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Abstract. The optimum neural network combined with sliding mode control (ONNSMC) introduces the approach as a means of
developing a strong controller for a robot system with two links. Sliding mode control is a strong control method that has found
widespread use in a variety of disciplines and recognized for its efficiency and easy tuning to solve a wide variety of control
issues using nonlinear dynamics. Nevertheless, the uncertainties in complex nonlinear systems are huge, the higher switching
gain leads to an increase of the chattering amplitude. To mitigate this gain, a neural network (NN) is utilized to predict the
uncertain sections of the system plant with on-line training using the backpropagation (BP) technique. The learning rate is a
hyperparameter of BP algorithm which has an important effect on the results. This parameter controls how much the weights of
the network are updated during each training iteration. Typically, the learning rate is set to a value ranging from 0.1 to 1. In this
study, the Ant Colony Optimization (ACO) algorithm is employed with the objective of enhancing the network’s convergence
speed. Specifically, the ACO algorithm is utilized to optimize this parameter and enable global search capabilities. In order to
reduce the response time caused by the online training, the obtained output and input weights are updated using the adaptive laws
derived from the Lyapunov stability approach, while simulations are conducted to evaluate its performance. The control action
employed in the approach is observed to exhibit smooth and continuous behavior, without any signs of chattering.
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1. Introduction

The design of motion control for robot manipulators has gained significant interest due to its challenging nature,
which makes the control strategy very difficult. Accurate estimation of dynamic parameters is crucial for the system,
but it is difficult to obtain exact dynamic models due to significant uncertainties, such as payload parameters, internal
friction, and external disturbances, which are present in the nominal model of the system. To address uncertainties in
parameters, multiple methods have been suggested. These include neural network-based controls [2,7,9,12,16,25],
neural adaptive proportional-integral-derivative (PID) control [13], fuzzy PID controller [21], PID controller tuned
using the Whale optimizer algorithm [10], Ant Colony Optimization (ACO) controller [1], Nonlinear Model Pre-
dictive Control tuned with neural networks [14], as well as the Sliding Mode Control (SMC) [17–20], the adaptive
sliding mode disturbance observer based robust control [22] and the fuzzy SMC [23].

These robot models are highly nonlinear which makes the control strategy very difficult. Several approaches to
control manipulator robots are proposed in the literature. Guechi et al. [6] developed a model predictive control

2772-3577/$35.00 © 2023 – IOS Press. All rights reserved.

mailto:s.massou@uae.ac.ma


142 S. Massou / Optimized robust control based ACO technique for two links robot

MPC combined with the linear quadratic LQ optimal control. Zanchettin, Rocco and Motion [24] proposed a robust
control approach with constraints for an industrial robot manipulator.

The approach known as SMC is highly significant when dealing with systems that possess uncertainties, nonlin-
earities, and bounded external disturbance. Nonetheless, the control effort may experience unpleasant chattering,
and it is necessary to establish bounds on the uncertainties when designing the SMC. The use of boundary layer
solutions is a well-known method to eliminate chattering problems in control systems, as described in previous
research [18,19]. However, this approach only works effectively for systems with small uncertainties. For systems
with large uncertainties, a neural network structure can be employed to estimate the unknown parts of the two-link
robot model. As a result, system uncertainties are kept to a minimum, allowing for a lower switching gain to be em-
ployed. The backpropagation algorithm (BP) is used to train the neural network weights in real time, as explained in
previous research [5,11]. The proposed control method involves incorporating the predicted equivalent control with
the robust control term, and the estimated function from the neural network is integrated into the equivalent control
component. The learning rate is an important parameter of the BP algorithm, with a recommended value between
0.1 and 1, according to previous research [5,11]. However, choosing a learning rate that is too small or too large can
hinder convergence. To address this issue, we utilize the ACO algorithm [3,4], which has global search capabilities,
to optimize the learning rate and improve training speed.

This paper is structured as follows: Section 2 details the proposed optimal neural network sliding mode control,
while Section 3 presents the results of simulation that prove the proposed approach’s robust control performance.
Finally, Section 4 provides concluding remarks.

