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Abstract. Regulation of gene expression by epigenetic modifications means lasting and heritable changes in the function of
genes without alterations in the DNA sequence. Of all epigenetic mechanisms identified thus far, DNA methylation has been
of particular interest in both aging and age-related disease research over the last decade given the consistency of site-specific
DNA methylation changes during aging that can predict future health and lifespan. An increasing line of evidence has implied
the dynamic nature of DNA (de)methylation events that occur throughout the lifespan has a role in the pathophysiology of
aging and age-associated neurodegenerative conditions, including Parkinson’s disease (PD). In this regard, PD methylome
shows, to some extent, similar genome-wide changes observed in the methylome of healthy individuals of matching age. In this
review, we start by providing a brief overview of studies outlining global patterns of DNA methylation, then its mechanisms
and regulation, within the context of aging and PD. Considering diverging lines of evidence from different experimental and
animal models of neurodegeneration and how they combine to shape our current understanding of tissue-specific changes
in DNA methylome in health and disease, we report a high-level comparison of the genomic methylation landscapes of
brain, with an emphasis on dopaminergic neurons in PD and in natural aging. We believe this will be particularly useful for
systematically dissecting overlapping genome-wide alterations in DNA methylation during PD and healthy aging, and for
improving our knowledge of PD-specific changes in methylation patterns independent of aging process.
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KEY CONCEPTS IN PARKINSON’S
DISEASE

Pathologically described as selective loss of
dopamine (DA) neurons of the substantia nigra
pars compacta in the midbrain and formation of �-
synuclein protein aggregates referred to as Lewy
bodies, Parkinson’s disease (PD) is among the most
common nervous system disorders of the elderly,
most often diagnosed in people over age 60 [1].
The clinical manifestations of PD include rigidity,
tremors, slowness/absence of voluntary movement,
and posture instability, as well as intellectual defi-
ciency, mental breakdown, sleep, and mood disorders
[2]. Although great effort has been devoted to under-
stand the genetic determinants of PD, the findings
could explain only a fraction of the cases. As in other
age-related neurodegenerative disorders, the exis-
tence of an epigenetic component contributing to the
disease phenotype has been largely considered and
extensively studied in PD, as well [3, 4]. In this regard,
genome-wide changes in DNA methylome observed
in both PD and healthy aging of similar age bear some
resemblance, such as global hypomethylation with
promoter-specific patterns of differential methylation
[5–9]. This review discusses global patterns of DNA
methylation, its mechanisms and regulation, within
the context of aging and PD, and define the genomic
methylation landscapes of brain, with an emphasis on
dopaminergic neurons, in PD and in natural aging to
dissect the extent to which DNA methylation changes
in the SN with these two interrelated events of human
senility.

FACTORS INFLUENCING THE AGING
PROCESS

Aging refers to a time-dependent decline of both
biological functions and of the organism’s ability
to handle metabolic stress leading to both physical
deterioration and increased vulnerability to death.
Accumulation of somatic mutations, the resulting
genomic instability, ongoing telomere shortening,
compromised protein homeostasis, discordance of
mitochondrial network, impaired nutrient sensing,
decline of regenerative capacity, and disorganized
cell-to-cell signaling including inflammation are
among the preeminent factors that contribute to the
aging process [10]. In this context, mitochondrial
dysfunction has long been of interest in biomedical
research due especially to its causative implications

for neurodegenerative disorders [11–13]. Aside from
these deteriorations at the molecular, cellular, and
physiological levels with age, epigenetic alterations
that act potentially on different cell types with vary-
ing degrees of magnitudes throughout the lifespan is
a hallmark of aging [14]. The progressive loss of orig-
inal epigenetic configurations observed during aging,
also called “epigenetic drift”, is an active field of
research [15].

DNA METHYLATION

A historical perspective

An organism’s ability to regulate and maintain the
patterns of tissue-specific gene expression temporally
and spatially in response to changing environmen-
tal cues reflects how well an organism is adapted
to its surrounding [16]. To fine-tune this ability in
a reversible and heritable manner without mutat-
ing the genetic sequence provides not only a unique
flexibility in modulating transcriptome at any given
instance but also a new route of abiding marks of
former exposures which are acquired throughout the
lifespan [5]. The idea of the epigenetic landscape
was initially proposed as an “abstract strategy” of
the genes to regulate embryonic development more
than 60 years ago [17]. Afterwards, the regulatory
role of epigenetics has been increasingly observed
at later stages of life, as well [18]. In that sense,
recent advances in epigenetics have had enormous
impact on our understanding of the contribution
of environmental stressors to complex phenotypes
[19], thereby putting epigenetics under spotlight in
the context of the etiology of age-related disor-
ders, notably waning and neurodegeneration. It is
now widely accepted that epigenetic mechanisms
provide an additional layer of transcriptome regu-
lation that combines environmental factors with the
genetic elements to achieve a concerted functional
outcome toward better fitness or beneficial pheno-
types [20]. DNA and chromatin modifications, as
well as non-coding RNAs, constitute the cardinal epi-
genetic regulatory mechanisms in mammalian cells
[6]. This review focuses particularly on alterations
in DNA modifications considering the association of
the dynamic nature of DNA (de)methylation with the
pathophysiology of aging and age-associated neu-
rodegenerative conditions, especially PD [6, 8]. Also,
DNA methylation has become a central theme of both
aging and age-related disease research after many
groups independently identified a highly significant
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association of site specific changes in CpG methy-
lation with aging in different tissues [21–26], with
implications for predicting future health and lifespan
[5, 27]. These findings led to the discovery of the
“epigenetic clock”, which is another area of active
research [15].

