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Modeling of Parkinson’s Disease Progression and Implications for Detection of Disease 
Modification in Treatment Trials 
 
Overview of the Data  
 
Supplementary Table 1. Descriptive statistics of PPMI and PASADENA data used in the analysis 

 

 PPMI Parkinson’s disease 
cohort  PASADENA 

Placebo cohort 

Original number of participants included in 
the analysis 401  105 

MDS-UPDRS 
part III (OFF) 

Total number of longitudinal observations 3,347  819 

Mean duration of individual data 
longitudinal collection (sd) 6.5 years (3.0)  1 years (0.1) 

Mean frequency of data collection (sd) 9.9 months (11.3)  1.7 months (0.4) 

MDS-UPDRS 
part II 

Total number of observations 5,795  829 

Mean duration of individual data 
longitudinal collection (sd) 7.5 years (3.1)  1 (-) 

Mean frequency of data collection (sd) 6.7 months (5.0)  1.7 months (0.4) 

MDS-UPDRS 
part I 

Total number of observations 5,769  826 

Mean duration of individual data 
longitudinal collection (sd) 

 
7.5 years (3.1)   

1 (-) 

Mean frequency of data collection (sd) 6.7 months (5.0)  1.7 months (0.4) 

Symptomatic 
treatment 

Percentage of subjects with use of 
symptomatic treatments at any time of 

follow-up 
> 90%  65% 

Mean of percentage of time under 
symptomatic treatment across subjects (sd) 82.4% (17.9)  79.4% (32.0) 

Mean of median levodopa-equivalent total 
daily dose across subjects (sd) 217 (197)  158 (106) 

Exploratory 
statistics on 

covariates for 
PPMI PD 

cohort 

Sex F | M (33% | 67%) 

Mean age at diagnosis (sd) 62.8 years (4.3) 

Mean time from diagnosis (sd) 205 days (207) 

Mean baseline part III (sd) 21.2 (8.8) 

Mean baseline DaT-SPECT putamen SBR 
average 0.81 (0.3) 



Pool of Models 

 There is a variety of possible ways to model progression and effect of symptomatic treatment 

thus proposing a unique mathematical framework for doing so is always, by definition, reductive. 

While still limited, creating a model ensemble (pool of models) covering a wider space of possible 

ways for modeling the disease progression and impact of treatment is a valid approach to reduce 

uncertainty in the prediction of these processes. Here, a total of 32 mathematical models were 

designed to characterize the PPMI MDS-UPDRS parts I, II, and III longitudinal data, to estimate 

the natural progression of the disease and the effect of symptomatic treatments. We built this pool 

of structural models by increasing step-by-step complexity in how to account for the natural 

progression of the disease and in how to account for the effect of symptomatic therapies.  

 For the models of natural disease progression, we tested linear, logistic or Gompertz growth 

models. The structure of linear models generally contains two parameters: the baseline and the 

growth rate. The logistic and Gompertz structural models contain one additional parameter: the 

saturation threshold which corresponds to an estimate of the maximal score of the scale as “seen” 

from the analyzed data.  

 For the models of the effect of symptomatic treatments, we tested 3 modeling modalities of 

increasing level of complexity as illustrated in Supplementary Figure 1: 

● The effect is linearly proportional to the daily dose;  

● The effect of a same amount of daily dose increases with time, i.e. effect builds up with 

time; 

● Same as the previous point but includes a nonlinear relationship between the dose and the 

effect (sigmoid [Emax] model). 
 



 
Supplementary Figure 1. Various model formulations for describing the effect of symptomatic 
treatments on disease progression (A) and visuals of the corresponding relationships (B).  
 
 

 On the 32 possible structural model equations, we tested 3 different residual error models to 

quantify the unexplained variability leading to a total of 96 models on which data fitting for MDS-

UPDRS parts I, II and III was performed. 

