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Abstract. The discovery of a pathogenic variant in the alpha-synuclein (SNCA) gene in the Contursi kindred in 1997
indisputably confirmed a genetic cause in a subset of Parkinson’s disease (PD) patients. Currently, pathogenic variants in
one of the seven established PD genes or the strongest known risk factor gene, GBA1, are identified in ∼15% of PD patients
unselected for age at onset and family history. In this Debate article, we highlight multiple avenues of research that suggest
an important - and in some cases even predominant - role for genetics in PD aetiology, including familial clustering, high
rates of monogenic PD in selected populations, and complete penetrance with certain forms. At first sight, the steep increase
in PD prevalence exceeding that of other neurodegenerative diseases may argue against a predominant genetic etiology.
Notably, the principal genetic contribution in PD is conferred by pathogenic variants in LRRK2 and GBA1 and, in both cases,
characterized by an overall late age of onset and age-related penetrance. In addition, polygenic risk plays a considerable role
in PD. However, it is likely that, in the majority of PD patients, a complex interplay of aging, genetic, environmental, and
epigenetic factors leads to disease development.
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INTRODUCTION

Parkinson’s disease (PD) is a clinically heteroge-
neous disorder [1, 2], with multiple genetic causes or
contributors as well as environmental risk and protec-
tive factors identified [3, 4]. In most cases, it is likely
that a complex interplay of a combination of genetic
and environmental factors results in the disease and
influences disease progression [5], and these factors
may be different in different parts of the world [6] or
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exert differential effects depending on context [7, 8].
Here, we argue that the evidence supporting a genetic
basis for PD is relatively more compelling than that
for environmental factors.

EVIDENCE FOR AN IMPORTANT
GENETIC ROLE IN PD

Many patients with PD have a positive family
history

A substantial proportion of PD patients, perhaps up
to ∼20%, have a positive family history [9]. Although
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Fig. 1. Screenshot from the MDSGene website (https://www.mdsgene.org, accessed on 5 November 2023), here depicting, as an example,
the updated statistics on PARK-PRKN cases reported worldwide with individual-level data (almost 1,500 cases). The website also provides
curated data regarding patients’ clinical characteristics and the pathogenicity classification of genetic variants.

it could be debated that this reflects not only genetic
factors but also shared environmental exposure(s),
some observations favor the former. Indeed, the dis-
covery of SNCA, the first gene implicated in PD, was
prompted when clinicians who were initially con-
vinced that genetics played “no significant role in
the etiology of PD” and “must be considered to be
acquired” [10], encountered a very large kindred with
an autosomal dominant pattern of PD transmission
[11, 12]. Supportive evidence for the strong role of
genetics in familial PD has been repeatedly demon-
strated over the past three decades (e.g., references
[13, 14], and in all regions of the world where this
has been studied (http://www.mdsgene.org and [15];
Fig. 1). Recently, for example, in a study of Malaysian
early-onset PD (EOPD), the rate of “solved” mono-
genic cases (i.e., where the cause of PD is attributed
to pathogenic variant[s] in a single gene) increased

from 21.7% overall to 48.5% when considering only
the subgroup of EOPD patients with a positive fam-
ily history [16]. Conversely, while it has been argued
that the lack of a positive family history in the major-
ity of PD patients points to environmental causation,
many such individuals have, in fact, been shown
to harbor a pathogenic genetic variant (e.g., 53.4%
of the pathogenic variant-positive Malaysian EOPD
patients had no history of PD in either the immediate
or extended family [16]).

A positive family history of neurodegeneration
in related parkinsonian conditions such as progres-
sive supranuclear palsy and multiple system atrophy,
which have overlapping clinical features, pathol-
ogy, and molecular mechanisms with PD [17–21],
is reported in up to 20.4–33.0% [18, 22–24] and
40% [25] of cases, respectively, with genetic factors
sometimes implicated [17, 18, 20, 26]. In contrast,
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Fig. 2. Screenshot from the Global Parkinson’s Genetics Program (GP2) website (https://gp2.org, accessed on 5 November 2023), depicting
the updated statistics on an ever-growing number of contributing sites and samples.

environmental factors are still very poorly defined in
these conditions [20, 27, 28].