Basics of DNA methylation

The most highly studied phenomenon in epigenetic
modifications by far is DNA methylation [28], which
typically refers to covalently attaching a methyl group
(CH3) to the 5th position of the cytosine nucleotide
by means of a group of specific enzymes called DNA
methyltransferases (DNMTs) using S-adenosyl-L-
methionine (SAM) as substrate [29, 30]. Though
several studies identified the non-CpG methyla-
tion across many different tissues including brain,
cytosine methylation in the mammalian genome is
almost exclusively restricted to the symmetrical CpG
(5′—C—phosphate—G—3′) dinucleotide [31, 32].
In this sense, methylated cytosine is regarded as
the 5th base of DNA, expanding the genetic alpha-
bet into the realm of epigenetic modifiers [33]. In
humans, methylation is observed sparsely but glob-
ally, either interspersed as single/few copies (∼90%
of all) of CpG dinucleotides throughout the genome
or concentrated into “CpG islands” (CGIs), which
are approximately 1kb CpG stretches in vicinity
of promoter regions [34]. CGIs mostly lack DNA
methylation but the flanking regions to the CGIs,

called CGI shores (0–2 kb from island edge) and
shelves (>2–4 kb from island edge), are vulnerable
to tissue-specific methylation, which was found to
correlate with alterations in mRNA levels [35–39].
Overall, of a total of around 28 million CpGs in the
human genome [40], 60–80% are found methylated
at any given time, unlike those in CGIs [41].

DNMT3a-b together with DNMT3l function to
establish de novo patterns of DNA methylation
during differentiation [29, 42], while DNMT1 func-
tions as maintenance methyltransferase detecting
hemi-methylated DNA following genome replication
during mitosis and meiosis [30, 43]. In this sense,
SAM, which acts as a methyl donor at this point, is
the substrate of a critical reaction in DNA methylation
(Fig. 1A). The discovery that the Ten-eleven translo-
cation family of protein dioxygenases (TET1-3) can
convert methylated cytosines (5-methylcytosine, or
simply 5mC) into 5-hydroxymethylcytosine (5hmC;
also called the 6th base of DNA due to its high abun-
dance in the genome), as well as 5-formylcitosine
(5fC) and 5-carboxylcytosine (5caC), in a process
called DNA demethylation has implicated dynamic
regulations of DNA modifications is a natural
paradigm in which to account for intermediary epige-
netic states [44, 45]. Historically, DNA methylation
was considered as an irreversible modification used
as a one-way, static tool rather than a bidirectional,
dynamic modification of DNA [46]. It was in 2009
that the intermediary states of methylated cytosine
discussed above as the products of TET-catalyzed

. Carousel Figure: Dynamic DNA methylation in aging and Parkinson’s Disease.
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Fig. 1. Dynamic CpG methylation landscape of the mammalian genome within the context of transcriptional regulation. A) S-adenosyl-L-
methionine (SAM) acts as a methyl donor for a critical reaction in DNA methylation catalyzed by DNA methyltransferases (DNMTs), which
can be reversed by Ten-eleven translocation family of protein dioxygenases (TETs). B) Genomic methylation involving promoter and/or
distal regulatory regions plays a key role in downregulation of the corresponding genes. Also, epigenetic silencing of transposons and other
genomic elements that undermine genomic integrity occurs in mammalian cells. C) Nucleosome repositioning and transcription repression
involve the concerted actions of DNMTs and histone de-acetylases (HDACs).
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reactions were identified [45, 47], enabling the pos-
sibility of restoring back to the unmethylated state of
the cytosine [44, 48]. Together, DNMTs and TETs
work concertedly to regulate the dynamics of DNA
methylation in mammalian cells.

Reprogramming of mammalian transcriptome by
DNA methylation

As previously discussed [49], many fundamental
physiological processes, including X chromosome
inactivation in the early female embryo [50, 51],
genetic imprinting [52, 53], epigenetic silencing
of transposons and other genomic elements that
undermine genomic integrity [54, 55], and preser-
vation of constitutively repressed structural DNA
repeats [56] are achieved by DNA methylation. Per-
haps most critically, genomic methylation involving
promoter and/or distal regulatory regions plays a
paramount role in downregulation of the correspond-
ing genes considering how vital cis-acting DNA is for
proper transcriptional activity [33] (Fig. 1B). More
specifically, a distinct set of mechanisms underly-
ing transcriptional repression by DNA methylation
has been identified, which includes alterations in the
affinity with which target DNA is bound by tran-
scription factors (TFs), remodeling and repositioning
of nucleosomes (Fig. 1C), and the physical interac-
tions between methyl CpG binding proteins (MBPs)
and the genomic DNA [49]. For instance, some of
the common TFs, such as CCCTC-binding factor
(CTCF) [57], CREB [58], c-Myc [59], E2F1 [60], and
Usf1 [61], show significantly reduced binding affinity
to the corresponding target sequences after methyla-
tion at the cytosine residues. Currently, the impact of
DNA methylation on nucleosome dynamics, which
is an indirect way of transcriptional regulation [62],
appears not fully settled. Practically, this is a recip-
rocal relationship discussed elsewhere [63]. As a
final way of DNA methylation-based transcriptional
repression, CpG methylation paves the way for MBPs
to assemble repressive chromatin modifiers for tran-
scriptional downregulation locally in mammalian
cells [64]. On the other hand, it has been repeat-
edly shown that a methylated gene body suggests
increased levels of expression [65–67]. Together,
methylation of CpGs across the genome is a pivotal
regulatory mechanism contributing to transcriptome
reprogramming in response to internal or external
cues in a timely and flexible manner.