2. Optimal neural network sliding mode control design

2.1. Controller design

The state space formulation of the dynamic model of the two-link robot is given by [11]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = f1(x) + g11(x1, x3)u1 + g12(x1, x3)u2 + ζ1(x, t)

ẋ3 = x4

ẋ4 = f2(x) + g21(x1, x3)u1 + g22(x1, x3)u2 + ζ2(x, t)

(1)

Where ξ1(x, t) and ξ2(x, t) are referring to the unknown components. The inputs and outputs of the system are
respectively, u = [u1 u2]T and x = [x1 x2 x3 x4]T .

The control law for the robot manipulator is presented in [11] as follows:

u = g−1
n (x)

(
−fn(x) +

(
ẋ2d

ẋ4d

)
− βė

)
− ksat(S) (2)

And

g(x1, x3) =
(

g11(x1, x3) g12(x1, x3)

g21(x1, x3) g22(x1, x3)

)

With g11(x1, x3) > 0 and g22(x1, x3) > 0 and f (x) = [f1(x) f2(x)]T
Besides r = 2 is the relative degree of the system (1), and the sliding surface is characterized as:

S = ė + βe (3)
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β is designed diagonal matrix as follows:

β =
(

β11 0
0 β22

)

The selection of β must satisfy the following Hurwitz polynomial:

s(2) + β11s
(1) = 0

s(2) + β22s
(1) = 0

(4)

The system’s output tracking error can be described as:

e = [
e1 e2

] = [
x1 − x1d x3 − x3d

]T (5)

Where x(t) and xd(t) are respectively the trajectory and the desired trajectory of a robot
Based on equations (2) and (5), we can write:

ë = Aė + Bζ̃ (x, t) − Bgn(x)us (6)

With us = − ksign(S)

2.2. Neural network representation

This article focuses on a neural network that consists of two layers of adjustable weights. The state input variables
are denoted as x, while the output variables are represented as: y1 = ξ̂1(x, t) and y2 = ξ̂2(x, t)

yk = WT
k σ(WT

j x) k = 1, 2. The activation function used in the hidden layer is denoted by σ(.) and is imple-

mented as a sigmoid function, which can be expressed as: σ(s) = 1
1+e−s

The connectivity weights between the hidden and output layers, as well as between the input and hidden layers,
are specified as: Wk = [Wk1 Wk2 . . . WkN ]T and Wj = [Wj1 Wj2 . . . WjN ]T . Besides, The actual output ydk(x),
which represents the difference between the actual and nominal functions, can be expressed as:

ydk(x) = yk(x) + ε(x) (7)

where ε(x) is the approximation error of NN.
During the online implementation, the neural network’s weights are changed using the gradient descent method

(GD), which involves iteratively adjusting the weights to minimize the error function (E). To begin, the GD approach
computes the partial derivative of the error function with respect to each weight in the network. This derivative
represents the direction in which the error function increases most rapidly. Therefore, the weights are updated in
the opposite direction of the partial derivative in order to minimize the error function. The size of the weight update
is determined by a learning rate parameter, which is chosen such that the weight update is not too large, in order
to avoid overshooting the minimum of the error function, but not too small, in order to avoid slow convergence.
The gradient descent method is a popular optimization technique that is widely used in neural network training as
follows:

∂Wkj

∂t
= −ηk

∂E

∂Wkj

(8)

Where ηk > 0 is the usual learning rate and the cost function E represents the quadratic error between the desired
and actual output values and is used as an error index. The least square error criterion is commonly chosen to define
the cost function is given by: E = 1

2

∑2
k=1 e2

k . The gradient terms ∂E
∂wkj

is the error function’s partial derivative with
respect to each weight in the network, which are required for the gradient descent method and can be computed
using the backpropagation algorithm [8].
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2.3. Implementation of adaptive laws

The network weights are adjusted using the hybrid BP algorithm which takes important time to have a result, to
deal with this time response weights are adjusted offline. In this case the output of ANN with 5 hidden nodes can be
presented by:

ζ̃ (x, t) = Wk ∗ σk(x,Wj ) (9)

The parameters Wk and Wj need to be adjusted further for the purpose to minimize approximation errors. The
adaptive rules for them were developed as follows [15]:

{
Ẇk = −η1σ

T
k BT P ė

Ẇj = −η2x
T BT P ė

(10)

Where η1 and η2 are constants that are always positive. P is the positive and symmetric definite matrix that corre-
sponds to:

J = −(
AT P + PA

)
(11)

Where the designer selected J as a asymmetric definite matrix.
The parameters Wk and Wj described in (10) are adjusted using the projection algorithm as follows:

