Supplementary Material

Gait Kinematic Parameters in Parkinson's Disease: A Systematic Review

Supplementary Material 1. Flow diagram of study selection process

Supplementary Material 2. Forest plot analysis for the different gait parameters

Study or Subgroup	Mean	$\begin{gathered} \text { PD } \\ \text { SD } \end{gathered}$	Total	Mean	ontrol SD	Total	Weight	Mean Difference IV, Random, 95\% CI		Mean D IV, Rando	ifference om, 95\% CI	
1.11.1 Wearable sensors												
Ealtadjleva 2006	1.1	0.21	35	1.3	0.24	22	5.7\%	-0.20 [-0.32, -0.08]				
Beck 2013	1.16	0.2	101	1.18	0.24	39	6.3\%	-0.02[-0.10, 0.06]				
Bernad-Elazarl 2016	1.12	0.2	99	1.18	0.26	38	6.2\%	-0.06 [-0.15, 0.03]				
Brodie 2015	1.21	0.15	10	1.41	0.16	20	5.8\%	$-0.20[-0.32,-0.08]$				
Hatanaka 2016	0.89	0.24	124	1.1	0.22	24	6.1\%	$-0.21[-0.31,-0.11]$				
Hausdorf 1998	1	0.2	15	1.35	0.16	16	5.6\%	-0.35 [-0.48, -0.22]				
Kluge 2017	1.01	0.24	4	1.34	0.37	11	2.7\%	$-0.33[-0.65,-0.01]$				
Lewts 2000	1.06	0.21	14	1.39	0.22	14	5.1\%	-0.33[-0.49, -0.17]				
Lord 2008	0.92	0.16	12	1.2	0.15	11	5.6\%	$-0.28[-0.41,-0.15]$				
Lowry 2009	1.1	0.3	11	1.3	0.3	11	3.6\%	$-0.20[-0.45,0.05]$				
Matsushima 2017	0.96	0.27	61	1.34	0.13	57	6.5\%	-0.38 [-0.46, -0.30]				
Rocchl 2014	1.1	0.2	70	1.3	0.2	15	5.9\%	$-0.20[-0.31,-0.09]$				
Warkop 2017	1.18	0.19	14	1.47	0.17	10	5.3\%	-0.29 [-0.43, -0.15]				
Yogev 2005 Subtotal (95\% CI)	1.05	0.23	$\begin{array}{r} 30 \\ 600 \end{array}$	1.31	0.19	$\begin{array}{r} 28 \\ 316 \end{array}$	$\begin{array}{r} 6.0 \% \\ 76.6 \% \end{array}$	$\begin{aligned} & -0.26[-0.37,-0.15] \\ & -0.23[-0.30,-0.16] \end{aligned}$				
Heterogenelty: $\mathrm{Tav}^{2}=0.01 ; \mathrm{Chr}^{2}=59.17, \mathrm{df}=13\left(\mathrm{P}<0.00001\right.$); $\mathrm{r}^{2}=78 \%$ Test for overall effect: $Z=6.60$ ($\mathrm{P}<0.00001$)												
1.11.2 Non-wearable sensors												
Alcock-2 2018	1.2	0.26	36	1.28	0.2	38	6.0\%	-0.08 [-0.19, 0.03]				
De Melo Rotz 2010	0.77	0.14	12	0.59	0.2	15	5.6\%	0.18 [0.05, 0.31]				
Lord 2008	0.98	0.17	12	1.21	0.14	11	5.6\%	-0.23[-0.36, -0.10]				
UranlSilva 2019	1.23	0.2	25	1.33	0.15	29	6.2\%	-0.10 [-0.20, -0.00]				
Rafferty 2017	1.22	23	24	1.36	26	23	0.0\%	-0.14 [-14.20, 13.92]				
Subtotal (95\% CI)			109			116	23.4\%	-0.06 [-0.21, 0.09]				
Heterogeneity: Taur $^{2}=0.02 ; \mathrm{Chr}^{2}=21.05, \mathrm{df}=4(\mathrm{P}=0.0003) ; \mathrm{r}^{2}=81 \%$ Test for overall effect: $Z=0.79$ ($\mathrm{P}=0.43$)												
Total (95\% CI)			709			432	100.0\%	-0.19 [-0.26, -0.12]				
Heterogenelty: $\mathrm{Tau}^{2}=0.02 ; \mathrm{Ch}^{2}=102.27, \mathrm{df}=1 \mathrm{~B}\left(\mathrm{P}<0.00001\right.$); $\mathrm{I}^{2}=82 \%$ Test for overall effect: $Z=5.53$ ($\mathrm{P}<0.00001$) Test for subgroup differences: $\mathrm{Ch}^{2}=4.30, \mathrm{df}=1(\mathrm{P}=0.04), \mathrm{I}^{2}=76.7 \%$									-0.5	[experimental]	$0 \quad 0.25$	0.5

