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Abstract. Assessing imaging biomarker in the prodromal and early phases of Parkinson’s disease (PD) is of great importance to
ensure an early and safe diagnosis. In the last decades, imaging modalities advanced and are now able to assess many different
aspects of neurodegeneration in PD. MRI sequences can measure iron content or neuromelanin. Apart from SPECT imaging
with Ioflupane, more specific PET tracers to assess degeneration of the dopaminergic system are available. Furthermore,
metabolic PET patterns can be used to anticipate a phenoconversion from prodromal PD to manifest PD. In this regard,
it is worth mentioning that PET imaging of inflammation will gain significance. Molecular imaging of neurotransmitters
like serotonin, noradrenaline and acetylcholine shed more light on non-motor symptoms. Outside of the brain, molecular
imaging of the heart and gut is used to measure PD-related degeneration of the autonomous nervous system. Moreover, optical
coherence tomography can noninvasively detect degeneration of retinal fibers as a potential biomarker in PD. In this review,
we describe these state-of-the-art imaging modalities in early and prodromal PD and point out in how far these techniques
can and will be used in the future to pave the way towards a biomarker-based staging of PD.

Keywords: MRI, PET, neuroimaging, Parkinson’s disease, progression, diagnosis, prodromal, biomarker

INTRODUCTION

In Parkinson’s disease (PD), a biomarker-based
diagnosis like in Alzheimer’s disease is currently not
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established. However, an early and specific diagnosis
predicated on a biomarker-based staging in prodro-
mal and early stages of the disease would be of
great importance. This would offer the possibility
to include patients early in clinical trials and objec-
tively monitor disease progression [1]. Proposals for
biomarker-based staging of PD have been previously
introduced and follow a similar concept, but differ in
terms of consideration of genetic PD and neurode-

ISSN 1877-7171 © 2024 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

CORRECTED PROOF

mailto:thilo.van-eimeren@uk-koeln.de
https://creativecommons.org/licenses/by-nc/4.0/


2 H. Theis et al. / Imaging in Prodromal/Earliest Phases of PD

generation apart from the nigrostriatal dopaminergic
system [2, 3]. In the following, we review the state of
the art regarding imaging biomarkers in the prodro-
mal and early stages of PD. Table 1 summarizes these
imaging modalities with a special focus on their use in
clinical practice. Furthermore, we discuss future per-
spectives of these biomarkers and the extent to which
they can facilitate the way toward a biomarker-based
diagnosis and disease staging.

STATE OF THE ART

Magnetic resonance imaging (MRI)

Gray matter (GM) atrophy is a cardinal sign of
neurodegeneration which may be depicted by struc-
tural MRI using T1-weighted sequences. A typical
GM atrophy diagnostic pattern has not yet been con-
clusively established in PD [4, 5]. More pronounced
changes can be observed in PD with manifested cog-
nitive decline [6], with the most consistent early
PD-specific pattern of brain atrophy has been iden-
tified using deformation based morphometry and
partial least squares [7]. The authors described a
“PD-specific atrophy network” involving particularly
subcortical, but also cortical regions. Individual vari-
ation in this atrophy pattern was not only correlated
with PD symptoms, but also with CSF biomark-
ers and predicted scores in the motor and nonmotor
domains. Moreover, this network predicted disease
trajectories according to another longitudinal study
[8]. Notably, using the same methods, a distinct atro-
phy pattern has been reported in isolated REM sleep
behavioral disorder (iRBD) [9]. The same group also
showed that cortical regions with greater structural
and functional connectivity to the “PD-related atro-
phy network” demonstrated greater cortical atrophy
over the 1-year period [10] hinting at protein spread
along the brain’s neuronal connectome.

