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Abstract. A recent breakthrough paper published in Science Translational Medicine has provided compelling evidence that
inhibition of Parkin Interacting Substrate (PARIS) may offer clinical researchers an important new therapeutic approach
since it shows considerable promise as an important biological target potentially capable of pharmaceutical intervention to
slow long term neurodegeneration in patients with Parkinson’s disease (PD). We present several PD-relevant perspectives
on this paper that were not discussed in that otherwise entirely scientific narrative. We also outline the some of the work
leading up to it, including the massive drug screen that proved necessary to discover a clinically suitable inhibitor of PARIS
(Farnesol), as well as relevant PD research within the wider drug class, issues surrounding its future formulation, and next
steps in translating this new knowledge into the clinic to evaluate possible long-term PD patient benefits.
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INTRODUCTION

Few would deny the search for a cure for Parkin-
son’s disease (PD) is a noble aim. Nobel prizes for
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literature were awarded to Pirandello (1934), Beck-
ett (1969), and Pinter (2005); and the connections
to PD here, are numerous. The central themes of
Samuel Beckett’s Waiting for Godot and Luigi Piran-
dello’s Six Characters in Search of an Author both
share uncertainty over pursuit of a clear direction,
illogical progression, multiple interpretations, and
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lack of clarity about what is real, and what is not.
That all sounds very much like the past 50 years
of the search for fundamental new therapeutics for
PD, even despite it long remaining that noble aim.
Harold Pinter was a close friend of Samuel Beckett.
He was also president of the Pirandello society when
he mentioned that, whilst rehearsing for the 1953
Paris premier of Godot, one of the actors noticed the
hesitant cadence throughout a long monologue that
Beckett had written into the voice of his character and,
after speaking to a young doctor, Marthe Gautier, at
the Pitié-Salpêtrière Hospital in Paris, she suggested
Parkinson’s disease. The actor immediately incorpo-
rated the disease into his portrayal, prompting Beckett
at rehearsals to ask him why he was doing this? On
learning the reason, Beckett admitted he hadn’t even
realized he had interwoven the disease into the char-
acter, but revealingly confided his mother had PD.
Marthe, now 95, went on to become one of France’s
most celebrated and decorated doctors.

INSIGHTS INTO A CRITICAL
BIOCHEMICAL PROCESS

Paris is a synonym of a great city of culture
and cuisine, whilst PARIS is an acronym of ‘Parkin
Interacting Substrate’. Also known as zinc finger
protein 746 (ZNF746), PARIS is a 644 amino acid
protein member of the family of KRAB zinc-finger
proteins transcriptional repressors [1]. It contains
four zinc finger domains—which mediate sequence-
specific DNA binding in the promoter region of
target genes—and one KRAB domain that governs
transcriptional repressor activity. Although PARIS
has been reported to have functional roles in cancer
cells [2–5], and in myoblast senescence [6], it was
originally described as a key enzyme sitting mech-
anistically, between Parkin (an E3 ubiquitin ligase
that mediates mitochondrial quality control [7–9]),
and PGC-1� (a transcriptional co-activator, perox-
isome proliferator-activated receptor-� coactivator-
1� which is a vital master regulator of mitochondrial
size and number [10]). PARIS was first shown by Shin
et al. to be centrally involved with the selective degen-
eration of dopaminergic neurons, and this effect was
found to be reversible by either Parkin or PGC-1� co-
expression [11]. Siddiqui subsequently showed that
mitochondrial quality control was PARIS-dependent
in PD models in a manner requiring the lysosomal
transcription factor EB (TFEB) [12]. PARIS inhibits
both Parkin and PGC-1� when its levels become

raised, thereby accelerating dopaminergic cell loss.
It has therefore been known for a decade that if a safe
PARIS inhibitor could be identified then it would hold
great clinical promise for patients with PD.

Very recently, a major breakthrough paper by Jo
et al. has expanded our biological understanding
of PARIS in the context of PD [13]. This study
also involved a major drug screen and importantly
reported the flavonoid, Farnesol, as an inhibitor of
PARIS activity (Fig. 1); it appears to be a com-
pound suitable for clinical evaluation to determine
its disease-modifying potential in PD patients. We
present here several PD-relevant perspectives on this
paper, the work leading up to it, relevant PD research
within the wider drug class, issues surrounding its
formulation, and next steps in translating this new
knowledge into the clinic to evaluate possible long-
term PD patient benefits.

