
nomenon was reported by Mukherjee and Johnstone
(2015).

Fig. 8. Mean squared logarithm of future win-loss ratio.

Fig. 9. Relative cross product over time in season.

5. Accounting for the strengths of opponents

A full comparison of various prediction methods
is out of the scope of this paper. This section studies
some adjustments of the Pythagorean prediction by
incorporating other factors, such as the strength of
schedule (SOS), and demonstrates a comparison with
the prediction based on the Bradley-Terry model.

The SOS is a a widely used index to account for
the strength of opponents. Because match outcomes
depend on the quality of opponents, adjusting the
strength of a team by using its SOS is natural. A
commonly used definition of SOS is two-thirds of the
average strength of the opponents of a team plus one-
third of the average strength of a team’s opponent’s
opponents.When the strength of a team is adjusted
using its SOS, ambiguity exists in determining the
weights for the performance of a team and for its
SOS. The ESPN and NBA use the ratings percentage
index (RPI), in which 0.25 is used as the weight for a
team’s own performance and 0.75 is used for its SOS.
However, the RPI lacks theoretical justification from
a statistical standpoint.

Because no universal agreement exists on the opti-
mal weights, in the following calculation, three levels
of weights, 0.25, 0.5, and 0.75, are used for the
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performance of a team and, respectively, 0.75, 0.5,
and 0.25 for its SOS, creating the adjusted strength
measurements PtR and WLR. Tables 9 and 10 show
the Pythagorean.25 and MSE.25, which are, respec-
tively, the Pythagorean exponent and mean squared
error for predicting the future winning percentage
according to the adjusted PtR and WLR with weight
level 0.25 for a team’s own performance. Analogous
interpretation applies to Pythagorean.50, MSE.50,
Pythagorean.75, and MSE.75.

Compared with the mean squared errors in Tables
7 and 8, which were based on PtR and WLR without
adjustment for SOS, the mean squared errors after
SOS adjustment were only slightly smaller. This mild
decrease suggests that adjusting for SOS produces
little improvement in prediction accuracy. This may
be because NBA match schedules are more balanced
than some other associations, such as the National
Collegiate Athletic Association.

Tables 9 and 10 show that the Pythagorean expo-
nents for the adjusted strengths all exhibited an
increasing pattern over time. This agrees with the pat-
tern of the Pythagorean exponents reported in Tables
7 and 8.

Some statistical models have built-in adjustments
for the strength of opponents. The Bradley-Terry
model is one of the most popular models in the
study of paired comparison. The model specifies the
probability of team i defeating team j as 1/(1 +
exp(−λi + λj)), where λi and λj can be viewed
as measurements of the strengths of teams i and
j, respectively. Given current match results, these
team strengths, conveniently called Bradley-Terry
strengths, can be estimated using the typical max-
imum likelihood method. For identifiability, the
average of the Bradley-Terry strengths was set to
be zero. The Pythagorean exponent for the Bradley-
Terry strength in the fit scenario with all 21 NBA
seasons data was calculated to be 0.9138. The fol-
lowing table lists the main results.

Similarly, the MSE.0.9 is the mean squared error
of prediction when using 0.9, an approximation of
0.9138, as the Pythagorean exponent. In the pre-
diction scenario, the Pythagorean exponents were
substantially shrunk from 0.9138. Moreover, as indi-
cated by comparing the mean squared errors with
those in Tables 7 and 8, the Bradley-Terry strength did
not produce obvious improvement of prediction accu-
racy over the strength measurement PtR, the focus of
this paper.

Prediction of the binary outcome, home win or
away win, of a forthcoming match is an interesting

subject. The Pythagorean formula given in (1) for
the EWP can be viewed as an estimate of the team’s
winning probability against the league. For PtR, PtD,
ODR and WLR, Oliver (1996) can be followed to
derive the probability of home team i defeating away
team j as

pi/(1 − pi) × h/(1 − h)

pi/(1 − pi) × h/(1 − h) + pj/(1 − pj)
,

where pi and pj are respectively the EWP of teams i

and j with a shrunk Pythagorean exponent, and h is
the league’s home win percentage. If no home advan-
tage is considered, h is 0.5. The home win percentage
for the 21 NBA regular seasons from 1993-1994 to
2013-2014 was 0.603. The 21 seasons comprised
17184 matches with time in season between 0.2 and
0.9. The binary outcome of each of these 17184
matches was predicted using the strengths calculated
on the basis of all previous matches played in the
same season. Table 12 summarizes the accuracy and
deviance for the prediction based on the Bradley-
Terry model (BT) and those based on PtR, PtD, ODR
and WLR with shrunk Pythagorean exponents.

In Table 12, the accuracy is the total number of cor-
rect predictions divided by 17184, the total number
of predictions. The deviance is defined as −2 times
the average of log of the predicted probabilities of
the outcomes that actually occurred. The first two
rows of Table 12 do not consider home advantage
(h = 0.5) whereas the last two rows do (h = 0.6).
These strengths are close to each other in their pre-
diction accuracy for individual matches.

6. Discussion and conclusion

This study provided evidence that PtR, the ratio of
TPS to TPA, was an accurate predictor considered in
this paper. PtD and ODR are respectively based on
point difference and offensive/defensive ratings and
performed nearly as effectively as did PtR. The cur-
rent winning percentage or win-loss ratio performed
less accurately than did PtR, probably because it con-
tained less information than the other predictors about
the matches played.