Pathogenic variants in some PD genes are highly
penetrant for the disease

There are several established PD genes that cause
monogenic/Mendelian forms of PD: SNCA, LRRK2,
VPS35, and RAB32, which cause autosomal dom-
inant PD, and PRKN, PINK1, and PARK7/DJ-1,
which cause autosomal recessive PD [13–15, 29].
In some cases, pathogenic variant(s) in a single
gene (e.g., whole-gene triplication of SNCA, or
homozygous or compound heterozygous pathogenic
missense and/or copy number variants in PRKN) is
sufficient by itself to cause PD (i.e., demonstrating
full penetrance) [12–15]. Remarkably, in some pop-
ulations, these monogenic forms may even account
for the majority of PD patients (e.g., >50% of PD
patients attending a tertiary-care neurology clinic in
the Malaysian state of Sabah are EOPD, of whom
>50% have homozygous or compound-heterozygous
PRKN exon deletions) [30]. Very high rates (some-
times exceeding 40%) of monogenic PD, or involving
the strongest known risk factor gene GBA1, are
also seen in selected populations such as the North
African Arab-Berbers, Ashkenazi Jews, and Span-
ish Basques, especially involving LRRK2 and GBA1

[31–34], which have more variable (and age-related)
penetrance and overall late age of onset [15].

We acknowledge, however, that the prevalence
of monogenic PD in specialty clinics may not be
generalizable to the population at large [35], and fur-
ther studies are needed to accurately estimate the
true prevalence of monogenic PD globally. On the
other hand, the frequently quoted overall rates of
monogenic PD (ranging from 2–3% [13], to 5–10%
[36–38] or 15% [39]) may continue to increase
due to new discoveries and broadening application
of genetic technologies [40, 41], with inclusion of
under-represented populations [42, 43]. The latter has
recently been greatly bolstered by regional [44–46]
and global collaborations such as the Global Parkin-
son’s Genetics Program (GP2; Fig. 2) [47–50]. It is
worth noting here that in China and India (by far
the two most populous countries in the world, being
home to ∼2.9 billion people, and also with exten-
sive diasporas globally [16]), the vast majority of PD
patients with family pedigrees compatible with auto-
somal dominant inheritance remain “unsolved” (e.g.,
95% of the 242 probands studied by Zhao et al. [37],
and 100% of 44 probands in the study by Punia et
al. which tested specifically for pathogenic LRRK2
variants [51]), suggesting that additional genetic
determinants of PD remain to be discovered in these
large populations [52, 53].
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Is there clustering of PD from environmental
causes?

Conversely to the situation with genetics, to our
knowledge, there have been extremely few reports
of tight clustering of PD occurrence that have been
convincingly demonstrated to be caused by environ-
mental factors [54, 55]. Even for what is, to date,
the most persuasive evidence for geographical link-
age with PD (in Camp Lejeune, a military base in
the USA), attributed to water contaminated with the
solvent trichloroethylene (TCE) and other volatile
organic compounds, the prevalence of PD was still
“only” 0.33% (279 out of 84,824 exposed individ-
uals; vs. 0.21% in veterans from a comparable but
uncontaminated site) [28]. TCE has widespread and
myriad uses, including clothes dry-cleaning [56], but
to our knowledge, there have been no reports of clus-
tering of PD among laundry or textile workers [57],
other than an early study nearly 20 years ago involv-
ing three individuals working together in the office of
a garment-manufacturing factory, one of whom also
had a father with PD [58]. Thus, there is no environ-
mental factor that is fully (or anywhere close to being
fully) “penetrant” for PD. The highly toxic com-
pound MPTP, which is the prototypical toxic cause
for parkinsonism, was associated with seven human
cases of parkinsonism [59], out of an estimated >400
(i.e., <2%) individuals thought to have been exposed
to the synthetic heroin contaminant [60]. Moreover,
it does not cause PD as we know it (in which disease
processes take place gradually over many years, if
not decades [3]), but rather results in a once-off “hit”
with a severe but relatively selective nigral injury that
is mostly non-progressive [61].