Changes in the DNA methylome of PD brain

Considering the growing body of evidence that
there is an epigenetic component in the pathogen-
esis of PD, research on likely disruptions in DNA
methylation dynamics of DA neurons can improve
our understanding of the SN-specific neuronal death
observed in both sporadic and familial PD. Contrar-
ily, this rationale could not be expanded to cover
all aspects of the discordant methylation patterns
identified in PD yet. Additionally, as in the litera-
ture on age-dependent DNA methylome changes in
brain below, most of the current research investigating
promoter-specific alterations in CpG methylation in
the SN of patients with PD is far from reaching a con-
sensus due to lack of clarity. Generically, a group of
methylation anomalies in CpG sites have been linked
to aberrant gene silencing or reactivation, including
downregulation of neuroprotective genes and over-
expression of neurotoxic genes, in PD (Fig. 3). For
instance, the �-synuclein (�-syn, SNCA) promoter
is hypomethylated in PD [26], which contributes
greatly to the phenotype by promoting overexpres-
sion of this gene as a neuropathological hallmark of
the disease [68, 69]. From a mechanistic perspective,
misfolded �-syn has been demonstrated to initiate
retention of DNMT1 in the cytoplasm of neuronal
cells in PD [70]. This observation might account for
the molecular underpinnings of the global change in
DNA methylome in favor of hypomethylation in PD.
Still being the primary pharmacological treatment in
patients with PD 40 years after its first use [71], L-
dopa treatment has been associated with restoration
of the methylation status of SNCA promoter back
to its hypermethylated state, implying traditional PD
therapy acts on DNA methylome in human neurons
[72].

Though being the quintessential example of
how aberrant DNA methylation contributes to PD-
associated neurotoxicity, SNCA is not the only
differentially methylated gene identified in this con-
text. A hypermethylated state was identified in the
SN of patients with PD for the promoter of PGC1-�,
the master regulator of mitochondrial biogenesis and
a key player in neuroprotection [73]. Mitochondrial
dysfunction causatively linked to PGC-1� silencing
along the NRF1/2-TFAM axis is an active field of
research in PD [12, 13]. In this regard, CpG methy-
lation has also been suggested to contribute more
to age-related mitochondrial impairment by induc-
ing production of reactive oxygen species (ROS)
after transcriptional repression of the two PD-related
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genes, Parkin (PARK2) and PINK1 [74–76], though
with limited empirical evidence. Other abnormal
DNA methylation changes that lead to dysregulation
of PD genes have also been reported [75, 77], includ-
ing but not limited to hypomethylation of NPAS2
[78], CYP2E1 [79], VTRNA2-1 [80], NOS2 [81],
and TNF-� [82], hypermethylation of H1 haplotype
of Tau (MAPT) [83], GFPT1, and HLA-DQA1 [84].
From a biochemical standpoint, dynamic regulation
of transcription by genomic methylation requires a
steady supply of methyl groups. The universal sub-
strate for DNMTs, SAM, is a methyl donor involved
in the metabolism of methionine to homocysteine.
Both methionine and folate cycles have been associ-
ated with parkinsonism after higher concentrations of
homocysteine (a byproduct of the methyltransferase
reaction) were detected in PD patients compared to
controls [85]. For excellent reviews of metabolic
factors related to DNA methylation and their impli-
cations for PD, please see [28, 75]. Overall, the
most widely accepted mechanistic explanation for
global hypomethylation associated with PD to date
is the retention of DNMT1 in the cytoplasm in both
post-mortem brain tissue of PD patients and SNCA
transgenic mice.

Contrary to the studies cited above, several inde-
pendent lines of research have reported conflicting
results at the gene level. One study reported both
hypo- and hypermethylation states at the SNCA pro-
moter and intron 1 regions in various brain sections
of patients at distinct stages of PD [86]. The research
by [87] in 2017 identified no significant alterations
in CpG methylation associated with SNCA intron
1 in PD patients. Samples from PD patients with
or without heterozygous PARK2 mutations were
used for a comparison with the matching samples
from healthy individuals in a different study only
to find no differential methylation at CpG sites,
implying DNA methylation has no role in the eti-
ology of a Parkin-induced PD phenotype [88]. Yet
another study reported no differential methylation
at the PARK2 promoter in post-mortem brain sam-
ples obtained from the SN, cerebellum, and occipital
cortex of PD patients [89]. Without a consensus on
likely association of CpG methylation with tran-
scriptional regulation of several Parkinson’s linked
genes, the hunt for novel loci associated with PD
and the corresponding methylation levels is an active
area of research [28]. The incongruity of findings on
brain-specific CpG methylation signatures at several
PD-linked genes is disconcerting given the clinical
significance and the association of the dynamic nature

of genomic (de)methylation with the pathophysi-
ology of Parkinson’s disease. Most critically, the
empirical proof of concordant changes in matching
PD-related gene expression and genomic methyla-
tion in PD brain or in animal models is yet to be
found. Therefore, the extent to which DNA methy-
lation changes with PD in the SN and whether or to
what degree PD-associated epigenetic dysregulation
correlates with the transcriptome changes in the SN
leading to dopaminergic degeneration remain to be
investigated in future studies.