Ẇk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−η1σ
T BT Pe if ‖Wk‖ < MB or

if

{
‖Wk‖ = MB and

eT PBσT Wk � 0

−η1σ
T BT Pe − eT PBσT Wk

‖Wk‖2 Wk if

{
‖Wk‖ = MB and

eT PBσT Wk < 0

Ẇj =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−η2x
T BT Pe if ‖Wj‖ < MB2 or

if

{
‖Wj‖ = MB2 and

eT PBxT Wj � 0

−η2x
T BT Pe − eT PBxT Wj

‖Wj t‖2 Wj if

{
‖Wj‖ = MB2 and

eT PBxT Wj < 0

(12)

Theorem. Suppose the nonlinear system described by (1). If the adaptive neural control rule mentioned in (2) is
used with the parameter adaptation laws (12), as a result, the tracking errors converge to zero as t → ∞ and all
signals in the closed-loop system are limited

Proof. Take into consideration the possible lyapunov function, which is:

V̇ = 1

2
ėT P ė + 1

2η1
WT

k Wk

The Lyapunov function’s derivative is stated as:

V̇ = 1

2

(
ëT P ė + ėT P ë

) + 1

η1
ẆT

k Wk
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Using equation (6), we have:

V̇ = 1

2

((
Aė + Bζ̃ (x, t) − Bgn(x)us

)T
P ė + ėT P

(
Aė + Bζ̃ (x, t) − Bgn(x)us

)) + 1

η1
ẆT

k Wk

Applying equations (9) and (10), we get:

V̇ = 1

2

((
Aė + Bζ̃ (x, t) − Bgn(x)us

)T
P ė + ėT P

(
Aė + Bζ̃ (x, t) − Bgn(x)us

)) + 1

η1

(−η1σ
T
k BT P ė

)T
Wk

V̇ = 1

2
ėT

(
AT P + PA

)
ė + 1

2

(
ζ̃ T (x, t)BT P ė + ėT PBζ̃ (x, t)

)
− 1

2

(
uT

s BT gT
n (x)P ė + ėT PBgn(x)us

) − ėT PBσkWk

P is symmetric, we get:

V̇ = 1

2
ėT

(
AT P + PA

)
ė − 1

2
uT

s BT gT
n (x)P ė

V̇ � 1

2
ėT J ė − 1

2

∥∥uT
s

∥∥BT gT
n (x)P ‖ė‖ � 0

Hence V̇ is negative semi definite, the signals ė and Wk are all bounded.

The utilization of projection algorithm has a good performance on the tracking trajectory and also in the control
law illustrated in the next section.

2.4. ACO training algorithm

Dorigo invented ACO, which is based on actual ant behavior [3,4]. ACO operates on the principle that, as a
collective, ants are capable of finding the most efficient path to their destination through simple communication
methods. In the case of real ants, pheromones serve as the communication medium, with ants leaving a trail marker
on the ground. Pheromones gradually evaporate over time, unless additional amounts are deposited, indicating that
a greater number of ants prefer this path. As a result, the trail with the greatest pheromone levels is considered
to be the most optimized path. ACO is typically applied to solve the Traveling Salesman Problem (TSP) and its
fundamental concept is as follows: when an ant moves through an edge, it releases pheromone on that edge. The
amount of pheromone is proportional to the edge’s shortness. The pheromone attracts other ants to follow the same
edge. Eventually, all ants choose a unique path, which is the shortest possible path. The ACO methodology is
presented in the following manner:

a) Step 1(initialization): Randomly place M ants in M cities, and set a maximum number of iterations beforehand.
tmax; Let t = 0, where t denotes the t_th iteration step; the amount of pheromone on each edge is set to an
initial value.

b) Step 2 (while t � tmax)
c) Step 2.1: Each ant chooses its next city based on the transition probability. The probability of transitioning

from the i_th city to the j_th city for the k_th ant is defined as follows:

P k
ij (t) =

⎧⎨
⎩

τα
ij η

β
ij∑

x∈allowed τα
is (t)η

β
is(t)

ifj ∈ allowedk

0 otherwise
(13)

where allowedk represents the set of cities that the k_th ant can visit; τij (t) is the value of pheromone on a particular
edge. (i, j). The local heuristic function is defined as follows: ηij = 1

dij
where dij is the distance between the
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i_th city and the j_th city; the parameters α and β establish the degree of influence that trail strength and heuristic
information have on each other.