Changes in white matter fiber integrity can be
assessed using single-tensor diffusion imaging (DTI).
The two most common DTI parameters used are
mean diffusivity (MD) and fractional anisotropy
(FA). While decreased FA and increased MD are usu-
ally found in PD and interpreted as decreased fiber
integrity [11], other possible underlying mechanisms
include e.g. axonal degeneration, demyelination, and
larger axonal diameter. DTI changes in substantia
nigra (SN) have been rather controversial [12]. The
assumption of the Gaussian distribution of water
diffusion is the greatest limitation of DTI. Diffu-
sion kurtosis imaging (DKI) as an extension of

DTI can overcomes this limitation. In a TNWT-61
genetic mouse model of PD, increased kurtosis in
the thalamus was positively corelated with the total
alpha-synuclein signal in the region [13]. Using this
method in humans, the same group demonstrated
increased diffusion kurtosis in the SN and the motor
and premotor cortices in early PD [14]. Conversely,
kurtosis decreases in cortical GM, decreased fiber
integrity as assessed by FA and MD, and gross atro-
phy as assessed by DBM were dominant features
of cognitively impaired PD patients as compared
to early cognitively normal PD. Taken together,
early increases of kurtosis in early PD likely reflect
increased hindrance to water diffusion potentially
caused by �-synuclein deposition. In more advanced
PD with cognitive impairment the changes are in the
opposite direction likely reflecting neurodegenera-
tion.

A two-compartment diffusion model, free-water
imaging, was implemented in iRBD [15] and in early
PD [16], finding that the free water component may
be increased in the posterior SN as compared to HC.
This indicator of early neurodegeneration has been
interpreted as likely reflecting neuro-inflammation-
related oedema, blood–brain barrier disruption or
atrophy (Fig. 1, FW).

Another MRI technique depicts iron in the brain
and particularly in the substantia nigra pars com-
pacta (SNc). It uses iron sensitive sequences such
as T2* relaxometry or susceptibility weighted imag-
ing (SWI) detecting an oval hyperintensity within the
dorsolateral SN which constitutes the nigrosome-1.
This dorsal nigral hyperintensity (DNH), also called
the ‘swallow tail sign’, is detectable in individual
healthy controls (HC), but is reduced or lost in PD
due to increased iron deposition in this region [17]
(see Fig. 1, DNH). Absence of DNH has been shown
already in about two thirds of iRBD patients [18].
Unfortunately, the method currently only provides a
qualitative (‘yes’ or ‘no’) answer and not a quantifica-
tion of pathology, as with presynaptic dopaminergic
imaging (see below).

Quantitative susceptibility mapping (QSM)
enables quantification of iron in the brain, congruent
with histologic validation of iron content [19]. It is
a more sensitive measure than R2* relaxometry in
terms of detecting nigral iron increase due to PD, as
QSM accounts better for local tissue susceptibility
than R2* [20]. Changes in SN have already been
described in iRBD and may be present years before
the onset of PD [21]. QSM may also be assessed
in the parcellated striatum—one study reports that
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Table 1
Imaging Biomarkers assessing neurodegeneration in early PD and their use in clinical routine

Modality Assessment of PD-related neurodegeneration Availability and clinical use

Structural MRI • Excluding secondary parkinsonism. • Broadly available and established in clinical
routine.
• Included in MDS PD criteria.

• Detection of cerebral atrophy patterns. • Broadly available and established in clinical
routine.

Iron-sensitive MRI
T2*, SWI, QSM

• Quantifiable iron depositions in PD. • T2* and SWI are broadly available, QSM not.

• Swallow Tail Sign (dichotomous). • Not established in clinical routine.

Neuromelanin-sensitive
MRI

• Quantifiable degeneration of substantia nigra and
locus coeruleus.

• Not broadly available, not established in clinical
routine.

Diffusion MRI • Changes in WM integrity/ GM microstructure • Not broadly available, not established in clinical
routine for diagnostic purposes.

Functional MRI • Task-based activations, functional connectivity

DaT-SPECT • Quantifiable degeneration of dopaminergic
terminals.

• Established in clinical routine.

DOPA-PET • Included in MDS PD criteria.
PE2I-PET ♦ DaT SPECT: Broadly available.

♦ DOPA: Available.
♦ PE2I: Limited availability.