 

Model Averaging 

 To average the results of data fitting with the 96 models, we applied a filter following the fitting 

in order to not exclude the failed fits and/or fits resulting in unrealistic parameter estimates. The 

model was excluded from the model averaging evaluation if one of the following criteria was met:  

• Relative standard error of any of the parameter > 50% 

• Bayesian information criteria (BIC) higher than 20% more of the minimal BIC obtained 

throughout the 96 models 

• Estimation progression > 20 points/year 

 We report below the main parameter estimates (baseline, progression, saturation, and 

symptomatic effect) in terms of mean value as well as standard deviation obtained throughout the 

selected models. These estimates are close to the ones reported within the core of the manuscript 

with the logistic growth model.  



Supplementary Table 2. Summary of parameter estimates of models of the time course of MDS-
UPDRS parts III (off), II, and I. The LEDD effect denotes the strength of the LEDD effect on the 
score. It corresponds to a negative or positive change of the score normalized by the median dose 
of LEDD used by subjects. Note that the progression is calculated by equation 3 in the text. The 
reported standard deviation is calculated as the standard deviation of population values estimated 
throughout all selected models from the 96 models.  

 Baseline score 
(sd) Progression (sd) Saturation threshold 

median (sd) 
Symptomatic 

effect (sd) 

MDS-UPDRS 
part III (off) 20.7 pts (0.6) 3.0 pts/year (1.3) 55.7 pts (8.2) - 0.7 (0.7) 

MDS-UPDRS 
part II  5.1 pts (0.3) 1.2 pts/year (0.4) 26.8 pts (6.8) - 0.6 (0.2) 

MDS-UPDRS 
part I 4.7 pts (0.4) 0.8 pts/year (0.3) 15.5 pts (1.6) + 0.4 (0.2) 

 
 
Mathematical Formulation of the Regression Problems 

 The 96 models were evaluated using population (nonlinear mixed-effect) approach. In this 

section, we develop the approach for the logistic growth model as described in the core of the 

manuscript.  

 MDS-UPDRS part I, II, and III scores were modeled independently. The regression problem 

was formulated using a population approach where the 4 (population) parameters (or fixed effects) 

were associated to random effects.  

𝑦!" = 𝑓$𝑡!"; 𝛽, 𝜂!* + 𝑒!" , 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑛! 

Where 𝑁 denotes the number of individuals and 𝑛! the number of data points of individual 𝑖. 

𝛽 and 𝜂! are the 4x1 vectors of fixed and individual effects. 𝜀!" denotes the residual errors and are 

expressed as follows: 

𝑒!" = 𝑔$𝑡!"; 𝛽, 𝜂!* ∙ 𝜀!" , 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑛! 

 

where 𝜀!" is a random variable with mean 0 and variance taken equal to 1 for identifiability reason.  

𝜀!" ~!.!.$𝒩(0,1) 	1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑛! 

𝑔, the (residual) error model, can take many forms. In our analysis, we have used constant error 

model: 𝑔$𝑡!"; 𝛽, 𝜂!* = 𝑎!; proportional error model: 𝑔$𝑡!"; 𝛽, 𝜂!* = 𝑏! ∙ 𝑓$𝑡!"; 𝛽, 𝜂!*; and 

combined error model 𝑔$𝑡!"; 𝛽, 𝜂!* = 𝑎! + 𝑏! ∙ 𝑓$𝑡!"; 𝛽, 𝜂!*. 



 The vector of population parameters 𝛽 is composed by four parameters: 𝑆%, the score at 

baseline, 𝜃, the saturation threshold of the logistic growth, 𝑇&'() the progression parameter and 

𝛼 the symptomatic treatment effect parameter. 

 Individual parameters, 𝑆%, 𝑇&'() and 𝜃 were assumed to be log-normally distributed to 

prevent for negative values, e.g.,  

log(𝑆%)~	𝒩 Clog C𝑆%popD , 𝜔*!
+ D 

 However, parameter 𝛼 was assumed to be normally distributed to allow for both positive 

(treatment increasing the score) or negative values (treatment decreasing the score).  