Navigating the DNA methylation landscape of
aging brain

Epigenetic processes are central to complex brain
functions. A wide range of physiological and cogni-
tive activities in the cerebrospinal axis, including but
not limited to development of nerve tissues, forma-
tion of functional neural networks, synaptic activities,
brain plasticity, and learning, are all modulated epi-
genetically in mammals [90]. After the findings that
one of the most highly methylated genomic DNAs
was obtained from human brain (with 0.98-moles
% 5-methylcytosine) and that brain is the second
most methylated human tissue after thymus [91],
DNA modifications have become one of the well-
defined epigenetic processes in neuroscience over
the past few decades [92–94]. In this respect, aging
has mostly, if not always been a part of the equa-
tion, though with conflicting reports [6, 8]. The de
novo DNA methyltransferase called DNMT3a has
a continuous pattern of expression in human brain
throughout the lifespan [66], enabling a potent epige-
netic regulation of neural transcriptome at any stage
of life [95]. The same enzyme was reported to have an
increased level of expression in the mouse hippocam-
pus, leading to genome-wide hypermethylation with
age [96–99]. Age-associated global hypermethyla-
tion in murine cerebellum and cerebral cortex was
also reported [100, 101]. There are other studies
reporting similar findings [102].

On the other hand, a great majority of the studies
support the view that mammalian tissues, includ-
ing brain cells, show a global pattern of DNA
hypomethylation (Fig. 2A) with many promoters
undergoing aberrant hypermethylation with age [5,
8, 46, 103–109] (Fig. 2B). Activities of maintenance
and de novo DNMTs, decreasing and increasing
respectively, were proposed to explain this trend,
at least to some extent. Indeed, there is a grow-
ing body of evidence that an epigenetic drift that
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Fig. 2. Age-associated trends in DNA methylome of the brain. A) A progressive loss of original epigenetic configurations, also called
“epigenetic drift”, is observed during healthy aging. B) A global pattern of DNA hypomethylation with many promoters undergoing aberrant
hypermethylation appears to be a hallmark of the aging brain independent of the Parkinson’s disease (PD)-associated neurodegeneration.

alters the 5mC distribution in the genome is observed
during healthy aging. These stochastically occurring
epigenetic changes take place mostly in intergenic
nonisland CpGs that overlap transposable regions,
such as Alu and LINE-1 [8]. This in turn relaxes
transposition activity, resulting in genomic instabil-

ity [110]. The direct effect of this epigenetic drift
is on the coding DNA: a general downregulation of
gene expression with age leads to intracellular mis-
communication and deregulation of vital biological
processes [111]. Yet, it was also suggested that a key
mechanism for transcriptome diversity and regulation
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Fig. 3. PD aging-associated trends in DNA methylome of the brain. Led by PD-specific retention of DNMT1 in brain cells, a group of
methylation anomalies in CpG sites have been linked to aberrant gene silencing or reactivation, including downregulation of neuroprotective
genes and overexpression of neurotoxic genes, in PD.

of gene expression in brain, the alternative promoter
usage, is independent of promoter methylation in dif-
ferent regions of the aged brain [112].

Several factors may account for such conflict-
ing results. Discrepancies between studies might
stem from different methylation detection methods

with a wide range of sensitivity. Also, variations in
cell type composition across different brain regions
might yield inconsistent results from one study
to another. Lastly, lack of congruity might origi-
nate from methodological differences because some
use techniques detecting all methylated cytosines
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whereas others consider (a group of) CpG sites or
CGIs [94]. Irrespectively, it remains to be solved as
to whether DNA methylome in mammalian brain has
an upward or downward slope with age and may
indeed be tissue-specific [5, 113]. This applies to site-
specific CpGs that show age-associated alterations in
methylation pattern, as well. Whereas most sites get
hypermethylated with age, some get hypomethylated
in an age-dependent manner [26, 114]. Those CpG
sites with methylation changes used for predicting the
“DNA methylation age” of an organism that correlate
well with chronological age are outside the scope of
this review and were discussed elsewhere [5].

Dopaminergic neurons in healthy aging

Neuronal cells do not experience replicative aging
in mammalian systems, and without degenerative
conditions their lifespan depends on the lifespan
of the host. In fact, rat neurons were reported to
have an increased lifespan up to 100% when trans-
planted in a longer-living host [115]. Nevertheless,
certain regions of the brain and particular types of
neurons are more susceptible to degeneration and
death associated with the normal course of aging.
In this respect, one of these vulnerable cell types
reside in the substantia nigra (SN) pars compacta
of the midbrain, which contains the cell bodies of
dopaminergic neurons contributing to the nigros-
triatal tract. During normal aging, these dopamine
factories deteriorate with a rate of 5–8% loss per
decade of life and demonstrate more pathological
changes with healthy aging than any other region of
human brain due presumably to excessive produc-
tion of ROS (highly reactive molecules with unpaired
electrons and damaging to biological systems) linked
to dopamine metabolism and high energy expendi-
ture of DA neurons [116–118]. And this situation
aggravates in the presence of PD-related neurode-
generation, which selectively targets DA neurons.
Though the negative correlation between aging (and
PD) and the survival of DA neurons has long been
acknowledged, the molecular mechanisms underly-
ing this elevated vulnerability of DA neurons to
cell loss associated with age is yet to be solved.
Given the association of the dynamic nature of DNA
(de)methylation with the pathophysiology of aging
and PD, research investigating SN-specific signature
of healthy aging in the DNA methylome is critical
in understanding the breadth and the extent of age-
dependent epigenetic contributions in PD.