FDG-PET • PD-related metabolic patterns. • Broadly available, but not established in clinical
routine.

TSPO-PET • Imaging of microglia activation (inflammation). • Not broadly available, not established in clinical
routine.

Acetylcholine-, Serotonin-,
Noradrenalin-PET

• Quantifiable degeneration of the cholinergic,
serotonergic and noradrenergic system.

• Not broadly available, not established in clinical
routine.

MIBG-Scintigraphy/-
SPECT

• Quantifiable sympathetic denervation of the heart. • Available and established in clinical routine.

• Used mostly for differential diagnosis (PD vs.
MSA).
• Supportive criterium in MDS PD criteria.

OCT • Quantifiable degeneration of retinal fibers. • Available. Not established in clinical routine.

changes in the caudal motor striatum can be identi-
fied at the single-subject level with good accuracy
[22] (see Fig. 1, QSM).

Another promising MRI method is neuromelanin
sensitive (NMS) MRI. It is well known that dopamin-
ergic neurons in SNc and noradrenergic neurons in
locus coeruleus (LC) contain the pigment neurome-
lanin. The source of NM contrast is the NM binding
to iron, which is paramagnetic. Therefore, reduced
NMS signal can be observed in the posterolateral
motor areas of SN in early PD and iRBD compared to
HC with good classification accuracy [23], and even
5–6 years before the onset of symptoms of PD (see
Fig. 1, NMS) [21]. LC-MRI signal loss could also be
found at early PD and in iRBD [24].

We find it important to at least briefly mention
functional MRI. A recent study [25] showed global
(whole-brain) network changes in a large sample of
early mild drug naı̈ve PD patients as compared to
HC. At the connectome level, the authors described
impaired basal ganglia connections particularly to

the sensorimotor, default mode, and visual networks
in PD, which fits well with the connectome spread-
ing model of brain pathology. Based on more recent
literature, it seems that the default mode network
‘enhancement or inhibition’ in PD is driven by spe-
cific phenotypes such as hallucinations and cognitive
impairment, respectively [26, 27].

Imaging of the presynaptic dopaminergic system

It is assumed that the motor symptoms of PD occur
when about 50% of nigrostriatal dopaminergic neu-
rons are degenerated. However, newer results indicate
that the loss of dopaminergic terminals seems to be
more around 30% after adjusting for age [28]. Imag-
ing of the dopaminergic system therefore offers the
possibility to assess neurodegeneration even in pre-
clinical and prodromal phases of PD and represents
a powerful biomarker in these earliest disease stages.

Several different tracers for positron emission
tomography (PET) and single photon emission
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Fig. 1. Imaging Biomarkers of Dopaminergic Degeneration in PD. Various PET or MRI modalities can capture dopaminergic degeneration
(see Table 1 for availability and use in clinical routine). Examples of normal (D–) and pathological (D+) findings. Red arrows indicate
abnormality. Normal findings pointed out with green arrow. All images are in axial orientation. FP-CIT: dopamine transporter SPECT using
[123I]FP-CIT; PE2I: dopamine transporter PET using [18F]FE-PE2I; FDOPA: presynaptic dopamine turnover PET using [18F]DOPA;
QSM: Quantitative susceptibility mapping MRI of iron load the striatum. DNH: Dorsal nigral hyperintensity in SWI or T2* MRI, a.k.a.
‘swallow tail sign’. NMS: Neuromelanin-sensitive MRI of the substantia nigra; Courtesy Stephane Lehericy, Rahul Gaurav (Paris Brain
Institute, France). FW: Free water diffusion MRI of the posterior substantia nigra; Courtesy David Vaillancourt (University of Florida, USA).

computed tomography (SPECT) of the presynaptic
dopaminergic system are available. The most com-
monly used in clinical routine is SPECT imaging
of the dopamine transporter (DaT) with [123I]FP-
CIT (see Fig. 1, FP-CIT). However, the novel highly
selective DaT PET-tracers [18F]FE-PE2I represents
a promising alternative (see Fig. 1, PE2I). Apart from
DaT imaging, quantification of presynaptic dopamine
turnover with [18F]DOPA offers another possibility
to measure nigrostriatal dopaminergic degeneration
[29] (see Fig. 1, FDOPA).