The study of cohabiting couples can identify
environmental risk factors for disease because such
couples are usually not genetically related but share
residential exposures over a prolonged period. How-
ever, instances of conjugal PD appear to be very
uncommon [62] and are usually considered to be
coincidental [63].

Taken together, the above observations suggest
that environmental factors are neither sufficient, nor
necessary, to induce PD, and therefore cannot be con-
sidered a “predominant” cause for the condition.

What about sporadic (so-called “idiopathic”)
PD?

In addition to pathogenic variants with high pene-
trance in PD genes, genomic DNA variation is now

well established to contribute substantially to the
risk of sporadic PD. To date, genome-wide asso-
ciation studies (GWASs) have identified >100 risk
signals associated with PD at the population level
[50, 64–67]. These common variants individually
have relatively small effect sizes but in combina-
tion, can be associated with substantially elevated PD
risk (e.g., with disease odds ratios [OR] of 3.4–6.1
among those with the highest decile of polygenic
risk scores [PRSs] compared with the lowest-risk
decile, in recent studies [64, 68, 69]). Outside the
PD field, it has been suggested that PRSs for com-
mon diseases such as coronary artery disease and
type 2 diabetes, utilizing much larger sample sizes
and improved algorithms, can identify individuals
with risk equivalent to monogenic mutations [70]
(although others have argued that the true effect size
is likely to be much more modest [71–74]). Recently,
research on genetic resilience factors that mitigate the
effects of risk/pathogenic loci and reduce the suscep-
tibility to PD is also emerging from GWA analyses
[75].

Currently, the identified risk loci explain an esti-
mated 16–36% of the heritable risk of PD [64], and
efforts are ongoing to very substantially ramp up the
recruitment of patients (to reach 200,000, including
patients from diverse populations) [47–50], which
will further advance understanding of the genetic
determinants of PD on a global scale [13–15, 65].

Environmental factors act on a background of
genetic vulnerability

Even for environmental exposures with an “estab-
lished” role in PD etiopathogenesis, such as pesticide
exposure, caffeine intake, and smoking, their down-
stream effects are likely to be mediated in part or
strongly influenced by genetic factors [5, 8]. We list
several examples here: Intriguingly, there is a sugges-
tion in the literature that the lack of caffeine intake,
which overall is associated with a ∼2-fold increased
risk of developing PD, may be especially detrimen-
tal in patients with certain genetic forms of PD, such
as those harboring the common Asian LRRK2 risk
variants p.G2385R or p.R1628P (present in ∼5–10%
of Asian PD patients [6, 76–78]), where odds ratios
for PD were 8.6 and 4.6, respectively [79]. Find-
ings consistent with caffeine’s greater association
with resistance to genetic forms of PD were also
reported among an international cohort of LRRK2-
PD patients, most of whom harbored the p.G2019S
LRRK2 variant seen in whites and North Africans



S.-Y. Lim and C. Klein / Parkinson’s Disease is Predominantly Genetic 471

[80]. A study exploring the neuroprotective effect
of tobacco (containing nicotine) found that this may
be mediated in part by SIRT6, which may have a
pathogenic and pro-inflammatory role in PD and
whose expression is strongly influenced by several
SIRT6 single nucleotide polymorphisms (SNPs) [81].
Another study of the smoking effect on PD risk
found that this varied by SV2 C genotype, rang-
ing from being highly protective to neutral to even
being harmful [45, 82]. Finally, a study found that
the odds for developing PD from paraquat use was
1.5 in the presence of functional GSTT1 (encoding
glutathione S-transferase T1 that provides cellular
protection against oxidative stress) but increased to
11.1 with homozygous deletions of the gene which
were present in a substantial proportion (22%) of
patients [83].

Alterations in the gut microbiome (“dysbiosis”)
have consistently been reported in PD patients over
the past decade [84, 85]. While the microbiome is
known to be significantly influenced by environmen-
tal factors such as diet and place of living [84, 86],
genetic factors likely play key, if not essential, roles
in determining if and how, various aspects of the
gut-brain axis (e.g., gut dysbiosis or inflammation
[87]) influence disease risk. For example, apart from
rotenone models [88, 89], currently the most convinc-
ing animal models of gut dysbiosis in PD involve an
induced genetic aberration, causing synuclein over-
expression, mitochondrial dysfunction, or LRRK2
overexpression, suggesting that an underlying genetic
vulnerability is usually needed for gut dysbiosis to
trigger disease expression [84, 87, 90–92].