The most noteworthy finding is the shrinkage phe-
nomenon of the Pythagorean exponents, which raises
two questions: Should the Pythagorean exponent be
shrunk from 14 to, for example, 10 or lower, or should
16.5 be used according to Oliver and ESPN? This is
a matter of difference between group and individual
inference.
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Table 9

Pythagorean exponents and prediction for adjusted PtR

Time in season 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pythagorean.25 37.935 43.552 45.829 50.262 54.842 57.866 59.014 56.289
Pythagorean.50 18.864 21.226 22.346 24.451 26.657 27.913 28.322 27.251
Pythagorean.75 12.038 13.681 14.530 15.947 17.432 18.268 18.537 17.903
MSE.25 0.0132 0.0118 0.0116 0.0119 0.0127 0.0150 0.0204 0.0343
MSE.50 0.0119 0.0111 0.0112 0.0115 0.0125 0.0149 0.0205 0.0341
MSE.75 0.0121 0.0113 0.0113 0.0115 0.0126 0.0150 0.0206 0.0341

Table 10

Pythagorean exponents and prediction for adjusted WLR

Time in season 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pythagorean.25 2.5854 3.1158 3.3200 3.6752 4.0137 4.2524 4.3989 4.2082
Pythagorean.50 1.2582 1.4833 1.5913 1.7605 1.9093 2.0096 2.0708 1.9989
Pythagorean.75 0.7614 0.9170 0.9962 1.1100 1.2081 1.2735 1.3147 1.2715
MSE.25 0.0143 0.0126 0.0123 0.0124 0.0134 0.0158 0.0208 0.0346
MSE.50 0.0132 0.0120 0.0118 0.0120 0.0133 0.0158 0.0209 0.0345
MSE.75 0.0134 0.0122 0.0119 0.0121 0.0134 0.0159 0.0211 0.0345

Table 11

The shrinkage and mean squared errors of prediction for the Bradley-Terry strength

Time in season 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pythagorean 0.2627 0.3718 0.6154 0.7023 0.7788 0.8248 0.8590 0.8225
Standard error 0.0157 0.0196 0.0225 0.0249 0.0279 0.0317 0.0373 0.0500
Shrinkage factor 0.2875 0.4068 0.6734 0.7685 0.8523 0.9026 0.9400 0.9000
Mean squared error 0.0153 0.0137 0.0119 0.0121 0.0133 0.0159 0.0209 0.0346
MSE.0.9 0.0229 0.0162 0.0143 0.0132 0.0138 0.0161 0.0210 0.0351

To understand the shrinkage phenomenon more
clearly, the concrete example involving baseball pro-
vided by Efron (2010, pp. 7-10) can be considered. To
estimate the future batting averages of 18 MLB play-
ers according to their past batting averages in the 1970
season, the estimators decreased substantially toward
the average of all 18 players. This method signif-
icantly increases the overall accuracy of predictions
for all players. An intuitive understanding of the com-
pensation between strongly and poorly performing
players is that strong or weak performances in the past
may have been due to good or bad luck. The stronger
or weaker performances may involve more good or
bad luck. In this situation, good and bad luck are
positive and negative randomness, respectively. To
more accurately predict future events, unpredictable
luck should be removed, resulting in the shrink-
age phenomenon. This example illustrates the law
of “regression to mean”: teams overachieving in the
past tend to revert to their typical performances in
the future, and likewise for teams underachieving in
the past. As indicated by Efron (2010), in the base-
ball example, the strongest- and weakest-performing
players may be adjusted excessively toward the aver-
age. This can be avoided by using different shrinkage

Table 12

Prediction of game-by-game outcomes

PtR PtD ODR WLR BT

Accuracy (h = 0.5) 0.662 0.662 0.662 0.655 0.654
Deviance (h = 0.5) 1.234 1.233 1.235 1.244 1.270
Accuracy (h = 0.6) 0.682 0.683 0.661 0.683 0.680
Deviance (h = 0.6) 1.184 1.183 1.224 1.185 1.216

factors for each player, shrinking less for extraordi-
narily strong or weak players. However, the actual
application of different shrinkages can be overly com-
plicated and beyond the scope of this paper. When
the Pythagorean exponent is applied to NBA teams,
an effective method is selecting different shrinkages
for different purposes. For example, to predict the
future winning percentage of each individual team
and achieve the highest overall prediction accuracy,
shrinkage is recommended, particularly early in a sea-
son. Similar to the baseball example, shrinkage can be
excessive for extremely strongly or poorly perform-
ing teams. In such instances, mild or no shrinkage
should be used. In this regard, the insight of Oliver is
acknowledged.

Notably, all of the aforementioned studies can be
performed using a normality-based model; in other
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words, a model based on the normal distribution
rather than on the logit distribution, such as the model
discussed in this paper. The results of both models are
similar. Another challenge is predicting the outcome
of an individual game. The main difficulty of which
lies in the time-varying nature of team strengths, the
appropriate calibration of the offensive and defen-
sive strengths of a team according to numerous
factors, and correctly modeling the win-loss outcome.
The Pythagorean estimation of expected wins is not
designed primarily for this purpose; its popularity
lies in its simplicity. Nevertheless, as shown in Sec-
tion 5, this estimation can be fairly easily adapted,
as described by Oliver (1996), to incorporate home
advantage for estimating the win-loss probability of
a particular game.
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