DaT imaging can be visually interpreted and addi-
tionally confirmed by a semiquantitative analysis.
A z-score below –2 for striatal binding ratios has
been defined as an abnormal threshold during semi-
quantitative analysis [30, 31]. However, especially
in prodromal PD, less conservative thresholds might
be necessary to detect the earliest phases of nigros-

triatal degeneration. A recent study could show that
for differentiating PD a z-score cut-off below –1.27
of the posterior putamen of the more affected hemi-
sphere shows the highest accuracy [32]. However, the
type of tracer and imaging modality also seem to play
an important role in early and prodromal PD. With
the higher resolution of PET and the higher selec-
tivity of [18F]FE-PE2I for DaT a higher diagnostic
accuracy can be achieved as compared to [123I]FP-
CIT [33]. It could be shown with [18F]DOPA-PET
and functional MRI that dopaminergic degeneration
in early PD follows a somatotopic pattern, that is,
an upper limb-related degeneration in the putamen
and a progression over 2 years to the less affected
hemisphere [34]. In this regard it is worth mention-
ing the interesting link between DaT and DOPA
imaging. Asymptomatic patients with familial PD
showed a downregulation of DaT while [18F]DOPA-
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PET revealed an upregulated dopamine turnover
[35, 36].

A very important topic is the association of DaT
imaging in prodromal PD with phenoconversion to
clinical PD. A longitudinal study showed that patients
with iRBD with a DaT-specific putamen binding ratio
below 48% had significantly higher short-term risk
of developing PD [37]. Another study could demon-
strate that a putaminal uptake decrease of at least 25%
predicted Parkinsonism after 3 years [38]. Interest-
ingly, it could be shown that those iRBD patients
with DaT reduction did not differ in demographic
or clinical features at baseline [39]. However, DaT
SPECT signal was correlated with REM sleep with-
out atonia measures [40]. To conclude, iRBD patients
with reduced DaT binding have a high risk for (ear-
lier) phenoconversion to clinical PD independent of
other demographic or clinical features. It could be
shown that PD patients with iRBD show, compared
to PD without iRBD, a more symmetric reduction
of dopaminergic terminals [41]. However, this find-
ing was not supported in data of the PPMI cohort
[5]. Interestingly, another study indicated that right-
handed patients with iRBD have a left-hemispheric
predominance of subclinical nigrostriatal dysfunc-
tion, which was also shown in clinically established
PD [42]. Due to these inconsistent findings, the pat-
tern of DaT reduction in iRBD, i.e., more symmetric
or lateral reduction, warrants further investigations.
In addition to iRBD, idiopathic hyposmia (iH) is also
a prodromal marker of PD. Patients with iH who
had abnormal DaT-SPECT at baseline and those who
developed abnormal DaT-SPECT at follow-up had
the highest rate of phenoconversion to PD [43, 44].
Olfactory disfunction itself showed a moderate cor-
relation with dopamine turnover in the putamen [45].

It should be emphasized that the negative pre-
dictive value of DaT imaging is greater than the
positive predictive value, which means that a nor-
mal DaT-SPECT practically excludes conversion to
clinical PD in the near future [46, 47]. Hence, DaT-
SPECT might gain great importance as a surrogate
endpoint in clinical trials in prodromal PD [1]. In
this regard, it is worth mentioning that imaging of
vesicular monoamine transporter 2 with [18F]AV-133
might be an interesting biomarker to monitor the dis-
ease progression during therapeutic trials [48]. We
want to point out that dopaminergic imaging can be
influenced by some drugs, which includes the risk of
false-positive results [49, 50]. Importantly, dopamine
replacement therapy has no impact on DaT binding
[50].