Besides causation/development of disease,
genetic factors can also have a significant
influence on the disease trajectory

An increasingly highlighted example of this is
the overall more rapid deterioration of motoric and
cognitive-behavioral function and poorer survival in
patients harboring GBA1 variants [93–95]. Some
GBA1-PD patients also appear to respond less favor-
ably to treatment with deep brain stimulation (DBS)
[94, 96–98]. The converse is true for PARK-PRKN,
where, on the whole, patients continue to show dopa-
responsiveness even in the long term, exhibit less
cognitive decline, and respond relatively favorably
to DBS [96, 99, 100]. These genetic factors are
increasingly taken into consideration in the clini-
cal management of patients, e.g., in the selection or
counseling of patients for DBS [101, 102], and bring

the field one step closer to realizing a personalized
precision medicine approach for people living with
PD [1, 3, 103–105]. In sporadic PD, besides their
association with disease risk, PRSs have also shown
predictive value in PD phenotype or clinical out-
comes [14, 106], such as age at disease onset [107];
motor progression [108]; development of dyskinesias
[109], impulse control disorders [110] or cognitive
decline (e.g., with one recent study reporting a haz-
ard ratio of 4.8 for progression to PD dementia with
the RIMS2 progression locus [111]); and response
to medical (pharmacogenomics) [112] and surgical
therapies (“surgicogenomics”) [113, 114].

In contrast, the impact of environmental factors,
such as exercise [115–118] or dietary patterns (e.g.,
caffeine or alcohol intake [84]) on disease progres-
sion is much less well defined. That said, much
remains to be understood with respect to genotype-
phenotype correlations, e.g., patients with the exact
same point mutation in genes linked to monogenic
PD [98, 119–122] can sometimes still exhibit very
different clinical courses, suggesting the presence of
modifiers (genetic, epigenetic, and/or environmental)
[5]. Even here, however, emerging evidence suggests
a possibly more significant modifying role for genetic
over environmental factors [123].

Understanding of genetic causation is paving the
way for targeted therapies in PD

Genetic factors (and their related pathways)
involved in the causation and progression of PD are
prime targets for biomarker development and dis-
ease modification studies [14, 93, 124, 125]. For
example, pathogenic variants in GBA1 or SNCA
are known to be strongly linked to alpha-synuclein
pathology [39], and novel biomarker approaches that
enable in vivo interrogation of PD pathology (e.g.,
alpha-synuclein seeding assays [126–129]) are being
exploited in new paradigms for biological classifi-
cation/stratification of PD which will maximize the
likelihood of finding successful disease-modifying
therapies (e.g., targeting alpha-synuclein [130]). This
has been the case in oncology, where implementa-
tion of precision medicine and a focus on genetically
defined subtypes of disease have seen remarkable
success in developing new and effective therapeutics
[124, 131]. Most recently, a new monogenic cause,
a pathogenic variant in the RAB32 gene has been
found and independently confirmed to cause PD in
a dominant fashion [29]. Interestingly the RAB32
protein interacts with LRRK2, and it is likely that
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additional genetic causes of PD will be found using
new sequencing technologies. Finally, there is also
a growing appreciation of a convergence of mecha-
nisms underlying monogenic and complex forms of
PD, with several of the genes discussed earlier caus-
ing monogenic PD also implicated in GWASs (e.g.,
SNCA and LRRK2), and likely causing relatively sub-
tle changes in protein expression [132–137]. Thus,
future genetics-targeted therapies could also poten-
tially be deployed in (the much larger group of)
sporadic PD patients.

Conversely, it is currently difficult to envision a
scenario where, for example, knowledge of a patient’s
remote history of neurotoxicant exposure could
be directly “actionable”. Nevertheless, experimen-
tal work prompted by findings from epidemiological
studies has revealed many valuable mechanistic
insights (e.g., MPTP and other neurotoxicants such as
paraquat or TCE causing mitochondrial dysfunction
[138, 139] and more recently even pathological acti-
vation of LRRK2 kinase activity [140]). New avenues
continue to be explored to understand the molecular
mechanisms of PD based on epidemiological obser-
vations, for example with the study of caffeine [79,
80, 141] or nicotine [81, 142] and related metabolites.