d) Step 2.2: Once all ants have completed their tours, the pheromone values are updated using equation (6) as
shown below:

τij (t + 1) = (1 − ρ)τij (t) + �τij (t) (14)

Where �τij (t) = ∑m
k=1 �τ

(k)
ij (t) and

�τ
(k)
ij (t) =

{
Q

L(k)(t)
if the k_th ant pass edge (i, j)

0 otherwise

Where L(k)(t) refers to the distance traveled by the route taken by the k_th ant during the t_th iteration; is the
persistence percentage of the trail (thus, (1 − ρ)corresponds to the evaporation); Q denotes constant quantity of
pheromone.

e) Step 2.3: Increase the current iteration number t ← t + 1
f) Step3: Terminate the process and choose the shortest path among the routes taken by the ants as the output.

3. Simulation results

This section of the paper presents the experimental evaluation of the proposed control approach on a two-link
robot, which is modelled according to equation (1). The primary goal of this control approach is to ensure that the
system accurately follows the desired angle trajectory: x1d = (π/3) sin(t) and x3d = π/2 + (π/3) cos(t)

The masses are assumed to be m1 = 0.6 and m2 = 0.4. The uncertainties taken into account are in the form of a
vector random noise with a magnitude of one, J = (

50 0
0 50

)
, MB = 1.55, MB2 = 2, η1 = 5, η2 = 2, A = [10; 01],

B = [10; 01]
The coefficients of the switching functions are given by: γ11 = γ22 = β11 = β22 = 4.
This paper utilizes a population of 40 ants as shown in Table 1.

Table 1

The optimal value of the learning rate ηk that leads to the best global performance

N° of iteration ηk N° of iteration ηk

1 0.7242 17 0.2468

2 1 18 0.2834

3 0.7952 19 0.3634

4 0.4473 20 0.3442

5 0.0533 21 0.3454

6 0.3008 22 0.3535

7 0.1417 23 0.3554

8 0.3711 24 0.3442

9 0.5433 25 0.3554

10 0.6687 26 0.3554

11 0.5894 27 0.3554

12 0.4653 28 0.3554

13 0.3285 29 0.3554

14 0.2427 30 0.3554

15 0.2139 31 0.3554
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Fig. 1. Angles responses x1 = q1 using: the proposed ONNSMC, SMC and desired trajectory.

Fig. 2. The control torque signals τ1 using the proposed ONNSMC.

By examining Figs. 1, it can be observed that the position tracking for links 1 represented by dashed line (blue)
using the control approach proposed ONNSMC follows perfectly the desired trajectory represented by solid line
(red), however, the gap between the position tracking using SMC represented by dot line (black) and the desired
trajectory is very significant. Besides, the Figs. 2 represent the control torque signals of the links 1, and it is smooth
without any oscillation behaviours even when there are significant uncertainties. In Figs. 3, We can see that the
ONNSMC position of link 2 matches closely the reference signals and quickly, however the SMC result position
converge to the desired trajectory with meaningful distance. Moreover, Figs. 4 demonstrate that the control torque
signals of link 2 is smooth and do not exhibit any oscillatory behavior too.

4. Conclusion

This research paper proposes a novel method for robust optimal reference tracking in two-link robot manipulators
by combining traditional sliding mode control with neural networks. Utilizing the neural network involves making
an estimation of the nonlinear model function that is not known, and its parameters are adapted through the online
BP learning algorithm to provide a better description of the plant. This allows for the use of a lower switching gain,
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Fig. 3. Angles responses x3 = q2 using: the proposed ONNSMC, SMC and desired trajectory.

Fig. 4. The control torque signals τ1 using the proposed ONNSMC.

even in the presence of large uncertainties. The ACO algorithm is used to optimize the learning rate of the BP algo-
rithm for faster convergence. Simulation results demonstrate the effectiveness of the proposed method in tracking
the reference trajectory without any oscillatory behavior. Future research may explore more efficient optimization
methods for the sliding additive control gain. The speed of convergence in terms of the tracking performance is
depicted in Figs 1 and 3, that represent the position tracking for link 1 and link 2. The corresponding control torque
signals in Figs 2 and 4 are smooth and free of oscillatory behavior.
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