Imaging of inflammation–translocator protein

There is robust evidence that neuroinflammation
plays a significant role in the development and
progression of PD and other neurodegenerative dis-
orders. The inflammatory response of the brain is
crucially driven by activation of microglia [51]. Neu-
roinflammation can be demonstrated in vivo with
PET ligands targeting the 18 kDa translocator protein
(TSPO). TSPO is mainly expressed in the mitochon-
drial outer membrane of microglia and its expression
is greatly increased when microglia are activated.
Several teams have reported widespread increases in
microglial activation in PD [52]. Even the earliest
patients have shown widespread microglia activation
targeting the brainstem, basal ganglia, and frontal
cortex [53]. The presence of microglial activation in
brain regions susceptible to Lewy body pathology
has also been detected in patients with iRBD [54,
55], and in asymptomatic carriers of genetic muta-
tions linked to PD (GBA1 and LRRK2 mutations)
[56, 57]. In patients with iRBD, increased load of
microglial activation in the substantia innominata, the
major source of cholinergic input to the cortex, corre-
lated with cortical cholinergic dysfunction measured
with [11C]Donepezil [58]. In GBA1 mutations car-
riers, interestingly, microglial activation in the SN
correlated with hyposmia and seemed to precede the
loss of striatal dopaminergic terminals measured with
[18F]DOPA-PET.

Metabolic imaging

Metabolic imaging in preclinical and prodromal
PD is commonly done with [18F]FDG-PET and can
be used to evaluate disease related pathological pat-
terns.

A recent study compared the iRBD-related pattern
with the established PD-related pattern. The two pat-
terns overlapped and the iRBD-related pattern was
significantly expressed in PD patients compared to
controls [59]. In a further step, the Scaled Subprofile
Model and Principal Component Analysis (SSM-
PCA) was used to predict phenoconversion of iRBD
to PD by deriving a conversion pattern to PD. This
pattern showed a sensitivity of 87% and a specificity
of 72% discriminating converters from nonconvert-
ers and this conversion pattern was validated in an
independent cohort [60, 61]. A multimodal study
that combined PD-related pattern expression, DaT
imaging, and olfactory tests could show that pat-
tern expression was higher in iRBD with iH and in
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patients with reduced DaT binding [59]. The expres-
sion of the suprathreshold PD-related FDG pattern
and an increase in this pattern over time may indicate
a greater short-term risk of phenoconversion to PD
[62]. Interestingly, short-term conversion was explic-
itly driven by occipital hypometabolism at baseline in
iRBD [63]. Additionally, hypometabolism in occip-
ital and parietal areas was associated with mild
cognitive impairment (MCI) in iRBD, which is also
a predictor for phenoconversion to PD [64]. Addi-
tionally, the perfusion phase of other PET or SPECT
tracers can be used to acquire equivalent information
to FDG-PET [29, 65].

Imaging of acetylcholine

Posterior cortical cholinergic degeneration is
prominent already in non-demented, de-novo Parkin-
son’s disease [66, 67], with evidence of a posterior to
anterior progression over time [68]. GBA-mutation
carries with PD, who are at greater risk for early cog-
nitive decline, express a more widespread reduction
of cortical cholinergic denervation despite normal
cognition [69]. Increasing cortical cholinergic dys-
function specifically characterised a group of iRBD
patients with cognitive decline in another study with
a small sample [70]. Grey matter density of the basal
nucleus of Meynert, the main origin of cortical cholin-
ergic innervation, was significantly reduced in 35
iRBD patients and reduction was associated with
poorer performance in a working memory task [71].

Imaging of serotonin

The degeneration of serotonergic innervation in
striatal and extrastriatal brain regions is considered
an early feature of PD [72]. However, people living
with PD but without depression, apathy, or anxiety
may have a relatively preserved serotonergic system
[73]. Loss of serotonergic innervation of the limbic
cortico-striatal system in PD has been linked to the
presence and severity of apathy and anxiety associ-
ated with lower [74]. Apathy in PD was associated
with lower serotonin transporter binding in the basal
ganglia [75]. Serotonin transporter signal integrity
in the dorsal raphe nucleus was shown to correlate
with apathy severity in prodromal PD [76]. Overall,
it seems that serotonergic deficits, which can be mon-
itored with brain imaging, may precede motor deficits
and identify those patients with a risk of apathy, anx-
iety, and depression.