𝛼~	𝒩$𝛼&(&, 𝜔,+* 

 

 We assumed no correlation between the random effects associated to the two parameters.  

We reported in Table 1 of the manuscript the population parameter estimates and their precision 

as 95% confidence interval as well as inter-individual variability (I.I.V) in terms of coefficient of 

variation (for log-normally distributed parameters) or standard deviation (for normally 

distributed parameters). 

 For MDS-UPDRS part I, the residual model leading to the best fit was a combined error 

model with 𝑎! = 𝑎 = 1.8 points and 𝑏! = 𝑏 = 0.3. For MDS-UPDRS parts II and III, the best 

residual error models were proportional error models with 𝑏! = 𝑏 = 0.4 for part II and 𝑏! = 𝑏 =

0.2 for part III.  

 

Covariate Model Building  

 The logistic model was used to search for significant covariates predictive of the progression. 

Effect of age, time from diagnosis, baseline MDS-UPDRS part III, sex and Hoehn and Yahr stage 

were considered as potential covariates for the baseline, growth and symptomatic treatment effect 

parameters. A stepwise covariate model (SCM) was used with inclusion threshold at 1% 

(difference in -2 x Log-likelihood of 6.63 points) and exclusion threshold at 0.01% (difference in 

-2 x Log-likelihood of 15.13 points).1 

 Covariates age, time from diagnosis and MDS-UPDRS part III baseline were considered as 

continuous covariates while sex and Hoehn and Yahr stage were considered categorical.  

 For continuous covariates, the covariate model was formulated as follows (here for a parameter 

log-normally distributed): 



log(𝑆%) = log C𝑆%popD + 	𝛽 ∙ 𝑎𝑔𝑒 + 𝜂! 

while for categorical covariates (e.g. sex): 

log(𝑆%) = log C𝑆%popD + 	𝛽 ∙ 𝕝)"-./01 + 𝜂! 

 For MDS-UPDRS part I, no covariate was identified.  

 For MDS-UPDRS part II, the MDS-UPDRS part III at baseline (diagnosis) was identified as a 

significant covariate of MDS-UPDRS part II at baseline. The association was positive (beta = 0.2, 

95% CI = [0.1 – 0.4]) meaning that the higher MDS-UPDRS part III the higher MDS-UPDRS part 

II at baseline. The reference objective function (-2 x Log-likelihood) without covariates was 23963 

points. The model with covariate had an improvement of the objective function of 37 points. 

 For MDS-UPDRS part III, the Hoehn and Yahr stage was identified as a significant covariate 

of baseline parameter estimates (beta = 0.5, 95% CI = [0.4 - 0.6]): the positivity of the beta 

parameter indicates that the higher the stage, the higher the baseline. The reference objective 

function without covariates was 17733 points. The model with covariate led to a reduction of the 

objective function of 89 points. 

 

Internal Evaluation  

 The prediction-corrected visual predictive check (pcVPC) for MDS-UPDRS part I, II, and III 

are presented in Supplementary Figure 2. 

 

 
Supplementary Figure 2. Internal evaluation of PPMI model on PASADENA placebo data. 
Prediction-corrected visual predictive check (pcVPC) of PPMI model prediction (blue shaded 
areas, 90% confidence interval around the 5th, 50th, and 95th percentiles) with data from PPMI 
(black lines). Left panel: MDS-UPDRS part I; Middle panel: MDS-UPDRS part II; Right panel: 
MDS-UPDRS part III off. Time in days. 
 
  



External Evaluation on PASADENA Year 1 Placebo Data 

 We report below the numerical predictive check for the external evaluation of the models 

(developed with PPMI data) on PASADENA year 1 placebo data.  

 
Supplementary Table 3. Numerical predictive check for models built on PPMI and externally 
evaluated with PASADENA placebo data for 1 year. 