PARIS EXPRESSION DRIVES PD
NEURODEGENERATION

Autosomal recessive genetic mutations in the ubiq-
uitin E3 ligase, Parkin, can lower its activity and
these patients typically present with an early-onset,
slowly-progressive form of PD [14–16]. Even in idio-
pathic PD, however, normal levels of Parkin are also
found to be aberrantly compromised [15, 17–18].
This is potentially important for all PD patients
because, when Parkin levels decline for any reason,
there is a resulting PARIS-dependent reduction of
mitochondrial mass and respiration which leads to
dopaminergic cell death [19] thereby accelerating
the trajectory of their PD neurodegeneration. Con-
sistent with this notion are the observations that, in
a mouse model of age-related sporadic PD, oxida-
tive reductions in Parkin solubility and activity are
PARIS and PGC-1� dependent [20]. PARIS also
plays an important role in pathologic �-synuclein-
induced degeneration because knockout of PARIS
markedly attenuates the neurodegeneration set in
motion by pathologic �-synuclein [21]. Mutations
in glucocerebrosidase, which are highly associated
with the development of PD, leads to the accumula-
tion of PARIS [22]. Moreover, PGC-1� was shown
to be a key-nodal point in the pathogenesis of PD as
genes controlling cellular bioenergetics are reduced
in PD patients [23]. The mitochondrial deficits caused
when Parkin levels are low are triggered by defects
in mitochondrial biogenesis that are propelled by
the upregulation of PARIS which directly causes a
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Fig. 1. In situations when Parkin is inactivated, or there is exposure to malformed fibrils of alpha synuclein, the level of PARIS increases,
which directly leads to transcriptional suppression of PGC-1�, causing reduced mitochondrial function and thus furthering neurodegeneration.
Farnesol however fosters the farnesylation of PARIS, thereby intercepting occupancy of PARIS on the PGC-1� promoter which leads to
higher levels of PGC-1� and consequently promotes neuroprotection. IRS, insulin response sequences; Farnesyl-PP, Farnesyl diphosphate.

downregulation of PGC-1� expression and thereby
accelerates the loss of dopamine neurons [24, 25].
Further insight into this shows that when PARIS
expression is knocked down in cellular models, this
results in mitochondrial biogenesis, maintenance of
mitochondrial membrane potential, improved respi-
ration, and recovery of morphology and restoration
of PGC-1� expression. It is also interesting to note
a recent report identifying genetic variants in the
PARIS/ZNF746 gene that are significantly associ-
ated with early onset PD [26]. PARIS levels are also
elevated in PD and thus measuring its levels could
serve as a biomarker for the disease [27]. All of these
observations conjoin to establish PARIS as a neg-
ative regulator of mitochondrial function [28] and
authenticate that the Parkin-PARIS-PGC-1� pathway
occupies an important role in the progressive loss of
dopaminergic neurons in PD.

FINDING A CLINICALLY-SUITABLE
INHIBITOR OF PARIS

By 2011/2012, it was clear that if an inhibitor
of PARIS could be identified, and if it was safe,
then this might well offer a radically new therapeutic
approach with potential to offer substantial disease-
modifying benefits in the long-term management of
PD by fundamentally changing the trajectory of neu-
rodegeneration, and unusually, it could be expedited
via two different but simultaneous mechanisms, e.g.,

by increasing levels both of Parkin and PGC-1�.
Since PARIS is a transcriptional repressor it is likely
to regulate other genes. Overexpression of PARIS in
mice leads to early lethality and selective loss of DA
neurons [13]. The loss of DA neurons is rescued by
overexpression of PGC-1�, while the early lethal-
ity is not rescued to a great extent. This indicates
that PARIS has other targets. The identification and
characterization of the extent of genes regulated by
PARIS requires further study. PARIS knockout mice
live a normal life span and do not have any substantial
phenotype, suggesting that PARIS inhibitors would
be well tolerated with minimal side effects [21].
Thus, PARIS activators might be expected to have
on target effects, while PARIS inhibitors might have
minimal side effects. Cure Parkinson’s (CP), a global
PD grant-giving charity, who founded the Interna-
tional PD Linked Clinical Trials initiative (iLCT),
stepped forward and funded the major drug screen
(>230,000 compounds) which has just successfully
identified Farnesol as a PARIS inhibitor with prop-
erties suitable for oral dosing in humans [13]. As a
group, CP regularly convenes a very large world-
wide committee of PD experts who, over the past
decade, have met to evaluate hundreds of candidate
therapeutic approaches (including Farnesol) for their
disease-modifying potential in PD and, so far, have
gone on to foster > 20 long-term disease-modifying
trials in PD patients [29–31]. The wider backdrop
here is that the therapeutic pipeline in the search for an
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authentic disease-modifying therapeutic has recently
been rapidly expanding [32, 33], and while iLCT is
centrally involved in many of these promising clini-
cal initiatives, nevertheless we and others have long
felt that finding a clinically safe inhibitor of PARIS
could well become a major game-changer in PD.