Imaging of noradrenaline NA

Currently, the integrity of the noradrenergic system
is studied either analyzing neuromelanin-dependent
MRI signal of the small locus coeruleus— the prin-
cipal origin of noradrenergic neurons of the brain,
or using PET radioligands targeting receptors or
transporters of noradrenalin. Interestingly, studies
have rather consistently shown a dissociation of
locus coeruleus integrity as measured with MRI and
integrity of noradrenergic cortical terminals using
PET [77, 78]. A widespread cortical (motor cortex
and insula) and subcortical (thalamus and putamen)
reduction of NA receptors has very recently been
described [78]. NA transporters do not appear to be
dramatically reduced in prodromal PD, with some
evidence for moderately reduced availability of NA
transporters in the sensorimotor cortex and the tha-
lamus [79]. In general, there is not much evidence
for a distinctive role for NA imaging biomarkers in
prodromal or early PD.

Imaging of heart and gut

It is now well accepted that there is severe neu-
ronal pathology in PD also outside the brain, mostly
affecting the autonomous nervous system of the heart
(noradrenergic) and gut (cholinergic) [80]. It has
been speculated that pathology may in fact enter
the brain via the vagus and the olfactory nerve [81].
(Dys-)function of the enteric nervous system can be
objectified by imaging either directly with transmitter
imaging (e.g., using [11C]-donepezil) or indirectly
and less specific using enteric passage times for radi-
ologic markers. Colonic, but not gastric transfer times
seem to be a sensitive marker of enteric autonomous
dysfunction in the prodromal and early PD phase [82,
83].

To measure the sympathetic denervation of the
heart, SPECT or scintigraphy with iodine radio-
labelled MIBG are established methods. Despite
relevant shortcomings of the method, it has been
used to subcategorize PD into two to three subcat-
egories [84, 85]. The dichotomy of a “brain-first”
(no sign of sympathetic denervation at diagnosis)
and “body-first” (sympathetic denervation at diag-
nosis) subtype has received a lot of attention, but is
not uniformly supported [5, 86]. Although cardiac
imaging is not the only factor that differs between
these hypothetical subtypes, it is considered the most
critical distinction around the time of PD diagnosis
[84]. Interestingly, more severe sympathetic dener-
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vation may also differentiate GBA-PD from sporadic
PD [87]. Using a clustering approach including car-
diac MIBG imaging, another group recently defined
a cardio-cortical and a dopamine dominant type [84].
The finding that plasma �-synuclein levels correlated
with cardiac sympathetic denervation, but not with
nigrostriatal degeneration may also be seen as adding
to the circumstantial evidence for a relative dissoci-
ation between “peripheral” and “central” PD [88].
Critically, when using this imaging method, it should
be considered that drug interactions can significantly
influence MIBG uptake, see also [89, 90].

Optical coherence tomography (OCT)

Ophthalmological complaints are common in PD
and often precede the onset of motor symptoms.
Retinal impairment has also been described in PD
from the very early stages of the disease [91]. OCT
provides accurate measurements of mean macular
thickness (MMT) and thinning of the peripapillary
retinal nerve fiber layer (RNFL). In general, these
studies have shown that patients with PD have a sig-
nificant reduction in RNFL and MMT compared to
HC, although other studies have failed to find any
difference [92, 93].

A recent study in iRBD patients has shown that
RNFL and most macular retinal layers were sig-
nificantly thinner compared to HC. Interestingly,
the values observed in iRBD were between those
observed in PD and HC [94]. Conversely, another
study found no OCT abnormalities in PD patients
with LRRK2 mutation and LRRK2 non-manifesting
carriers, suggesting that LRRK2-PD could be dis-
tinguished from idiopathic PD by absent or less
retinal nerve involvement even at the prodromal stage
[95].