Changes in the DNA methylome of aging
substantia nigra

There is still limited number of studies that
assessed age-related alterations in CpG methylation
of the SN no matter how tempting it is to go further
into the hitherto uncharted territories of the brain.
Few evidence over the past few years toward global
hypomethylation in the SN with aging has accumu-
lated in the literature [7, 46], though without any solid
conclusions. Key findings include: 1) there are global
changes in DNA methylome of the SN with age, 2) the
ratio of two major forms of epigenetic DNA modifi-
cations “5hmC/5mC” in brain significantly increases
in the SN with age, implying more DNA demethyla-
tion by TET enzymes, 3) there is a tissue-specific
increase in 5hmC with age in the DA neurons of
the SN, 4) the activity but not the mRNA level of
TET enzymes increases in the SN of the aged mice.
Yet, none of these DA neuron-specific observations
provide direct evidence for an age-dependent change
in total 5mC. This issue was addressed within the
scope of the same studies, but no significant alter-
ation could be noted. Also, no significant changes
in expression or methylation levels of both DNMTs,
DNMT1 and DNMT3a, with age were reported in
SN, unlike some other regions of the brain discussed
above. Independent of all these scientific endeavors,
there is also little to no indication of promoter-level
changes in DNA methylome of the SN associated
with the normal course of aging. Collectively, though
the preliminary findings herein lay the groundwork
for further examination of alterations in DNA methy-
lome of the SN observed during healthy aging, there is
an urgent need for additional research to both uncover
the extent to which DNA methylation changes with
aging in the SN and examine the reproducibility and
generalizability of these findings.

PD and aging: Different sides of the same coin,
or two different coins?

Aging appears as the greatest risk factor for spo-
radic PD, which accounts for a vast majority of PD
cases [118]. In other words, a currently unknown
set of age-dependent factors predispose a group of
individuals to the most common type of PD. More
specifically, PD prevalence changes from low levels
in young age groups to 15% for individuals over
60 years of age and rises another 15% in every fol-
lowing decade, making up 1% overall prevalence
over age 60 [119]. Yet, how advancing age accel-
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erates degeneration of dopaminergic neurons in the
SN and thereby substantially increases the likeli-
hood of developing PD is still an open question.
As indicated before, genome-wide changes in DNA
methylomes observed in PD and in healthy aging
of similar age bear resemblance to some extent. In
general terms, aging diminishes the overall DNA
methylation in the genome and selectively increases
levels of methylation at many promoters, roughly like
PD. This resemblance of changes in DNA methy-
lome patterns might mean age-dependent epigenetic
alterations potentially contribute to the onset and/or
progression of PD, which is an age-related disorder
[114]. However, this claim demands further evidence
that help quantify the degree of resemblance in a
tissue-specific manner. From a technical standpoint,
more longitudinal studies of large cohorts dissect-
ing the kinetics and dynamics of DNA methylation
changes in PD and in healthy aging using time-series
data, which might require the use of such peripheral
surrogate tissues as blood, are needed to define the
sequence of causal events occurring from birth and to
measure the degree of correlation between these two
states of health. Ultimately, this will help understand
the biological underpinnings and pathophysiological
characteristics of PD within the context of aging.

From a biological perspective, a cascade of stres-
sors that arise as a part of the normal course
of aging in the SN take a toll on the ability of
DA neurons to tolerate further insults as PD pro-
gresses. More specifically, advancing age, similar
to PD [120], brings along a decline of mitochon-
drial DNA copy number (mtDNA-CN) and defects in
protein degradation together with an increasing bur-
den of dopamine metabolism [118]. While dopamine
metabolism likely contributes to neurodegeneration
in the SN by the overaccumulation of ROS and sub-
sequent DNA damage over time [121], an ongoing
reduction in mtDNA-CN brings about a drop in both
rate and efficiency of ATP production required to
meet high energy demand of DA neurons [122]. At
the same time, abnormal protein degradation adds
to neurodegeneration by severely interrupting proper
functioning of dopaminergic neurons, as can be seen
in PD caused by �-syn aggregates [123]. There is
further evidence on both impaired intracellular clear-
ance mechanisms and cytoplasmic lipofuscin mass (a
direct consequence of lysosomal reactions related to a
major cellular recycling system called autophagy) in
DA neurons of rhesus monkey brain [124]. Evidence
from nonhuman primates showed an age-dependent
decrease in tyrosine hydroxylase (TH), the gold stan-