Forest Plot 1. Gait velocity parameter: comparison between different type of devices (WS and NWS)

Forest Plot 2. Gait velocity: comparison between different sensor locations

Study or Subgroup	Mean	PD	Total	Control			Weight	Mean Difference IV, Random, 95\% CI	Mean Difference IV, Random, 95\% CI			
1.10.1 Accelerometer												
Beck 2018	1.16	0.2	101	1.18	0.24	39	8.6\%	-0.02[-0.10, 0.06]				
Bernad-Elazarl 2016	1.12	0.2	99	1.18	0.26	38	8.4\%	$-0.06[-0.15,0.03]$				
Brodle 2015	1.21	0.15	10	1.41	0.16	20	7.7\%	-0.20 [-0.32, -0.08]				
Hatanaka 2016	0.89	0.24	124	1.1	0.22	24	8.2\%	-0.21[-0.31, -0.11]				
Lord 2003	0.92	0.16	12	1.2	0.15	11	7.4\%	-0.28 [-0.41, -0.15$]$				
Lowry 2009	1.1	0.3	11	1.3	0.3	11	4.2\%	-0.20 [-0.45, 0.05]				
Matsushima 2017	0.96	0.27	61	1.34	0.13	57	B.B\%	-0.38 [-0.46, -0.30]				
Rocchl 2014	1.1	0.2	70	1.3	0.2	15	7.8X	-0.20[-0.31, -0.09$]$				
Warkop 2017	1.18	0.19	14	1.47	0.17	10	6.8\%	-0.29 [-0.43, -0.15]				
Subtotal (95\% CI)			502			225	67.8\%	-0.20 [-0.29, -0.11]				
Heterogenelty: $\mathrm{Tau}^{2}=0.02 ; \mathrm{Chr}^{2}=51.05, \mathrm{df}=\mathrm{B}(\mathrm{P}<0.00001) ; \mathrm{I}^{2}=84 \%$ Test for overall effect: $\mathrm{Z}=4.32$ ($\mathrm{P}<0.0001$)												
1.10.2 Other type of sensors												
Baltadjleva 2006	1.1	0.21	35	1.3	0.24	22	7.5\%	-0.20[-0.32, -0.08]				
Hausdorff 1998	1	0.2	15	1.35	0.16	16	7.3\%	-0.35[-0.48, -0.22$]$				
Kluge 2017	1.01	0.24	4	1.34	0.37	11	3.1\%	-0.33[-0.65, -0.01]				
Lewts 2000	1.06	0.21	14	1.39	0.22	14	6.4\%	-0.33[-0.49, -0.17]				
Yogev 2005	1.05	0.23	30	1.31	0.19	28	7.9\%	$-0.26[-0.37,-0.15]$				
Subtotal (95\% CI)			98			91	32.2\%	-0.28 [-0.34, -0.22]				
Heterogenelty: $\mathrm{Tau}^{2}=0.00 ; \mathrm{Ch}^{2}=3.40, \mathrm{df}=4(\mathrm{P}=0.49) ; \mathrm{r}^{2}=0 \%$ Test for overall effect: $\mathbf{Z}=\mathbf{B} . \mathrm{B} 5$ ($\mathrm{P}<0.00001$)												
Total (95\% CI)			600			316	100.0\%	$-0.23[-0.30,-0.16]$				
Heterogenelty: $\mathrm{Tau}^{2}=0.01 ; \mathrm{Chr}^{2}=59.17, \mathrm{df}=13(\mathrm{P}<0.00001) ; \mathrm{r}^{2}=7 \mathrm{PK}$ Test for overall effect: $\mathbf{Z}=6.60$ ($\mathrm{P}<0.00001$) Test for subgroup differences: $\mathrm{Ch}^{2}=1 . \mathrm{B1}, \mathrm{df}=1(\mathrm{P}=0.18), \mathrm{I}^{2}=\mathbf{4 4 . 7 \%}$									$\begin{array}{r} -0.5 \\ \text { Favour: } \end{array}$	$\stackrel{-0.25}{\text { xperimental] }}$		$0.2500 .5$