FUTURE PERSPECTIVES

For MRI biomarkers, as for all other modali-
ties, it will be interesting to bring them into the
perspective of the suggested biomarker-based def-
inition of PD [2, 3]. While the traditional domain
for MRI could be seen as the evaluation of neurode-
generation per se, specific evaluation of biomarkers
signaling degeneration of the dopaminergic system
is now more relevant than ever. Moreover, imag-
ing will be needed to visualize early spatial brain
alterations related to neurodegeneration and brain
compensation. To achieve this, harmonization of data
acquisition and analytical approaches is warranted for

the use of QSM, NMS, fMRI, and various diffusion
methods in clinical practice. Moreover, MRI has also
potential to study pathophysiological mechanisms of
toxic protein spreading [96]. MRI techniques not
only have potential as preclinical PD biomarkers,
but more work is needed to prove their utility in
predicting early disease phenoconversion, monitor-
ing specific PD symptoms with time, and predicting
disease clinical subtypes and disease trajectories.
Although some works suggest utility of the above-
mentioned MRI methods in, e.g., early differential
diagnosis of PD versus atypical parkinsonian syn-
dromes [97], machine learning and AI approaches
will have to be further corroborated.

Dopaminergic imaging can already be used as an
endpoint reflecting neurodegeneration of the nigros-
triatal dopaminergic system in the preclinical and
prodromal phases of PD. A previous proposal elab-
orated the role of aggregated �-synuclein in CSF
as well as imaging of dopaminergic degeneration as
promising biomarkers for a staging system in PD [2].
Along these lines, dopaminergic imaging represents
a valuable tool for biomarker-based staging, where
patients with aggregated �-synuclein (S) in absence
of substantial dopaminergic (D) system degeneration
(S + D–) can be identified. This group might represent
a promising candidate for therapeutic trials against
�-synuclein and subsequent neurodegeneration. In
addition, in some patients with iRBD, dopamine
transporter density stays normal for a longer time
than in others. This indicates underlying factors that
prevent or promote nigrostriatal degeneration, which
would be imperative to investigate as therapeutic tar-
gets.

Future imaging studies investigating neuroinflam-
mation should aim to clarify the actual nature of
microglia activation in prodromal PD, as there is evi-
dence that there might be two peaks of microglial
activation: an early peak with a protective function
and a later pro-inflammatory peak [98]. Therefore,
it is crucial to understand when and which subtype
of microglia is relevant in prodromal stages. Imag-
ing neuroinflammation has provided a rationale for
the trial of anti-inflammatory agents to prevent the
progression of iRBD to parkinsonian syndromes.
In this line, a Phase 2a study in participants with
iRBD (ClinicalTrials.gov Identifier: NCT05904717)
will start soon to evaluate whether 12-week treat-
ment with PXS-4728, a very potent and highly
selective inhibitor of the enzyme Semicarbazide-
Sensitive Amine Oxidase (SSAO), can reduce levels
of microglia activation, as measured by PET.
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FDG-PET currently has already demonstrated in
a research context that a concrete metabolic pattern
may indicate iRBD patients at immediate risk for
phenoconversion. Further investigation is needed for
the relevance of occipital hypometabolism in iRBD
patients. It is necessary to disentangle whether this is
more relevant as a biomarker for phenoconversion to
PD or for cognitive decline.

Cortical cholinergic denervation has been impli-
cated with the development of dementia in PD.
However, while there is some evidence for it being a
necessary precursor to dementia in PD, the evidence
is far from conclusive. It seems clear that early-stage
PD already comes with significant loss if choliner-
gic input to the posterior cortex, but we need to have
a better idea about when this process starts in the
prodromal phase and how strongly cholinergic dener-
vation in certain parts of the brain is associated with
consecutive cognitive decline. If this can be firmly
established, imaging biomarkers of cholinergic den-
ervation may ultimately serve as a surrogate endpoint
for the development of dementia in PD.

