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Glossary 

The definitions of some relevant terminology are provided. For a more general glossary, we refer 

to this site Machine Learning Glossary (https://developers.google.com/machine-

learning/glossary). 

 

Deep neural network: refers to a subset of artificial neural networks which contains multiple 

hidden layers. 

Ground truth dataset: refers to a dataset with the correct answer. The correct answer can refer 

to a label, a vector, an image, etc. 

Human interpretability: refers to the ability to provide a human understandable rationale for the 

decision process of a machine learning algorithm. It requires the algorithm to provide not only an 

accurate prediction but also an underlying reason for this prediction which is understandable by 

laymen in terms of machine learning. 

Machine learning: refers to the study of computer algorithms that can learn directly from input 

data. Currently, the most common model used in this area is the artificial neural network. 

Mean per joint position error (MEJPE): refers to the error that represents the misprediction of 

the joint by the algorithm to its actual position. Appendix B describes MEJPE in detail. 

Overfitting: refers to a state at which the model was able to conform with the training dataset, 

whereas it lost its ability to make correct predictions on unseen data. The opposing state of 

overfitting is underfitting. In this state, the model failed to conform with the training data set. It 

may lead to low accuracy when applying this model both on training data and unseen data. 

Over-parameterization: refers to a situation where having many different input parameters 

(such as body mesh points) can create ambiguities and does not necessarily result in a more 

accurate output during human pose estimation. 

Regularization: a designed penalty term to prevent the model from becoming more and more 

complex during training. The inappropriate complexity can result in overfitting or underfitting. 

Training dataset: refers to the dataset used during training. Another related term is the test 

dataset. It refers to the dataset reserved for validation of the model performance. 



  



Metrics for evaluation of human pose estimation algorithms 

 The most widely used evaluation metric for 3D pose estimation algorithms is mean per joint 

position error (MPJPE) [1,2]. It measures the Euclidean distance between predictions and ground 

truth positions in millimeters. The MPJPE is defined by: 
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where the 𝐽𝑖 denotes the position of ith joint given by the algorithm, and the 𝐽𝑖
∗ denotes the 

ground truth position of ith joint. Another evaluation metric is a 3D extension of percentage of 

correct keypoints (PCK) [1–4]. A joint will be considered as “correctly detected” if the Euclidean 

distance between the prediction and ground truth is lower than a fixed threshold. 

 The percentage of correct keypoints (PCK) and the area under the curve (AUC) are widely 

used to evaluate the performance of 2D pose estimators [2,5]. PCK refers to the percentage of 

joints where the distance (units: Pixel) between prediction and ground truth is less than a 

threshold usually defined by reference to a body part. In our case, the term PCK@0.2 is used 

when the threshold is defined as 0.2 times the torso diameter. Consistent with previous work, the 

torso diameter is defined as the Euclidean distance between the left shoulder and the right hip [6–

8]. The term AUC on PCK@0.2 refers to the area under the curve of PCK@X with X between 0 

and 0.2 with a step 0.002; as the threshold approaches 0, stringency will be increased and 

accuracy will suffer. Therefore, accuracy for both PCK and AUC range from 0% to 100%, with 

AUC reported to be significantly smaller than PCK. Based on previous studies, the average of 

AUC on the Leeds Sports Pose (LSP) test dataset ranges from 40% to 70% while PCK@0.2 

ranges from 70% to 90% [9–11]. 

 

 

 

Supplementary Video 1: Illustration of different pose estimation methods
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