The necessity of conducting a drug screen to find a
PARIS inhibitor was a very unusual prerequisite for
the iLCT PD drug development process. After all, the
iLCT experience was that almost all the considerable
number of individual biological targets of relevance
to PD that the iLCT expert committee had already
evaluated had typically started out with several drug
candidates from which to choose to prosecute into
clinical trials. However, in this particular case, no
PARIS inhibitor had ever been identified. But, unlike
Godot, Farnesol DID arrive [13]. However, it has
taken an entire decade between the identification
of the biological target, the identification of a safe
PARIS inhibitor, and the current planning of the dose-
finding and proof-of-concept clinical trials aimed to
take this research to the next level. The drug screen
had identified 7 candidates, but only 2 of these were
practical to consider for clinical testing, with Farnesol
representing the most appropriate to take forward into
trials.

By the construct of the screening method, Farnesol
was found to be highly effective in elevating PGC-
1� levels even when PARIS levels were abnormally
high and therefore compromising the intrinsic PGC-
1� levels [13]. The potency of Farnesol in doing this
was due to its ability to farnesylate PARIS via a post-
translational protein modification which attaches a
small farnesyl group to carboxy-terminal cysteine
sulphur on the PARIS protein, and thereby deactivat-
ing its physiologically inappropriate property of the
transcriptional repression of PGC-1�. Additional in
vivo studies in Parkin knockout and preformed alpha
synuclein models of PD demonstrated that the protec-
tive nature of Farnesol worked extremely well [13].
The authors also interestingly showed the level of far-
nesylated PARIS was reduced in the substantia nigra
of patients with PD, whilst levels were unaltered in
the cortex.

PD-RELEVANT PROPERTIES OF
FARNESOL

What do we know about Farnesol in relation
to PD and other neurological conditions? The cur-
rent poignant observation that Farnesol generates

PARIS farnesylation which, in turn, prevents PARIS
occupancy on the PGC-1� promoter (and which
thereby beneficially increases the levels of PGC-1�
by reversing the PARIS mediated repression of its
transcription) seems likely to offer advantageous neu-
roprotective mitochondrial and cellular consequences
that should be tested without delay in long term clin-
ical trials to assess its disease-modifying potential.

A PubMed search for research papers relating
to Farnesol and PD retrieves only three [34–36].
All three focus on possible potent monoamine oxi-
dase inhibitory properties of Farnesol in the context
of cigarette smoke. That may not be totally irrel-
evant because, although farnesylation is clearly
not involved here, might it be relevant that the
monoamine oxidases are anatomically located adja-
cent to Parkin upon its translocation to the outer
mitochondrial membrane of damaged mitochondria
to induce mitophagy, and subsequent targeting for
lysosomal disposal [37–39]?

Farnesol is classified as one of > 6000 flavonoids
derived from plants. It is a terpene alcohol found in
corn, tomatoes, lemon grass, chamomile, peaches,
and other vegetables and fruits. Its name originated
from the acacia tree, Vachellia Farnesiana, which was
grown for its perfume by Cardinal Farnese in Rome
after its earlier importation from central America.
Farnesol has been commercially produced from the
flowers of this tree, and widely used in perfumery for
> 300 years.

Farnesol has never been clinically tested for any
human disease. However, human exposure to Far-
nesol has been extensive worldwide via ingestion of
various foods that contain it, and via inhalation in the
context of cigarette smoking. Pre-clinical studies in
PD models suggest those exposures are likely to be
well below the dose needed to deactivate PARIS to the
extent that this might generate tangible clinical bene-
fits. It will therefore be crucial, before major clinical
testing in PD patients, to determine what would be a
safe and tolerable dose of Farnesol, and what are its
pharmacokinetic properties? From this information, a
suitable dosing regimen will hopefully be determined
and Phase II clinical testing launched.