Research on environmental and lifestyle factors
is in need of technological advances and better
tools

Scientific advances depend not only on new ideas
and paradigm shifts but also, to a large extent, on
technological advances that make these leaps possi-
ble [143]. It has to be acknowledged that a crucial
reason for the preponderance of evidence linking
genetic status with disease causation and progres-
sion of PD is that genetics/genomics are much more
tractable/easily ascertained with currently available
technologies [65, 103, 144], whereas environmen-
tal exposures are still difficult to assess and measure
[140, 145] and such studies may be just “scratching
the surface” [146]. Because of a lack of biological
markers of exposure [140], studies of environmental
factors often rely on patient retrospective self-report,
which are “noisy” and prone to biases and con-
founding (e.g., recall bias and reverse causation),
especially in a condition like PD where there is usu-
ally a long lag time spanning one or more decades
between the exposure of interest and PD diagnosis
[28, 147]. (Conversely, reverse causation is not an
issue with genetics [which are fixed at conception],
and indeed, this has been utilized for epidemiological

studies using, for example, Mendelian randomization
approaches [148, 149]). (That said, there is mounting
evidence that somatic genetic changes, which take
place in every person during development and tissue
maintenance, are relevant in PD and related neurode-
generative disorders and can sometimes alter clinical
presentation, for example, the age at disease onset
[150–152]).

Moreover, people are often unaware of toxi-
cants they are exposed to, as seen in the Camp
Lejeune experience [28]. Epidemiological studies
sometimes also lack sufficient granularity to be able
to hone down to the individual level. In the Camp
Lejeune study, for instance, exposure to TCE was
inferred based on camp location, but the investi-
gators could not be certain that all residents were
exposed to biologically meaningful levels of con-
taminants [28]. Another recent study suggesting an
association between air pollution and PD risk was
based on participants’ residential addresses at the
district level [153]. This is also exemplified in the
maps presented by Professors Dorsey and Bloem
(Fig. 2 in [138]), depicting geographic areas of over-
lap across the United States in PD incidence vis-à-vis
use of/exposure to paraquat, TCE and other chlori-
nated solvents, and particulate matter.

Emerging studies utilizing a more comprehensive
investigation of the “exposome” (i.e., the sum of all
exogenous and endogenous environmental influences
on the human body over the lifespan) and its impact
on PD risk and progression will no doubt be an impor-
tant area for future progress [140, 145, 154, 155].
These will investigate environmental exposures in a
more holistic way, looking at multiple factors rather
than reductionist approaches studying the effect of
only a single environmental factor or class of factors
[140, 154, 156]).

The elephant in the room: the “Parkinson’s
pandemic”

It has been argued that the rapid increase in PD
cases worldwide, since its first formal description by
James Parkinson slightly over 200 years ago (“from
six to six million”) [55], must be driven by envi-
ronmental factors (given the relative stasis of innate
biology over the same time frame), particularly indus-
trialization and the widespread use of toxicants [55,
138]. While there is little doubt that PD is common
and poses an increasingly heavy burden on health-
care systems worldwide [3, 6, 157], the argument may
be more multi-faceted than it appears at first glance.
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One major issue relates to the increasing longevity of
world populations with a concomitant increase in age-
related disorders. On the surface, this phenomenon
should similarly affect conditions like Alzheimer’s
disease (AD) as much as it affects PD incidence and
prevalence [138]. Still, there may be important differ-
ences between these age-related neurodegenerative
disorders. For example, late-onset monogenic forms
are well recognized in PD (e.g., LRRK2-PD), with
disease penetrance being highly dependent on age [7,
158]; however, to our knowledge, late-onset mono-
genic AD has only very rarely been described [159,
160].