Forest Plot 3. Gait velocity: comparison between different type of sensors

Forest Plot 4. Cadence: comparison between of the mean values between PD and HC subjects using WS

Study or Subgroup	PD			Control				Mean Difference IV, Random, 95\% CI	Mean Difference IV, Random, 95\% CI			
	Mean	SD	Total	Mean	SD	Total	Weight					
1.3.1 Wearable sensors												
Ealtadjleva 2006	1.23	0.19	35	1.38	0.22	22	11.4\%	-0.15[-0.26, -0.04]				
Demonceau 2015	1.29	0.2	64	1.43	0.16	32	13.3\%	-0.14[-0.21, -0.07]				
Frenkel-Toledo 2005	1.25	0.16	36	1.33	0.11	30	13.6\%	-0.08 [-0.15, -0.01]				
Kluge 2017	1.25	0.18	4	1.45	0.21	11	6.3\%	-0.20 [-0.42, 0.02]				
Lewts 2000	1.1	0.25	14	1.42	0.18	14	9.0\%	-0.32[-0.48, -0.16]				
Lowry 2009	1.4	0.2	11	1.4	0.2	11	8.7\%	$0.00[-0.17,0.17]$				
Subtotal (95\% CI)			164			120	62.8\%	-0.14 [-0.20, -0.07]				
Heterogenelty: $\mathrm{Tav}^{2}=0.00 ; \mathrm{Ch}^{2}=10.3 \mathrm{~B}, \mathrm{df}=5(\mathrm{P}=0.07) ; \mathrm{r}^{2}=52 \%$ Test for overall effect: $Z=3.97$ ($\mathrm{P}<0.0001$)												
1.3.2 Non-wearable sensors												
De Melo Rotz 2010	1.03	0.13	12	0.79	0.22	15	10.3\%	0.24 [0.11, 0.37]				
Makdan 2016	1.09	0.019	68	1.28	0.019	38	15.2\%	-0.19[-0.20, -0.18]		-		
Rafferty 2017	1.32	0.19	24	1.42	0.18	23	11.7\%	$-0.10[-0.21,0.01]$				
Subtotal (95\% CI)			104			76	37.2\%	-0.02[-0.25, 0.20]				
Heterogenety: $\mathrm{Tau}^{2}=0.04 ; \mathrm{Chr}^{2}=42.45, \mathrm{df}=2(\mathrm{P}<0.00001) ; \mathrm{I}^{2}=95 \%$ Test for overall effect: $\mathbf{Z}=0.22$ ($\mathrm{P}=0 . \mathrm{B} 3$)												
Total (95\% CI)			268			196	100.0\%	-0.10 [-0.18, -0.03]				
Heterogenelty: $\mathrm{Tau}^{2}=0.01 ; \mathrm{Chr}^{2}=62.16, \mathrm{df}=\mathrm{B}\left(\mathrm{P}<0.00001\right.$); $\mathrm{I}^{2}=87 \%$ Test for overall effect: $\mathbf{Z = 2 . 7 2 (P = 0 . 0 0 7)}$ Test for subgroup differences: $\mathrm{Ch}^{2}=0.87, \mathrm{df}=1(\mathrm{P}=0.35), \mathrm{r}^{2}=0 \mathrm{x}$									-0.5	erimental]	$0<\frac{0.25}{0}$	0.5

Forest Plot 5. Stride length: comparison between different type of devices (WS and NWS)