dard marker for dopaminergic neurons, in the SN
[125]. Yet another study demonstrated that geneti-
cally interfering with aging in the worm C. elegans
leads to a substantial increase in life expectancy
with significantly less dopaminergic neuron death
and clear improvements in behavior deficits associ-
ated with these neurons [126]. It has also been shown
that inducing aging in iPSCs results in progressive
loss of tyrosine hydroxylase, a sign of neurodegener-
ation in the SN [127]. Finally, the annual killifish N.
furzeri, which was found to exhibit an age-dependent
degeneration of DA neurons as a part of the natural
life cycle and to develop inclusion bodies with �-
synuclein in the brain, was now tested as a likely
animal model to investigate mechanistic underpin-
nings of Parkinson’s disease, with aging being part of
the equation [128]. From a mechanistic point of view,
neuromelanin accumulation progressively increasing
with age [129] and the diminishing ability of mito-
chondria in DA neurons to handle intracellular levels
of calcium and/or iron and the following deficiencies
in mitochondrial complex I and IV activity [130, 131]
all seem epiphenomena of an underlying aging pro-
cess in the context of PD. On top of this naturally
occurring cellular degeneration, the accumulation of
random mutations during later stages of develop-
ment of matured neurons may become a final burden
to the already overwhelmed neuronal cells in the
SN of the elderly [132]. In this context, heterozy-
gous SNPs in CpG dinucleotides were also found to
disrupt the methylation potential of the correspond-
ing sequences [20]. Please see [20] for an excellent
work discussing this genetically driven epigenetic
changes (that is, allele-specific methylation) in the
human genome and [133] for an exquisite review of
the impact on healthy aging and PD of the environ-
mental factors/exposures that are known to influence
CpG methylation patterns. Briefly, cumulative expo-
sure to risk factors, such as a number of pesticides,
has been suggested to contribute to PD more signif-
icantly in old age while certain lifestyle behaviors,
including but not limited to tobacco smoking and
lifelong physical exercise, have been defined as the
protective factors for parkinsonism [134]. Overall,
genetics and environmental factors cover just a small
percentage of PD cases individually. An interest-
ing hypothesis claiming reprogramming to recover
youthful epigenetic information might reverse some
of the physiological trends observed as a part of
healthy aging process in murine system has recently
been proposed, though met with some controversy
[27].
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A key point in PD research is that PD symptoms
start to appear only after the total loss of DA neu-
rons reaches a certain level. Including aberrant DNA
methylation, anything which increases the degree
of vulnerability to accumulating damage in the SN
might shed light on why only a fraction, not all, of
the elderly population experiences excessive loss of
dopaminergic neurons. Given that the regulation of
genomic methylation is important for healthy cogni-
tive functions and that the temporal regulation of de
novo (de)methylation contributes substantially to the
differentiation and maturation of the cerebrospinal
axis in mammals [135], CpG methylation can as well
be the missing piece of the puzzle that will bridge the
persisting gap between health and disease. Together,
a range of age-related naturally accumulating stresses
derived from different cell compartments undermine
cellular tolerance of DA neurons to additional insults
of mitochondrial dysfunction and toxic protein aggre-
gates, rendering neurons even more vulnerable to
degeneration.

Gender-specific changes in DNA methylomes of
PD and aging

One last point is that age-related DNA methyla-
tion changes that are potentially sex-specific have
been suggested to associate with differential suscep-
tibility to PD in human [136], though without direct
experimental evidence. In this respect, our current
knowledge includes: 1) females have a higher life
expectancy than males [137], 2) the epigenetic aging
rate of males is higher than females [24], 3) genes
with CpG sites predictive of chronological age in
the context of epigenetic aging were found highly
associated with age-related neurodegeneration as a
potential example of the interplay between aging,
DNA methylation, and PD [24, 26], 4) males seem
significantly more likely to develop PD than females
[138–140]. This potential differential predisposition
to PD outcome between males and females might be
explained by the changes in autosomal CpG methy-
lation at particular sites observed between different
sexes with aging considering both reliable predictions
of chronological age with high accuracy using age-
dependent methylation changes in just a set of specific
CpG sites [5, 24] and the high degree of association
of nearby genes with age-related neurodegeneration.
Another line of evidence, though indirectly, came
from a large cohort study showing that methylation
pattern of gender-specific genes, such as MAPT, is
positively associated with aging and that gender was

a significant independent predictor of this observed
methylation pattern [83]. Given the statistical nature
of the analysis, further investigation is needed to val-
idate these findings experimentally and to rule out
both any spurious correlations and any possibility of
confounding variables that are not accounted for in
these studies.

Generating methylation data for age-related
human diseases

In this respect, high-dimensional data from multi-
ple models should be generated and combined before
reporting the findings intended to characterize the
genetic-epigenetic pathophysiology of aging in a
tissue-specific manner because none of the models
alone can fully phenocopy complex human diseases
[141]. In general terms, the complex nature of aging
at the tissue or organism level can be further illus-
trated by the common observation that not all aging
individuals share the same set of aging phenotypes.
From an epigenetics standpoint, a high degree of
interindividual variation in the severity and spec-
trum of aging phenotypes can be largely attributed
to a greater level of genetic heterogeneity and a
wide range of environmental exposures. In addition
to choosing the appropriate ensemble of transgenic
animal models to study SN-specific CpG methyla-
tion changes with age, the choice of detection method
to identify and quantify genome-wide DNA methyla-
tion has a tremendous impact on the outcome. Though
unable to distinguish between 5mC and 5hmC, whole
genome bisulfite sequencing (WGBS) is the gold
standard method in DNA methylation studies among
a plethora of currently available techniques [142].
Some of the inherent issues related to WGBS coupled
with Fluorescence-activated cell sorting include tech-
nical challenges related to generation and subsequent
use of bisulfite-converted DNA, severe genomic frag-
mentation during sample preparation and subsequent
biases in sequencing data, and difficulties in ampli-
fying long DNA regions [28]. There are also other
methods used to detect DNA methylation in a cell
type-specific fashion when combined with auxiliary
techniques, including but not limited to antibody-
based strategies or oxidative bisulfite sequencing,
highly sensitive LC–MS/MS and LC–MS/MS/MS,
and single cell approaches [143]. Each method has
its own merits and drawbacks, and each is at a dif-
ferent phase of development. Please see [142] for an
exquisite review of the current methods within the
scope of DNA methylation analysis.
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Parkinson’s disease models: A platform for cell
type-specific DNA methylation studies