However, Farnesol is also attracting interest
for tackling other neurological conditions and has
already been shown to offer striking reductions in
the severity of an immune response (autoimmune
encephalomyelitis) in an experimental model of mul-
tiple sclerosis [40], a finding which could well lead to
its clinical development for this condition. It is worth
pointing out that those authors tentatively ascribe
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completely different biological actions of Farnesol
to the beneficial response they have reported, includ-
ing calcium channel inhibition, reduction of oxidative
stress, attenuation of the inflammasome response,
and lessening of pro-inflammatory cytokine secre-
tion, some of which has previously been supported
by others [41–46]. A decade earlier, an exceptionally
thorough description of the large number of individ-
ual biochemical properties of Farnesol was reported
by the NIH from the context of its potential clini-
cal applications in oncology [47]. They particularly
focused on how Farnesol also impacted on apop-
tosis, NF-κB activation, inhibition of proliferation
of tumour cells, induction of endoplasmic reticulum
stress, induction of mitogen-activated protein kinase
(MAPK), activation of peroxisome proliferator-
activated receptors (PPARs) amongst several other
important intracellular processes. Now knowing that
Farnesol, acting via repression of PARIS, is extremely
effective in increasing PGC-1� levels, then perhaps
at least some of its properties as earlier reported [47]
might well now be considered as downstream to the
increase in mitochondrial size and number generated
via that increased expression of PGC-1�.

Farnesyltransferase inhibitors have recently been
shown to enhance �-synuclein clearance by acti-
vating SNARE activity [48]. As such, Farnesol
might be expected to interfere with SNARE activ-
ity via increased farnesyltransferase activity, thereby
increasing the levels of �-synuclein. However, Far-
nesol had the complete opposite effect where it
reduced the accumulation of insoluble pathologic �-
synuclein while preventing the loss of DA neurons
via farnesylation of PARIS in an in vivo patho-
logic �-synuclein model of PD. These observations
suggest that inhibiting PARIS and enhancing PGC-
1� function can overcome any deleterious effect on
SNARE activity and reduced �-synuclein clearance.
One may need to exercise caution with farnesyltrans-
ferase inhibitors, since farnesyltransferase levels are
decreased in PD substantia nigra [13] and the use
of farnesyltransferase inhibitors in PD could further
increase the levels of PARIS and exacerbate the neu-
rodegeneration.

WHAT OTHER FLAVINOIDS MAY SHOW
SIMILAR PD-RELEVANT PROPERTIES
TO FARNESOL?

Other flavonoids that are currently being con-
sidered for their potential therapeutic benefit in

PD include Kaempferol, Paenia Lactiflora, Curcur-
min, Thymoquinone, Genistein, Safflower extract,
Quercitin, Ginkgo Biloba, Icaritin, Honokiol, Lute-
olin, Baicalein, Ferulic Acid (amongst many others),
and involve a wide range of proposed biochemical
mechanisms [49–62]. A PubMed search on “parkin-
sons flavinoid” on October 10, 2021 produced 1,867
results, with > 100 publications so far in 2021. These
papers report biological actions of relevance to PD,
and focus on a number of credible biological targets
with theoretical potential to intercept neurodegen-
eration, notably in terms of reducing mitochondrial
oxidative stress, Nrf2 activation, and inhibition of the
inflammasome, but these are likely all downstream
of the action of Farnesol on PARIS. Whilst Farnesol
therefore may well also have some of these properties,
it is structurally dissimilar from all those flavonoids
mentioned above; in fact, we feel it unlikely that
its properties of PARIS farnesylation will be shared
by any of the other 6000 + known flavonoids in this
wide-ranging biological class.

PURSUING FARNESOL INTO A
LONG-TERM NEUROPROTECTIVE
TRIAL IN PD PATIENTS

Distilled from the 230,000 compounds in the drug
screen as one of the top 7 positive hits for PARIS
suppression, Farnesol has a relatively low molecular
weight which will assist its transit across the blood
brain barrier, and it has been specifically shown [13]
to be effective against PARIS when given orally in
PD models (including rescuing behavioral deficits).
It has good ADME properties for clinical use, except
that it is insoluble in water. There is currently very
little information about what dose might be selected
for use in PD trials and this key information will def-
initely have to be determined prior to the launch of
any Phase II trial to test the disease-modifying poten-
tial that Farnesol may eventually offer PD patients.
In Jo et al [13], the dose of Farnesol used in the
mouse models was extremely high; mice were fed
with 5 g/kg Farnesol in chow for 7 days. Although
this high dose resulted in a 37% increase in brain
concentrations of Farnesol and enhanced PARIS far-
nesylation in mice, we emphasize that, at this stage,
very little is known about its safety, or its efficacy, at
ANY dose in humans. We strongly recommend that
patients do not source Farnesol in any attempt to use
it off-label. We are aware Farnesol is effective when
applied topically to treat models of skin conditions,
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such as burns, but that Farnesol becomes cytotoxic
in this context when used in high concentrations so,
before testing in PD patients, it will be important to
determine the oral dose of Farnesol that can be safely
tolerated in humans, as well as to study its pharma-
cokinetic properties. If it turns out that Farnesol is safe
and tolerable at a dose which inhibits PARIS then the
Phase II neuroprotective trial will go ahead. Having
said that, we also recognize that, since Farnesol has
the potential to affect a large number of proteins in
many tissues, direct modulation of PARIS itself might
eventually turn out to be a better therapeutic approach
here. For instance, antisense oligonucleotides or Pro-
tac approaches could be directed to selectively reduce
PARIS levels. However, future investigations involv-
ing extensive pre-clinical and clinical research would
be required to test these additional possibilities.