It seems clear that serotonergic denervation is
involved in non-motor symptoms such as apathy and
anxiety. As the disease develops, serotonergic inner-
vation may also significantly contribute to motor
phenomena, including dyskinesias. However, it is
currently unclear, what role imaging biomarkers of
the serotonin system may play in the prodromal or
early PD phase.

Cortical and subcortical noradrenergic innervation
plays a physiological role in many motor and non-
motor functions that are affected in PD. However, it
has yet to be established, how NA imaging biomark-
ers can be used to monitor PD in the prodromal or
early stage.

There is evidence for great heterogeneity in when
cardiac imaging is pathologic during the course of
PD, which certainly questions the utility of this
biomarker as a surrogate endpoint in clinical trials.
However, when only considering prodromal PD as
characterized by iRBD, there is some evidence that
a pathological MIBG may almost always precede
pathological DaT SPECT and may therefore be con-
sidered as a non-clinical milestone in the prodromal
disease progression [99].

It is intriguing that OCT could potentially be used
as a simple non-invasive biomarker of PD pathology.
Future studies will also be needed to investigate the
possible relationship between structural changes in
the retina and disease severity or time to phenocon-
version to motor PD in prodromal cases to understand

whether OCT can also be used to monitor disease
progression.

Currently, there is no validated PET tracer for �-
synuclein in PD. For a detailed review on imaging
of �-synuclein, see [29]. The tracer [18F]ACI-12589
represents a promising candidate for imaging of �-
synuclein in MSA, but showed only very limited
binding in PD [100]. In the light of current devel-
opments around �-synuclein seeding assays in CSF
[101] and the potential use of �-synuclein PET tracers
[100], a biomarker-based disease staging in terms of
�-synuclein and (dopaminergic) neurodegeneration
may be possible in the near future [2].

CONCLUSION

Plenty of imaging methods are available to assess
and quantify different facets of neurodegeneration
in PD. Currently, biomarkers that may serve as an
endpoint in clinical trials surrogating for the thera-
peutic effect on the development of motor symptoms
in the prodromal phase are at the center of interest.
While there are many interesting candidates, DaT-
SPECT currently is the most broadly available, most
established in clinical routine and most validated
biomarker for this use case. However, in light of a
biomarker-based definition of “neural synucleinopa-
thy” as an entity, biomarkers capturing the advent of
other disease features (e.g., dementia) remain impor-
tant to develop and validate.
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C, Vo A, Lewis S, Matar E, Ehgoetz Martens K, Blanc F,
Yao C, Carrier J, Monchi O, Gaubert M, Dagher A, Gagnon
J-F (2021) A prodromal brain-clinical pattern of cognition
in synucleinopathies. Ann Neurol 89, 341-357.

[10] Yau Y, Zeighami Y, Baker TE, Larcher K, Vainik U, Dadar
M, Fonov VS, Hagmann P, Griffa A, Mišić B, Collins
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Bolaños I, Pérez-Pérez J, Ángeles Botı́ M, Campolongo
A, Izquierdo C, Pascual-Sedano B, Gómez-Ansón B, Kuli-
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S (2023) Reliability and validity of visual analysis of [ 18
F]FE-PE2I PET/CT in early Parkinsonian disease. Nucl
Med Commun 44, 397-406.

[34] Pineda-Pardo JA, Sánchez-Ferro Á, Monje MHG, Pavese
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Högl B, Hamilton J, Marek K, Mayer G, Mollenhauer B,
Postuma R, Tolosa E, Trenkwalder C, Videnovic A, Oer-
tel W, PPMI Sleep Working Group (2019) Basic clinical
features do not predict dopamine transporter binding in
idiopathic REM behavior disorder. NPJ Parkinsons Dis 5,
2.

[40] Kunz D, Stotz S, de Zeeuw J, Papakonstantinou A,
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Puschmann A, Jögi J, Svenningsson P, Andréasson M,
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