Considering that the brains of living subjects
are inaccessible, the neuroscience research faces a
dilemma of cause and effect due to the absence
of empirically robust, real-time evidence from the
primarily affected tissue. A substantial number of
research focusing on epigenetics of neurodegenera-
tion are based heavily on postmortem brain tissue,
which makes it rather difficult to figure out as to
whether observed changes in DNA methylome are
caused by or leads to neurodegenerative processes. In
other words, reprogramming DNA methylation pat-
terns is a major means of propagating the impact
caused by environmental exposures on the host at
the genome level. At the same time, any change in
DNA methylation might as well be a direct or indi-
rect consequence of the sequence of molecular events
that lead to the phenotype itself. This, in turn, leads
to a causal conundrum in the field. The difficulties
in selecting participants and in acquiring/preparing
well-characterized high quality specimens at large
quantities, the low number of remaining DA neurons
due to the end-stage of the disease, potential con-
founds (e.g., chronic treatments and the presence of
comorbid conditions) all add to this picture, as well
[144, 145]. Therefore, after an increasing body of evi-
dence suggest that similar alterations occur in both
brain and blood methylome of PD patients, many
studies were designed to use more accessible sys-
temic tissues [84, 146]. Although there are a few
concerns, in addition to the inherent issues related to
disease biomarkers, about to what extent epigenetic
changes identified in systemic tissues reflect neurode-
generation observed in the brain [6], human blood
might serve as a feasible surrogate for brain tissue
depending on the study design. It offers such unique
advantages as convenient accessibility anytime, the
ability to reach higher sample sizes, suitability for
high-throughput assays, and relatively high degree
of cross-tissue correlation, reflecting host-derived
genetic architecture [147–149]. In fact, the view of
what PD is has recently shifted away from it sim-
ply being considered as a disease of DA neurons to
a more complex disease that involves, in addition to
brain, many other non-brain regions as well, includ-
ing the peripheral immune system and possibly the
gut and peripheral nervous system (which are rather
relevant to the etiology of PD and to prodromal stages
prior to diagnosis) [150]. Given that DNA methyla-
tion acts differently on gene regulation in different

tissues and that epigenetic regulation might indeed
be a highly cell type-specific molecular event, one
might still think studying tissues that are not primar-
ily affected by the PD-induced neurotoxicity does not
seem to have much use in this context. Yet, depending
on the nature of the research and the purpose of the
study, human blood might indeed be an ideal choice
of platform to investigate DNA methylation in neu-
rodegenerative disorders, including PD. In general
terms, though, human postmortem studies will likely
continue to lay the foundation of our understanding
of PD for some more time [145].

Another approach includes the use of an ever-
expanding repertoire of human cellular models of
neurodegeneration, in particular, induced pluripotent
stem cell (iPSC)-derived human neurons [151]. This
model makes it possible to explore individual-specific
neuronal mechanisms reflecting the unique genetic
makeup of each patient [147]. Pluripotency (i.e., the
ability to reproduce all adult cell types, including
many types of cells in the central nervous system,
along the differentiation process), the ability to model
disease, and accessibility to large number of patients
without any ethical concerns are also part of the pack-
age [152]. On the other hand, in addition to labor-,
time-, and money-intensive nature of this approach,
these models are as well limited regarding the degree
of maturation, the efficiency of reprogramming, and
the level of complexity in the absence of: 1) com-
plex neuronal circuits, 2) glial cell ramification at full
scale, 3) immunovascular components [153]. Though
iPSCs offer an ideal platform to generate DA neurons
from the patient sample that retain parts of epigenetic
signatures of the tissue of origin [154], all these sig-
nify the importance of developing engineered animal
models that can more faithfully recapitulate the com-
plexity of an intact nervous system as well as the
protracted, age-dependent progression and selective
neurodegeneration of PD. Yet, it is hitherto widely
known that no animal model alone could do so fully,
with important PD hallmarks missing in the pheno-
type [124, 153]. To illustrate, a known issue with the
current animal models is as follows: models of �-
synuclein-induced degeneration that transgenically
express either wild type or various mutant forms of
�-synuclein develop the aggregates, yet mostly with-
out the SN-specific neurodegeneration seen in human
PD [153]. Also, pharmacological and toxin-induced
animal models depended typically on single doses of
large amounts of neurotoxic agents fail to develop the
common (i.e., not early onset, gradually progressive)
deterioration observed in patients with Parkinson’s
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disease [124]. There are also other transgenic animal
models used in PD research, including but not limited
to models of LRRK2, PARK2 and PINK1 mutants,
each with a different set of challenges. For a detailed
overview of the current animal models of neurode-
generative diseases, please see [153]. Together, it is
commonly appreciated in the field that not a single,
but a diligently selected group of existing models col-
lectively demonstrate key features of PD. Therefore,
future studies using this combinatorial approach are
pivotal to our understanding of the pathophysiology
of PD and will pave the way for more extensive epi-
genetic research investigating PD-specific changes in
DNA methylome of the SN.