Given that Farnesol is hydrophobic, so cannot be
dissolved in water, its safety in patients will need to
be determined at whatever the most effective thera-
peutic dose might eventually turn out to be. Lumbar
punctures will be needed to verify blood brain bar-
rier penetrance. Thoughts immediately turn to what
formulation might best support the dosing regimen.
It might be possible to use a shaken suspension or to
dissolve it in oil (although that might prove challeng-
ing to drink). It is unlikely to be well absorbed by the
gut, but that also needs to be determined.

REFORMULATION OF FARNESOL FOR
CLINICAL TESTING IN PD PATIENTS

A nanoformulation might offer improved gut
absorption, and reduction of daily dose (and thereby,
reduce any potential side effects IF present at the
therapeutic dose that has most impact on PARIS inhi-
bition). Lipid-based nanoparticles (such as liposomes
and solid lipid nanoparticles) as well as polymer-
based nanoparticles (such as micelles) have been
developed to overcome the issues of poor solu-
bility, stability, and bioavailability of antioxidant
flavonoids, such as Farnesol and curcumin, to pro-
mote their utilization as potential disease therapeutics
[63–67]. Lipid-based nanoparticles are considered
the least toxic for drug delivery purposes since
such nanoparticles are usually composed of naturally
occurring molecules allowing for biocompatibility
and biodegradability [68, 69]. Poly(lactic-co-glycolic
acid) (PLGA) liposomes are FDA and EMA approved
for use in vaccines and drug delivery and have already
been used to formulate Farnesol for the treatment

of fungal infections and were tested against the C.
albicans microorganism. This initiative reported a
nanoparticle size of 140 nm (which would be suitable
for brain delivery) [67]. Similar liposome approaches
have also been used for many other flavonoids
(such as curcumin) and, in such formulations, have
been shown to cross the blood-brain barrier readily
reaching the cerebral cortex and the hippocampus
[65].

Another nanoparticle approach that could be con-
sidered is to employ polymeric micelles. These are
considered more advantageous for brain delivery
due to characteristics such as small particle size
(10–200 nm) within the ideal range for brain pene-
trance, high water-solubility as well as low toxicity
[69, 70]. Non-ionic surfactants such as pluronic F68
and labrasol are already used as excipients in numer-
ous approved pharmaceuticals and have been used
to formulate the flavonoids myricetin, quercetin, and
fisetin into micelles for brain delivery [71]. Pluron-
ics have also been used to formulate Farnesol and
have been tested on Streptococcus mutans biofilms
[72]. For many current nanocarrier delivery systems,
the packing of lipophilic cations into the formulation
can also be used to achieve mitochondria-targeted
delivery [73–76] which may prove to be a highly
appropriate approach for the prospective clinical use
of Farnesol to inhibit PARIS to reduce PD neurode-
generation. Any nanoformulation approach, however,
would likely require in vivo safety and pharmacoki-
netic data as well as testing in models of PD to ensure
the therapeutic potential of Farnesol is retained before
moving forward into clinical trials.

CONCLUDING REMARKS

This is an exciting time for the development of PD
therapeutics aimed at slowing disease progression,
with several highly promising biochemical targets
currently being pursued both in and towards clini-
cal testing. Seen through this encouraging prism, we
hope the recent identification of a PARIS inhibitor
will eventually make a major long term impact on
the lives of PD patients and their families. Propelled
by this new discovery [13], by the notion that Far-
nesol was recently described as a “Noble Unknown”
[77] and, given the help Pirandello, Beckett and Pinter
provided, we hope these great writers will peruse this
article with interest from their own slices of writer’s
heaven in their long-term residences in Sicily, Mont-
parnesse and Kensal Green.
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