Study or Subgroup	Mean		Total	Mean	$\begin{gathered} \text { ontrol } \\ \text { SD } \\ \hline \end{gathered}$	Total	Weight	Mean Difference IV, Random, 95\% CI		Mean D IV, Rando	$\begin{aligned} & \text { ifference } \\ & \mathrm{m}, 95 \% \mathrm{CI} \end{aligned}$
1.4.1 Lower back											
Beck 2018	1.09	0.09	101	1.04	0.06	39	44.7\%	0.05 [0.02, 0.08]			-
Lowry 2009	1.1	0.1	11	1.1	0.1	11	4.2\%	$0.00[-0.08,0.08]$			
Welss 2011	1.18	0.1	22	1.09	0.09	17	8.3\%	0.09 [0.03, 0.15]			
Subtotal (95\% CI)			134			67	57.2\%	0.05 [0.02, 0.09]			
Heterogenelty: Taur $^{2}=0.00 ; \mathrm{Ch}^{2}=3.06, \mathrm{df}=2(\mathrm{P}=0.22) ; \mathrm{r}^{2}=35 \%$ Test for overall effect: $Z=2.187$ ($\mathrm{P}=0.004$)											
1.4.2 Feet											
Frenke1-Toledo 2005	1.12	0.07	36	1.08	0.09	30	19.0\%	0.04 [0.00, 0.08]			-
Kluge 2017	1.27	0.15	4	1.13	0.18	11	0.9\%	$0.14[-0.04,0.32]$			
Yogev 2005	1.08	0.15	30	1.07	0.08	28	7.9\%	0.01 [-0.05, 0.07]			
Subtotal (95\% CI)			70			69	27.7\%	0.03 [0.00, 0.07]			
Heterogenelty: $\mathrm{Tau}^{2}=0.00 ; \mathrm{Ch}^{2}=1.99$, $\mathrm{df}=2(\mathrm{P}=0.37) ; \mathrm{P}^{2}=0 \mathrm{X}$ Test for overall effect: $Z=2.0 \mathrm{~B}$ ($\mathrm{P}=0.04$)											
1.4.3 Other locations											
Baltadjleva 2006	1.13	0.11	35	1.07	0.07	22	13.6\%	$0.06[0.01,0.11]$			
Salarlan 2004	1.2	0.2	10	1.1	0.1	10	1.5%	$0.10[-0.04,0.24]$			
Subtotal (95\% CI)			45			32	15.1\%	$0.06[0.02,0.11]$			
Heterogenelty: $\mathrm{Tau}^{2}=0.00 ; \mathrm{Chr}^{2}=0.29, \mathrm{df}=1(\mathrm{P}=0.59) ; \mathrm{I}^{2}=0 \%$ Test for overall effect: $\mathbf{Z}=2.84$ ($\mathrm{P}=0.005$)											
Total (95\% CI)			249			168	100.0\%	0.05 [0.03, 0.07]			
Heterogenety: $\mathrm{Tau}^{2}=0.00 ; \mathrm{Chr}^{2}=6.5 \mathrm{~B}, \mathrm{df}=7(\mathrm{P}=0.47) ; \mathrm{I}^{2}=0 \%$ Test for overall effect: $\mathbf{Z}=5.59$ ($\mathrm{P}<0.00001$) Test for subgroup differences: $C h^{2}=1.20, \mathrm{df}=2(\mathrm{P}=0.55), \mathrm{I}^{2}=0 \mathrm{x}$									$\begin{gathered} -0.2 \\ \text { Favours [ex } \end{gathered}$	-0.1	$\begin{array}{cc} 0.1 & 0.2 \\ \text { Favours } \\ \text { [control] } \end{array}$

Forest Plot 6. Stride time: comparison between different sensor locations

Forest Plot 7. Stride time variability: comparison between different sensor locations

Forest Plot 8. Step length: comparison between different type of devices (WS and NWS)

Forest Plot 9. Step time: comparison between of the mean values between PD and HC subjects using WS

Forest Plot 10. Swing time: comparison between of the mean values between PD and HC subjects using WS

Forest Plot 11. Double support time: comparison between of the mean values between PD and HC subjects using WS