FUTURE PERSPECTIVES

Accumulating evidence has revealed that reg-
ulating the regulators of DNA methylation, such
as DNMTs and TETs, is a key aspect of CpG
methylation-based modulation of gene expression
within the context of aging and PD [155–159]. More
specifically, unbalanced PARylation has been iden-
tified as a leading factor contributing to aberrant
genomic methylation, as well as changes in chro-
matin landscape linked to defective genome structure
[160]. PARylation is, in general terms, associated
with preservation of unmethylated state of CGIs and
the genome overall [161], despite some evidence on
its functional divergence based on local chromatin
topology. The enzyme that catalyzes PARylation
reactions, PARP1, controls CpG methylation by sup-
pressing DNMT1 activity both directly and indirectly
[160, 162], and by forming a complex with CTCF, a
multifunctional structural protein that maintains the
stability of local methylation status of many highly
expressed genes, to ensure transcriptional activity
[163, 164] (Fig. 4). Orchestrating multiple epigenetic
mechanisms, PARP1 also controls CpG demethyla-
tion by inducing TET1 expression and stimulating its
activity, as shown in a group of studies [165, 166].
For mechanistic insights into this post-translational
modification in the context of epigenetics, please see
[161].

There is now strong experimental evidence that
PAR-dependent cell death, or parthanatos, in neurons
following the accumulation of PAR by overactive
PARP1 is involved in both PD [159] and many
aspects of aging [167]. In addition to the converg-
ing trajectories within the scope of parthanatos of
parkinsonism and aging, the well-founded correlation

of DNA methylation defects with these two states of
health discussed above raises new biological ques-
tions: To what extent in DNA methylome of the SN
do age-dependent changes correlate with PD-specific
alterations? Can PD-specific alterations in DNA
methylation independent of aging explain the reason
why only some, not all, individuals develop PD with
advancing age? Can new animal models of PD that
take aging into account phenocopy the multifactorial
underpinnings of PD-associated neurodegeneration
better than the current animal models do? Can repur-
posing of PARP-inhibitor drugs currently available
on the market be useful for the treatment of PD? In
the same context, can the epigenetic burden of aging
actually be reversed, as suggested in [27]? The last
question, in particular, deserves attention. It has been
empirically shown that mammals, including human,
maintain a copy of juvenile epigenetic profile at the
tissue level and that reversing the epigenetic clock
in aged cells through TET1/2-dependent epigenetic
reprogramming can successfully recapture youthful
gene function, restoring a degenerative phenotype
associated with aging in old mice [27]. Though not
reproduced in the literature, these observations might
have important implications in the functional rever-
sal of age-related alterations in DNA methylome
and might even pave the way for the reversal of
age-related decline in humans one day. Given the phe-
nomenon that exceptionally long-lived individuals
have a slower aging rate (or likely a healthy longevity)
calculated using the epigenetic clock [168], critical
questions that remain include: will it ever be possible
to achieve the same reversal for PD, as well? Can the
onset and/or progression of PD be delayed without
the age-specific epigenetic component contributing to
the disease pathogenesis? Further research is needed
to test the validity of these questions.

CONCLUDING REMARKS

From an evolutionary standpoint, the potential to
adapt to changing environmental conditions con-
tributes to the fitness of an organism. At the molecular
scale, this translates into the following: any addi-
tional layer of transcriptome regulations that provides
stability and mediates adaptive changes of transcrip-
tional programs greatly helps an organism in adapting
to its surrounding. Epigenetic mechanisms are one of
the major means of regulating the mammalian tran-
scriptome. Of a whole spectrum of epigenetic pro-
cesses, DNA methylation is among the best-defined
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Fig. 4. poly(ADP-ribosyl)ation (PARylation) of PAR polymerase 1 (PARP-1) is a major means of regulating genomic methylation patterns.
PARylated PARP-1 acts on a set of epigenetics regulators, including CTCF, DNMTs, and TETs, to induce DNA hypomethylation.

epigenetic processes in neuroscience. We now know
that aberrant CpG methylation is one of the factors
associated with aging process and age-related neu-
rodegenerative disorders, more specifically PD. In
this regard, the dynamic nature of repressive CpG
methylation has provided a fertile ground for basic
research in these fields over the last few decades. Yet,
it is still not known as to whether epigenetic dysregu-
lation is just an epiphenomenon rather than a primary
cause of both PD and age-associated decline overall.

Being an evolutionarily conserved natural pro-
cess, healthy aging is typically defined as subclinical
SN neuronal decline caused typically by elevated
oxidative stress, mitochondrial dysfunction, derailed
autophagy, intracellular �-synuclein aggregates and
neuroinflammation, many of which are in line with
the pathophysiology of PD [169]. Also, PD is widely
known to be caused by a multifactorial interplay of
aging, genes and the environment, with aging being
the greatest risk factor of all. Despite all these com-

monalities, the field is far from reaching a consensus
in the absence of an ideal animal model that also takes
aging into account to study molecular mechanisms
underlying PD. Given the importance of defective
DNA methylation in the pathophysiology of aging
and PD, future research investigating SN-specific
signature of healthy aging in DNA methylome is crit-
ical in understanding the breadth and the extent of
age-dependent epigenetic contributions in PD. Forth-
coming technologies, such as high efficiency single
cell DNA methylome profiling and complementary
multi-omics approaches, to build integrated molecu-
lar networks of PD and aging have the potential to
accelerate discoveries in this exciting field.
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