Supplementary Material

Cryopreservation of Induced Pluripotent Stem Cell-Derived Dopaminergic Neurospheres for Clinical Application

Gene	Forward	Reverse
POU5F1	AGACCATCTGCCGCTTTGAG	GCAAGGGCCGCAGCTT
NANOG	GGCTCTGTTTTGCTATATCCCCTAA	CATTACGATGCAGCAAATACGAGA
FOXA2	TTCAGGCCCGGCTAACTCT	AGTCTCGACCCCCACTTGCT
LMX1A	GATCCCTTCCGACAGGGTCTC	GGTTTCCCACTCTGGACTGC
ENI	TGGGTGTACTGCACACGTTATTC	GGAACTCCGCCTTGAGTCTCT
NURRI	CGAAACCGAAGAGCCCACAGGA	GGTCATAGCCGGGTTGGAGTCG
PITX3	GGGCCAGGAGCACAGCGACTCA	GCTGCCGCCGCTGCTTCTTTT
TH	GCAGTTCTCGCAGGACATTG	CGGCACCATAGGCCTTCA
TPH2	TCAGCTACTTGGCAGCTCAAC	CTTGCCACTTTCGGTAGCAG
GAPDH	GGTCGGAGTCAACGGATTTG	TCAGCCTTGACGGTGCCATG

Supplementary Table 1. List of primers for quantitative RT-PCR.

Antibody	Species	Dilution	Supplier	Catalog number
TH	Rabbit	1:400	Millipore	AB152
NURR1	Mouse	1:300	Perseus Proteomics	PP-N1404-00
NURR1	Mouse	1:1000	Donated by the KAN laboratory	
FOXA2	Goat	1:500	R&D systems	AH2400
SOX1	Goat	1:100	R&D systems	AF3369
PAX6	Mouse	1:500	BD Pharmingen	561462
KI67	Rabbit	1:1000	Novocastra	NCLKi67P
KI67	Rabbit	1:1000	Abcam	ab16667
TUBB3	Mouse	1:400	Covance	MMS-435P
HNA	Mouse	1:500	Millipore	MAB1281
IBA1	Rabbit	1:500	WAKO	019-19741

Supplementary Table 2. List of primary antibodies.

Cell source	Cryoprotectant	Freezing program	Results	Reference
Mouse ESC-derived	10% DMSO +	Cool at -(0.4-	>85% viability and 45% recovery of viable cells.	[32]
NPC	90% FBS or 10%	0.6)°C/min	Fresh and cryopreserved cells yielded similar neural	
	DMSO + 90%	(Freezing container)	marker expressions. Cryopreservation slightly	
	HypoThermosol		increased the differentiation into neurons and	
	FRS		astrocytes.	
Human iPSC-	10% DMSO +	Slow freezing	71% viability. Correctly patterned midbrain DA	[33]
derived DA neuron	30% KSR in		neurons co-expressing LMX1A, FOXA2, and TH.	
	medium			
Human iPSC-	STEM-	CAS freezer	>60% viability in the best condition. No significant	[34]
derived NSC/NPC	CELLBANKER	Hold at -7°C for 15	differences in proliferation ability and neural marker	
		min	expressions between fresh and cryopreserved cells.	
		Plunge to -70°C	Maturation delay was observed in cryopreserved	
			cells.	
Mouse MGE	10% DMSO in	Cool at -1°C/min	92.2% viability and 29.6% recovery of viable cells.	[35]
(E12.5)	medium	(Freezing container)	Neurosphere formation ability was not maintained.	
Edd 1	11) 12 9 1	· · · · · · · · · · · · · · · · · · ·		

Supplementary Table 3. Summary of techniques for cryopreservation of neurospheres.

ESC, embryonic stem cell; NPC, neural progenitor cell; DMSO, dimethyl sulfoxide; FBS, fetal bovine serum; DA, dopaminergic; iPSC, induced pluripotent stem cell; NSC, neural stem cell; MGE, medial ganglionic eminence

Supplementary Figure 1. Characterization of CORIN-unsorted spheres. A) Immunostaining of the spheres on day 28. LMX1A, FOXA2, and DAPI (upper), NURR1, TH, and DAPI (middle), and SOX1, KI67, PAX6, and DAPI (lower). Scale bars 100 μ m. B, C) The percentages of FOXA2⁺/LMX1A⁺, NURR1⁺, and TH⁺ (B) and SOX1⁺, PAX6⁺, and KI67⁺ (C) cells per total cells (n = 4).

А

Supplementary Figure 2. Effects of equilibration time on iPSC-derived neurospheres. A) Viability and (B) neurite extension of spheres from unsorted cells cryopreserved in Proton Freezer after 15 and 60 min of equilibration in Bambanker hRM (n = 4). The data are taken from Fig. 4, analyzed by unpaired t-test (ns, not significant), and shown as means \pm SD.

Supplementary Figure 3. Characterization of cryopreserved spheres derived from 1231A3 *in vitro*. A) Immunostaining of the spheres on day 35. FOXA2/DAPI (left), NURR1/TH (center), and SOX1/KI67/PAX6/DAPI (right). Scale bars, 100 μ m. B, C) The percentages of FOXA2⁺, NURR1⁺, and TH⁺ (B) and SOX1⁺, PAX6⁺, and KI67⁺ (C) cells per total cells on day 35 (n = 4). D, E) The gene expression of the spheres relative to GAPDH measured by quantitative RT-PCR (n = 4). D28, cells cultured for 28 days; D28+7, cells cultured for 7 days after 28 days cryofreezing; D35, fresh cells cultured for 35 days. The expression levels of day 28 (D) and undifferentiated cells (D0) (E) was set to 1. There were no significant differences between D35 and D28+7 by one-way ANOVA with Tukey's multiple comparisons test (D). One-way ANOVA with Tukey's multiple comparisons test; ****p < 0.0001 versus D0 (E). F) Immunostaining of post-thawed iPSC-derived DA neurons for TUBB3, TH, and DAPI on day 50. Scale bars, 50 µm. G) Representative induced action potentials of post-thawed iPSC-derived DA neurons on day 49. H) The results of dopamine release induced by high potassium stimulation on day 56 (n = 3). Data are shown as means ± SD.

Supplementary Figure 4. A) Immunostaining of representative grafts for IBA1. The right panels are magnified images of the frames in the left panels. Scale bars, 50 μ m. B) Adjusted mean intensity of IBA1 in the graft areas. The values are expressed as a ratio to the contralateral striatum. There were no significant differences between fresh, cryopreserved×1, and cryopreserved×2 by one-way ANOVA with Tukey's multiple comparisons test.