 Below 10th 
percentile 

Below 50th 
percentile 

Above 90th 
percentile 

MDS-UPDRS part III off 11% 46% 12% 
MDS-UPDRS part II 17% 48% 9% 
MDS-UPDRS part I 10% 59% 7% 

 
 
Progression Models for PPMI Prodromal Cohort 

 MDS-UPDRS parts II and III from the prodromal cohort were analyzed by means of linear 

growth model to estimate the lag time between parts III and II onset. To avoid estimation problems 

due to the low volume of the dataset, the data after phenoconversion were still kept for the analysis. 

In the prodromal cohort the growth for part III was estimated at 3 points/year, similar to the growth 

of part II. However, for part II, the growth was estimated to less than 0.5 points/year, so 

significantly lower than after PD diagnosis. The growth parameters were estimated with relatively 

low uncertainty (residual standard error of 3% for both part III and part II).  

 

Sensitivity Analysis with Respect to Genetic Screening 

 To check if the modeling still stands if genetic screening is not conducted, we performed a 

sensitivity analysis including also the genetic forms of PD and estimated the progression 

parameters. The result of the sensitivity analysis is presented in Table 1 below and shows that the 

inclusion of the data from patients with genetic forms of PD does not significantly modify the 

disease progression estimates: 

Subscore 
With or w/o 

genetic 
forms 

Estimated 
progression 

S0 (baseline)  𝜃 (plateau) 𝛼 (symptomatic)  𝑇!"#$  

Estimate I.I.V 
(CV) Estimate I.I.V 

(CV) Estimate I.I.V 
(s.d) Estimate I.I.V 

(CV) 

Part II 
Without 1 point/year 5.5 69% 21.3 21% -0.5 2.8 84 81% 

With 1 point/year 4.8 73% 19.4 27% -0.3 2.8 75 80% 

Part III 
Without 3 points/year 20.5 41% 43.3 23% -0.6 2.8 122 87% 

With 3 points/year 19.9 43% 45.4 18% -1.1 2.8 137 111% 

Summary of parameter estimates for MDS-UPDRS part II and part III comparing the situation where data from patients with genetic 
forms of PD were excluded (as reported in the core manuscript) or included.  



Derivation of Half-Time and Progression from the Logistic Growth Model 

 In the logistic growth model (equation 1), the parameter 𝑇&'() is a progression parameter from 

which the half-time of progression can be calculated as follows.  

ℎ𝑎𝑙𝑓𝑡𝑖𝑚𝑒 =
𝑇&'()

𝑆% + 0.5(𝜃 − 𝑆%)
  

 

 The model parameters were used to estimate a linearized natural disease progression speed, 

considered as a valid approximation of growth for the first years of the disease:  

𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
𝜃 − 𝑆%

2 ∙ ℎ𝑎𝑙𝑓𝑡𝑖𝑚𝑒  

 

 

Clinical Trial Simulation 

 The equation (2) in the manuscript comes from the difference between the linearized 

progression without treatment (𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛! ∙ 𝑡𝑖𝑚𝑒) and with treatment (𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛! ∙

(1 − 𝑝𝑜𝑡𝑒𝑛𝑐𝑦) ∙ 𝑡𝑖𝑚𝑒).  

 We assume the endpoint is continuous and that both virtual treated and control group have 

same size 2
+
. Then effect is estimated from sampling the following distribution: 

𝐸V!(𝑡) = 𝒩(𝑒𝑓𝑓𝑒𝑐𝑡!(𝑡), 𝜎! ∙
2
√𝑛
)  

 The term 𝑒𝑓𝑓𝑒𝑐𝑡!(𝑡) is calculated from equation (2) in the manuscript and 𝜎! denotes the 

standard deviation of the scores for endpoint 𝑖. To estimate the standard deviation, we simulated 

the MDS-UPDRS part II and III progression models and calculated, at different time points 

between year 1 and 5, the standard deviation of the simulated data. Simulations were replicated 

100 times. We averaged the value over the number of replicates and over the first 5 years and use 

the resulting values as parameters 𝜎_𝑖 in equation (5). Following this process, 𝜎_𝑖 was 7.3 and 12.3 

for MDS-UPDRS part II and III respectively. 
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