Another crucial point is the improved diagnosis of
PD over time [161–164]. In the absence of reliable
in vivo diagnostic biomarkers [3, 129], PD remains
a clinical diagnosis, which can often be challeng-
ing [161–163, 165]. Indeed, Professors Dorsey and
Bloem highlighted that approximately half of PD
cases detected during an extensive multicenter epi-
demiological survey conducted in China in the late
1990s had been undiagnosed prior to the study [138,
166] (with rates of non-diagnosis as high as 90+% in
rural communities [167]). It has been suggested that
China’s rapid increase in PD cases (more than dou-
bling in age-adjusted PD prevalence between 1990
and 2016) is due to rapid industrialization [168, 169],
but it is likely that accompanying improvements in
economic status and healthcare literacy, access to bet-
ter healthcare (with improved diagnosis [161–164],
as well as survival [164], of PD patients), and scien-
tific interest in PD [6, 170, 171], have contributed
substantially to the increased prevalence of PD.
Advances in technology (e.g., multimodal biomarker
testing for genetic variants, synucleinopathy and/or
neurodegeneration [39, 130], and artificial intelli-
gence/machine learning-based diagnostic algorithms
[171–173]), applied widely and non-invasively, are
likely to further increase the rates of diagnosis of
PD, including people in prodromal or even pre-
symptomatic stages of the disease [126, 129, 174].

Further research on gene-environment
interactions is needed

Ultimately, gene-environment interactions are
probably crucial in causing most cases of com-
mon “complex” human diseases, including PD [175],
and the factors may be additive or synergistic
[83]. Gene-environment interaction studies are there-
fore critically needed [5, 8, 140], including further
research on how environmental exposures disrupt

epigenetic regulators of gene expression (without
changing the underlying DNA sequence) [175]. Cur-
rently, research on gene-environment interactions [5,
8, 140] and epigenetics in PD [176–178] is still in its
infancy. This will be an exciting area to follow in the
coming years, and developments here will be crucial
to developing predictive and preventive approaches
[5].

Returning to the earlier discussion on the Parkin-
son’s pandemic, it is instructive to learn from other
non-communicable diseases. In the case of obesity,
for example, an even larger pandemic has been doc-
umented [179], with the global prevalence tripling
over the past four decades, now affecting >600 mil-
lion individuals [180]. There is no doubt that changes
in dietary patterns, such as the wide availability of
calorie-dense processed food and drinks and physi-
cal inactivity, have contributed to this phenomenon.
However, for what is considered by many to be a pro-
totypical “lifestyle”-related condition, the heritability
for obesity is estimated to be ∼40–70% [180–182],
with the brain (which controls hunger and systemic
energy metabolism) harboring most of the gene prod-
ucts and pathways that have been linked to obesity
in hundreds of genetics studies [182]. Analyses of
genome-wide gene-by-environment interactions over
the past decade have revealed important insights and
informed understanding of disease pathophysiology,
although they remain challenging and require sample
sizes in the hundreds of thousands or more [180]. As a
side note, revolutionary anti-obesity drugs have very
recently come to market [182]; these had their begin-
nings in research on genes related to the glucagon
pathway [183].

CONCLUSION

Although we have collated and presented here what
we believe to be robust evidence, accumulated over
the past 30 years, in support of a strong genetic basis
for PD, at the end of the day, we also salute, unre-
servedly endorse, and stand in solidarity with the
advocacy efforts of our esteemed colleagues Profes-
sors Dorsey and Bloem, and others [55, 138, 140],
to curtail the widespread use of toxicants, to help
curb the global burden of PD, and also for a healthier
future overall [184, 185]. We whole-heartedly con-
cur with a quote they recently highlighted from Jerry
Ensminger, one of the personnel who served at Camp
Lejeune who developed PD in his retirement (and
whose young daughter died of leukemia while he was
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serving there), that: “The benefit of the doubt should
go to the people, not the chemical” [56].
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AA, Borngräber F, de Michele G, De Rosa A, Zimprich A,
Puschmann A, Mellick GD, Dorszewska J, Carr J, Ferese
R, Gambardella S, Chase B, Markopoulou K, Satake W,
Toda T, Rossi M, Merello M, Lynch T, Olszewska DA, Lim
SY, Ahmad-Annuar A, Tan AH, Al-Mubarak B, Hanagasi
H, Koziorowski D, Ertan S, Genç G, de Carvalho Aguiar P,
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